Research progress on the genetic regulatory mechanism of flowering in Chrysanthemum
-
摘要:
开花是植物发育过程中一个关键的质变过程,是植物从营养生长向生殖生长阶段的转变。对于观赏植物来说,开花的早晚决定了其市场应用和经济价值。植物开花受到内外信号的复杂调控,基于模式植物拟南芥(Arabidopsis thaliana (L.) Heynh)的研究,目前已经阐明了6条主要的开花调控途径,这些途径彼此独立又互相交叉,形成复杂的遗传调控网络。菊花(Chrysanthemum × morifolium Ramat)作为起源于中国的世界名花,是世界花卉市场的重要一员,但因其是典型的短日照植物,不仅增加了生产中开花期调控成本,也限制了菊花的应用范围。本文以高等植物开花遗传调控网络为基础,综述了菊花开花遗传调控机制的研究进展,以期为菊花开花时间改良育种工作提供理论指导,同时也为解析高等植物开花机制提供新见解。
Abstract:Flowering represents a critical transition in plant development, shifting from the vegetative to reproductive growth stages. In ornamental plants, the timing of flowering significantly impacts marketability and economic value. Plant flowering is regulated by complex internal and external signals. Studies on the model plant Arabidopsis thaliana have identified six primary pathways related to flowering regulation. These independent but intersecting pathways form a complex genetic regulatory network. Chrysanthemum × morifolium, a famous flower originating from China, holds a considerable share of the world flower market. However, its typical short-day flowering requirements not only increase production costs but also limit its application scope. Based on the flowering regulatory networks of higher plants, this review discusses current research progress on the genetic regulatory mechanisms underlying chrysanthemum flowering, thus providing theoretical guidance for the breeding and improvement of flowering time, as well as new insights into the flowering mechanisms of higher plants.
-
Keywords:
- Chrysanthemum × morifolium /
- Flowering /
- Environmental factors /
- Genetic regulation
-
山地地区既是生物多样性和遗传多样性的宝库,也是维持全球陆地生态系统平衡重要的组成部分[1, 2]。当今山地生物多样性的形成与演化受长时间尺度地质运动、气候变迁、地貌变化和生态过程的影响,最终落脚于物种形成、适应性进化、拓殖、物种存续和灭绝事件的综合过程[2]。值得注意的是,在大部分生物多样性富集的山地生态系统中都具有明显的垂直地带性差异,即从低海拔分布的森林生物区到高海拔分布的高寒生物区。其中,高寒生物区的形成与山体隆升的幅度及历史环境的变迁密切相关,对认识山地生物多样性形成具有关键性的意义。
高寒生物区位于天然树线以上,永久雪线以下,在各大洲的高山中都有分布,面积约占全球陆地面积的3%,其海拔分布范围因所处纬度不同,自低纬度向高纬度海拔逐渐降低,与各地区树线以及山峰冰川和雪线的高低密切相关(图1)。就植被类型而言,高寒生物区主要包括高山灌丛,草甸和冰缘带植被等[3]。由于低温(昼夜温差大)、大风、空气稀薄、紫外辐射强烈等独特的环境因素影响,高山植物普遍表现出与高山树线以下非乔木生活型植物显著不同的部分形态和生理属性,其植物区系组成主要是适应冰雪或严寒生境的低矮或匍匐状的灌木、禾草型植物、多年生草本、莲座状植物和各种类型的垫状植物[3]。据估计,全球高寒生物区大概有8 000 ~ 10 000种高等植物,分属于大约100个科和2 000余个属,占已知高等植物总数的4%左右[3]。虽然就植物多样性而言,高寒生物区植物种类比热带、亚热带雨林低,但因其自然环境严酷,植物区系极其特殊,同时对全球变暖非常敏感,生态系统极其脆弱,全球气候的变暖将使树线升高,压缩该植被带的范围,使物种灭绝的风险大大增加[4, 5],因此长期以来都是生物和生态学家关注的焦点。
图 1 高寒生物区分布图A:高寒生物区在全球的分布(平均海拔3 000 m左右),苔原用蓝色表示。全球SRTM 500 m DEM数据和60ºN以上的高程数据来自30弧秒分辨率全球多分辨率地形高程数据2010(GMTED2010);苔原依据WWF的划分标准。B:从赤道到两极主要山脉的高寒生物区海拔高度变化示意图(修改自Körner [3])。Figure 1. Distribution map of world alpine biomeA: Alpine regions are shown in color, tundra regions are shown in blue and non-alpine regions are shown in different degrees of gray. SRTM 500 m and latitude above 60°N are derived from the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) at 30 arc-second resolution. Tundra is depicted based on WWF global biome classification. B: Schematic of altitudinal position of alpine life zone from Arctic to Antarctic latitudes (modified from Körner[3]).高寒生物区作为山地地区海拔最高的生态系统,其形成与区域造山运动和气候变化密切相关,尤其在中低纬度地带,只有山体隆升到一定高度才有可能形成高寒生境,为高寒植物的拓殖和分化创造条件。例如,安第斯Páramos起源时间大概在3.5 Ma左右,与安第斯山北部地区隆升至现在高度的时间一致,同时受到第四纪冰期的塑造作用[6];新西兰的南阿尔卑斯山地区的高寒生物区不早于5 Ma[7, 8],研究表明能够适应高寒生境的类群形成始于山体抬升到一定高度并且气候变冷时,到1.9 Ma 高寒生境广泛且持续存在时,新西兰高寒生物才开始迅速多样化[7, 8];而高寒植物拓殖到东非高寒生物区的时间大概在5-10 Ma,这个时间晚于许多东非高山在渐新世的造山运动,其现今高寒植物多样性格局的形成主要受到更新世气候波动的影响[9]。泛青藏高原地区是全球温带高寒植物多样性最高的区域,也是山地生物多样性研究的热点和难点区域。长期以来,该地区的生物学研究受到早期地质学上整体抬升或近期快速隆升观点的影响,忽视了地域的差异性以及对最新地质学观点的吸纳,随着对青藏高原各地块构造演化历史研究的加深,我们对该地区生物多样性形成与演化的认识也有了长足的进步。青藏高原在地质历史时期经历了复杂而大规模的构造环境变化[10, 11],这一系列的地质运动不仅塑造了该地区复杂的地形地貌,引发了东亚季风系统的改变[12-14],也深刻影响着该地区植物多样性的形成与发展。目前,该地区的生物多样性研究已经逐步迈入到地质-气候-生物过程的交叉研究阶段[15, 16],未来多学科的贯穿融合也必将成为深入揭示该地区生物多样性演化过程及其形成机制的重要手段。
基于此,本文在综合考虑诸如造山运动和气候变化等地球物理过程如何影响高寒物种的积累和多样化过程,以及自然选择和杂交等在维持其生物多样性中发挥的作用,概述了青藏高原及其周边地区高寒植物多样性的起源和演化节奏、成分来源和区系交流及其内外驱动机制等方面的重要研究进展。
1. 青藏-喜马拉雅-横断山地区环境异质性和高寒植物多样性
1.1 青藏-喜马拉雅-横断山地区地质历史背景及现代地理环境差异
从地质构造上看,泛青藏高原并非整体抬升,它由来源和抬升历史不同的地块组成(图2)[17, 18]。构成青藏高原核心的羌塘地块和拉萨地块均来自南半球的冈瓦纳大陆,冈瓦纳大陆裂解后这两个地块北漂,分别于晚三叠世和早白垩世拼合成为欧亚大陆的一部分[19]。随着古高程研究的进一步深入,青藏高原隆升过程的复杂性和块体间差异被逐渐认识。藏南拉萨地块冈底斯山至少在51 Ma 以来就来一直保持着4 500 m以上的海拔[20]。从始新世到晚渐新世,印度-亚洲板块加速汇聚,由板块汇聚导致的地壳挤压增厚使西藏中部和南部进一步抬升[21]。直到新近纪,青藏高原主体中部高地才完全形成[22],到了中中新世,喜马拉雅才隆升至接近现在的高度[23]。横断山一直被认为是在晚中新世到上新世形成的[24],然而,最新的化石和构造证据表明,横断山部分地区在早渐新世就已经达到了接近现代的海拔高度[25]。考虑到高原腹地、横断山和喜马拉雅在形成时间、隆升节奏、地形地貌和气候条件等差异对区域生物多样性的形成与演化的影响[18],有必要将高原腹地、喜马拉雅和横断山区这3个地区区分来看[18, 26, 27](图2)。
青藏高原腹地的范围是指由广大高原面构成的主体,是阿尔金断裂以南,雅鲁藏布江缝合带以北,喀喇昆仑山脉走滑断层以东,秦岭、横断山以西,包括昆仑-祁连盆岭(山-盆)区[18, 26, 28]。高原腹地深处大陆内部,且高山环绕,在漫长的地质历史中经历了从湿润-半湿润-半干旱-干旱-极端干旱的气候转变[29],演化成今天包含多种生活型的高寒生态系统[30, 31],一般从东南向西北地势越高种类越少,大体上以草甸灌丛、荒漠草原和冰缘带植被为主,局部地区仍有小面积的森林和零星的森林树种分布[30]。
横断山地处广义青藏高原的东南缘,地域涵盖滇西北、川西、藏东和藏东南延伸至青海东南部和甘肃西南部,由数列南北近平行的山脉组成[26, 32],区域内河流深切,山体平均海拔从川西藏东的4 000 ~ 5 000 m到云南南部地区的2 000 m左右,其中5 000 m以上的极高山和3 500 ~ 5 000 m的高山占到总面积的73%,最高峰贡嘎山的海拔为7 556 m,而山脚海拔仅为1 100 m,岭谷之间相对高差悬殊[33],是世界上特殊环境类型最多的地域之一[34]。与寒旱少雨的青藏高原腹地相比[29],东南部的横断山地区受西南季风及东南季风的双重影响夏季多雨湿润,且高山峡谷逶迤南北,悬殊的谷、岭高差,导致其气候、植被和土壤巨大的垂直分异[35, 36]。由于其地理位置特殊及生境复杂多样,其南端与东南亚热带北缘相邻接,北部及西北部向青藏高原高寒地带过渡,各类植物区系成分交错混杂,形成了齐全的从河谷至高山的垂直植被带。
喜马拉雅山位于青藏高原南部,由数条大致东西向平行的支脉组成并向南凸出呈弧形。它西起克什米尔的南迦-帕尔巴特峰,东至雅鲁藏布江大拐弯处的南迦巴瓦峰,是印度河-雅鲁藏布江缝合带(也是印度板块和欧亚板块的界限)以南,主边界断层以北的地区(图2)[26, 27]。其南北向的断裂构造发育,经河流切割形成纵向深险峡谷,成为西南季风气流北进的通道。喜马拉雅山西部紧挨着兴都库什山系,东边紧靠印度-缅甸,北部紧靠喀喇昆仑山脉和冈底斯山。由于其独特的地理位置及周围毗邻地区生态环境的显著差异,喜马拉雅植物区系包含了许多不同的地理成分(东亚成分,马来-缅甸成分和中亚细亚及地中海成分等),植物区系和植被景观也呈现出明显的垂直地带性,其中热带成分在低海拔地区占优势,东亚温带成分则在亚高山和高山地带占优势,该地区不存在真正的特有科,特有属也不多[37],特有种主要在中高海拔地区[38]。
1.2 青藏-喜马拉雅-横断山地区高寒植物多样性
受区域地质构造历史及其环境异质性的影响,青藏高原腹地、喜马拉雅和横断山的高寒植物物种的丰富度和演化历史也表现出区域间的差异性和交融性。其中,横断山的高寒生物多样性尤其丰富。根据张大才和孙航[39]统计,在横断山4 100 m以上的海拔范围共有种子植物70科297属1 820种,而这一数字很可能低估了横断山高寒地区的植物多样性,因为横断山地区的树线在很多山区可下探至3 500 m左右(图3)。据最近的统计结果,除亚种和变种外,横断山高寒地区种子植物可达3 030种,其中包括12种裸子植物[40],远高于面积更广阔的青藏高原腹地(种子植物1883种)[30, 41],和喜马拉雅地区(据统计,以尼泊尔为代表的中喜马拉雅地区共有高寒种子植物1 227种,而西喜马拉雅则记录有约830种)[42, 43]。在植物区系的研究中,武素功等[30]指出,青藏高原主体的高寒植物区系属于中国-喜马拉雅区系的衍生或组成成分,缺乏古特有属,大部分类群是从分布较广、尤其是横断山和青藏高原低海拔的一些属种衍生而来。
2. 青藏-喜马拉雅-横断山地区高寒植物多样性演化历史
2.1 青藏-喜马拉雅-横断山地区高寒植物多样性的起源及演化节奏
从全球高寒植物多样性的形成历史来看,高寒植物区系是一个比较年轻的生物区,主要受到晚中新世以来各大洲山体最后阶段的抬升和第四纪冰期的驱动[7, 45, 46]。然而,相对于其他高寒生物区,青藏高原-喜马拉雅-横断山地区的高寒植物多样性更为丰富也更加古老,受到区域构造隆升和气候变化的强烈影响。
近几年,在青藏高原及其周边地区基于关键类群和特有类群在分子水平上开展了大量的谱系地理和生物地理学研究,为认识该地区重要类群的起源和高寒植物多样性演化发挥了重要作用。例如,Luo 等[47]对横断山-喜马拉雅冰缘带特有的4个物种的谱系地理分析结果表明,4种植物主要分化于晚上新世至早-中更新世;一些特有种比例较高的属,例如,毛冠菊属(Nannoglottis)、川木香属(Dolomiaea)、重羽菊属(Diplazoptilon)、黄缨菊属(Xanthopappus)、无心菜属(Arenaria)中的垫状类群以及高山竹类也是在上新世-第四纪快速分化[48-52];而橐吾(Ligularia)-垂头菊属(Cremanthodium)-蟹甲草属(Parasenecio)[53]、风毛菊属(Saussurea)[54]、锦鸡儿属(Caragana)[55]、绿绒蒿(Meconopsis)[56]、大黄属(Rheum)[57]和红景天属(Rhodiola)[58]则是在中中新世至晚中新世发生了快速多样化。然而,更古老的拓殖和分化事件仍然发现于其他广布且多样化的类群当中。Ebersbach等[59] 通过虎耳草属(Saxifraga)的生物地理分析把高寒类群拓殖于青藏高原的时间推进到晚始新世(49-34 Ma),与当时西藏南部已经有超过4 000 m的高山相吻合[20];随后的多样化发生在10-4 Ma认为是受到较晚抬升的横断山构造活动的影响。龙胆属(Gentiana)在始新世(40-34 Ma)起源于青藏高原及其周边地区,除了晚中新世-早上新世的突然加快,自晚始新世以来多样化速率增加缓慢[60]。Zhao 等[61]对喜马拉雅-横断山分布的高山姜类的研究发现,大概在早渐新世( ~ 32 Ma)象牙参属(Roscoea)和距药姜属(Cautleya)就与其姐妹群分化开来,而象牙参属在横断山与喜马拉雅的两个分支大概在渐新世-中新世之交分化[61]。从以上案例研究结果可以看出,青藏高原及其周边山地高寒植物的多样化过程基于不同研究类群的演化尺度,表现出了时空上的差异性,分化时间从古老到年轻,时间跨度大。另外,对广义青藏高原的笼统划分也限制了对不同地区演化历史及其驱动机制的深入理解和认识。为了克服这个问题,Ding 等[27]选取了青藏高原腹地,喜马拉雅和横断山高寒植物多样性较高的18个被子植物类群(总计包含3798种),通过应用系统发育比较方法和多类群大尺度的整合分析,重建了横断山、喜马拉雅以及青藏高原主体高寒植物多样性连续变化的时空演化历史,将横断山高寒植物的起源时间追溯到晚始新世到早渐新世[27],并结合古生物学和地质学证据,探讨了重大地质构造事件(山体隆升)和历史气候变化对高寒植物多样性形成的影响(图4)。研究表明,在横断山地区,高寒物种就地演化速率在早中新世到中中新世(23-15 Ma)和晚中新世(10-7 Ma)加快并一直保持较高的水平,是新近纪全球降温、横断山造山运动与亚洲季风增强共同作用的结果。而在喜马拉雅地区,物种演化速率的加快比横断山晚,主要在中中新世(19 Ma 一直持续到12 Ma),与喜马拉雅的隆升节奏和夏季季风的增强有关[27]。青藏高原地区高寒植物多样性增加紧随喜马拉雅其后(18 Ma),说明现今青藏高原(腹地)的高寒植物多样性很可能是喜马拉雅隆升后发展起来的[27]。因此,横断山及其周边地区高寒生物多样性的形成是自始新世降温以后,在造山运动和季风加强的共同影响下形成的,这些因素一起为生物多样性演化提供了一个生态-进化的舞台,并且一直持续至今。
图 4 横断山、喜马拉雅和青藏高原腹地高寒地区生物多样性演化速率与气候变化和地质历史之间的关系(修改自Ding 等[27])A:全球气候变化曲线来自深海氧同位素记录[64, 65]。蓝色线段表示亚洲季风演化趋势,由Farnsworth 等[66] 在理想CO2下模拟的青藏高原及其周边地区各地史阶段的年平均降水量表示。B:喜马拉雅(HIM)、青藏高原腹地(TP)和横断山(HDM)从晚始新世至今分3个阶段的地形示意图。红色带数字的圆点表示基于最新构造证据重建古高程的地点。C:横断山、喜马拉雅和青藏高原腹地高寒生物区植物多样性速率随时间的变化。青藏高原主体图中由浅至深的黄色条带代表了古近纪以来青藏高原腹地的干旱化程度。Figure 4. Rates of biotic assembly in relation to climate and geological history in the Hengduan Mountains, Himalaya, ibetan Plateau (modified from Ding et al.[27])A: Evolution of global climate is represented by deep-sea oxygen-isotope records[65] and estimated deep ocean temperatures by Hansen et al. [64]. Monsoon conditions are indicated by modeled mean annual precipitation (m) for each geological stage, represented by blue lines at idealized CO2 (solid blue circle) (modified from Farnsworth et al. [66]). B: Schematic of topography of the Himalaya (HIM), the Tibetan Plateau (TP), and the Hengduan Mountains (HDM) in three phases, from late Eocene to the present. C: Rolling estimates of rates through time in the HDM, HIM, and TP. Light to dark yellow bar in the last panel represents intensity of aridification in the TP since the Paleogene.2.2 青藏-喜马拉雅-横断山地区高寒植物的成分来源和区系交流
横断山和喜马拉雅的高寒植物多样性积累均以就地演化为主,而高原腹地则以迁入为主。此外,横断山高寒生物区和喜马拉雅、高原腹地之间还有着非常密切的区系联系,是喜马拉雅和青藏高原高寒生物多样性的主要供给地[27]。相比之下,横断山中低海拔要远高于其邻近高寒生物区对横断山高寒生物区的贡献,这可能与横断山整体上的温带植物区系性质有关,横断山也被认为是北温带分布型属的起源和分化中心[62]。喜马拉雅地处中纬度地区,下接亚热带气候类型,上接温带气候类型,直到早中新世-中中新世以后才快速隆起,而邻近的横断山和青藏高原地区隆升历史较早,尤其是横断山复杂的地形地貌维持了比较高的高寒生物多样性[62],因此,已经预适应高寒的横断山类群是喜马拉雅高寒生物区的重要来源。Hörandl和Emadzade[63]通过对毛茛属(Ranunculus)的生物地理研究也得出喜马拉雅地区的高寒类群,相对于从其他地方通过长距离扩散迁移过来(例如北极地区,中亚和北亚以及从台湾高山地区),从中低海拔就地演化而来的较少。另外,植物区系调查结果表明,喜马拉雅的特有成分主要集中在高寒/亚高山地带[38]。由此可见,喜马拉雅的快速隆升所形成的高寒地带为随后的迁移和就地演化创造了条件。由于隆升过程始终占主导地位,因而可以像横断山一样的温带成分得到极大地发展。
更新世冰期时,由于山岳冰川发育,树线比现在低,邻近山地高寒生物区之间的交流频率增加[67]。即使是位于赤道附近的埃塞俄比亚高地和乞力马扎罗山在冰期时高寒生物区的海拔也比现在低1 000~1 500 m[68],使得冰期时高寒生物区之间的联系更加密切。在以往的谱系地理研究中也发现,虽然不同物种在冰期、间冰期的扩张方式不同,但都多次出现从横断山回迁到青藏高原腹地的情况[69]。Ding 等[27]研究也发现,贯穿第四纪从横断山扩散到其周边地区,尤其是迁移到青藏高原的速率快速增加。
2.3 青藏-喜马拉雅-横断山地区高寒植物多样化的内在驱动力
长期以来的地质活动(山体隆升、河流重组等)和气候演变不断地塑造着青藏高原及其周边地区的地形地貌,由此产生的新生境、局域环境的改变和生态位的分化为物种形成、演化和迁移创造了机会[27, 70]。较高的生境异质性和气候的反复波动不仅促进了不同居群间的隔离和遗传分化[71],沿海拔梯度不同强度的自然选择压力以及局域微生境的多样化也使得有限的区域内居群承受的生态选择压力不同,进而导致生殖隔离的产生和同域物种形成[72]。大量群体基因组学的分析还发现基因流在青藏高原及其周边山地很多植物类群的物种形成过程中普遍存在,这可能受到第四纪气候震荡或者河流袭夺事件的影响,使得尚未分化完全的物种有了再次接触和基因交换的机会[73]。在一些多样化较高的类群中,如杜鹃花属(Rhododendron)[74]、龙胆属[75]等,频繁发生的种间杂交也为新物种的形成创造了机会,表明很多物种仍处于物种分化的过程当中[73]。同时,越来越多的证据指出异源多倍体对生物多样性的贡献很可能被低估。例如,蔊菜属(Rorippa)中高蔊菜(Rorippa elata (Hook. f. & Thomson) Hand.-Mazz.)和沼生蔊菜(Rorippa palustris (L.) Besser)的杂交起源及它们在横断山区从南到北反复拓殖的群体历史,表明多倍体物种种群扩张过程中种群的适应能力呈现出沿纬度梯度提高的趋势,多倍体可以通过调整适应性来应对扩张过程中的选择压力[76]。因此,生物因素(杂交,多倍化,基因渐渗)和生态过程(自然选择,适应性进化)作为物种形成和分化的内在驱动力,与构造运动和气候变化等外营力共同作用,在维持该区域遗传多样性和生物多样性上扮演着重要角色。
3. 展望
随着基于近几年对泛青藏高原构造演化历史及其所引发的气候演变的认识逐步加深,本文以不同地理单元的划分作为切入点,归纳并总结了横断山、喜马拉雅和高原腹地高寒植物多样性演化历史、过程及其形成机制的重要研究进展。首先,根据各地的环境差异和构造背景界定不同的生物地理区,如,横断山、喜马拉雅和青藏高原腹地的划分,进而比较其多样性形成历史的异同,在一定程度上解决了长期以来因为地域界定问题由不同类群推演出来生物地理历史和多样性成因互存争议的局面。此外,本文还阐述了杂交、多倍化和基因渐渗等生物过程在活跃的构造运动和气候波动下维持区域生物多样性的重要作用。
青藏高原及其周边山脉活跃的构造抬升、季风气候的加强以及更新世的冰川作用等环境变化深刻塑造了泛青藏高原的地形地貌和气候环境的异质性,为该地区的物种分化和形成创造了条件。自然选择、适应性进化和杂交作为物种多样性形成的内在驱动力,在维持该区域遗传多样性和生物多样性上也扮演着重要角色。泛青藏高原地区独特的地理环境和复杂的构造演化背景,在一定程度上对我们深入揭示其多样性的形成和维持机制提出了挑战,也正因如此,未来该地区的生物多样性研究势必推动生物学和地质学等多学科的交叉融合,通过地质-气候-生物的过程的耦合关系和相互作用的研究加深对地球环境变化和生物演化过程的认识。
不同山地地区现代环境、地形地貌差异显著,地质背景和环境演化历史迥异,其生物多样性的演化历史必然也呈现出时空格局上的差异。深入比较不同山地生物多样性形成演化历史的异同及与各自环境变化的关系、揭示其间的联系无疑将加深对现今山地生物多样性分布格局的理解。例如,以欧亚山地生态系统为代表的横断山、喜马拉雅、天山、高加索山和阿尔卑斯山,它们彼此在共有植物科属组成上都具有一定相似性,包括了以菊科、禾本科、十字花科、豆科、毛茛科、石竹科、蔷薇科、莎草科、虎耳草科、景天科、报春花科、紫堇科、龙胆科、百合科以及一些灌木类群,如杜鹃花科、小檗科、杨柳科等为代表的一些高寒植物类群,组成了欧亚大陆甚至北半球高寒生物区最主要的植物种类和多样性[3, 31, 77]。不同区域的构造演化和气候变化历史是否影响了它们之间的物种交流,又是否导致了这些山地地区间生物多样性的形成、演化历史的差异?利用这些在不同山区广泛分布的特征植物类群,比较其物种多样化的过程和联系,将有助于回答以上问题。此外,高寒生物区严苛的自然环境所造成的选择压力是否导致了不同类群在功能形态上的趋同演化或繁殖策略的改变,例如,与高寒植物的适应性进化策略相关的某些关键形态性状—温室结构、棉毛结构及垫状结构,这些特殊的生活型或生理代谢等有时会同时出现在亲缘关系较远的类群中。把这些关键性状的演化与特定生物区的演化结合起来分析并探究其适应性和内在遗传机制,将会进一步加深我们对生物多样性在不同时间尺度和驱动因素下演变的认识。
-
图 1 拟南芥中以光周期途径为主的开花途径和菊花中响应光周期的同源基因
红线代表在菊花中涉及的研究(参考网站:https://www.wikipathways.org/index.php/Pathway:WP622)。
Figure 1. Flowering pathway dominated by photoperiodic pathway in Arabidopsis thaliana and photoperiod-responsive homologous genes in Chrysanthemum
Red line represents research involving Chrysanthemum (Photoperiodic pathway available online: https://www.wikipathways.org/index.php/Pathway: WP2312).
-
[1] 舒黄英,郝园园,蔡庆泽,王振,朱国鹏,等. 模式植物拟南芥开花时间分子调控研究进展[J]. 植物科学学报,2017,35(4):603−608. doi: 10.11913/PSJ.2095-0837.2017.40603 Shu HY,Hao YY,Cai QZ,Wang Z,Zhu GP,et al. Recent research progress on the molecular regulation of flowering time in Arabidopsis thaliana[J]. Plant Science Journal,2017,35 (4):603−608. doi: 10.11913/PSJ.2095-0837.2017.40603
[2] 张秋玲,刘海鹏,高康,孔德元,戴思兰. 盆栽菊花反季节开花调控技术研究[J]. 黑龙江农业科学,2021(9):62−67. Zhang QL,Liu HP,Gao K,Kong DY,Dai SL. Research on anti-seasonal flowering control technology of potted chrysanthemum[J]. Heilongjiang Agricultural Sciences,2021 (9):62−67.
[3] 陈俊愉, 程绪珂. 富贵神仙品(中国花经节编)[M]//王明明. 大匠之门5. 南宁: 广西美术出版社, 2015: 1-100. [4] 谯德惠. 花卉产销实现平稳增长——2012年全国花卉统计数据分析[J]. 中国花卉园艺,2013(15):26−31. [5] 李小青. 我国花卉出口贸易的现状、问题及对策[J]. 中国市场,2022(29):75−78. doi: 10.13939/j.cnki.zgsc.2022.29.075 [6] 张引潮. 坚定信心锚定花卉业高质量发展——在2022全国花卉产销形势分析会上的讲话[J]. 中国花卉园艺,2022(4):10−15. doi: 10.3969/j.issn.1009-8496.2022.4.zghhyy202204003 [7] 尚嘉琪. 地被菊花期改良育种技术研究[D]. 晋中: 山西农业大学, 2017: 1-10. [8] 古晓红,李方舟,张海生,杨婷婷,王军. 大豆常规杂交育种和生物分子育种的优劣对比[J]. 种子科技,2020,38(17):29−30. doi: 10.3969/j.issn.1005-2690.2020.17.013 [9] 雒新艳,张俊丽,张二海. 盆栽小菊育种研究进展[J]. 山东林业科技,2021,51(1):81−86. doi: 10.3969/j.issn.1002-2724.2021.01.019 Luo XY,Zhang JL,Zhang EH. Research progress on potted chrysanthemum breeding[J]. Journal of Shandong Forestry Science and Technology,2021,51 (1):81−86. doi: 10.3969/j.issn.1002-2724.2021.01.019
[10] 赵小刚. 日中性小菊新品种选育及小菊开花期遗传分析[D]. 北京: 北京林业大学, 2019: 1-10. [11] 蒋志敏,王威,储成才. 植物氮高效利用研究进展和展望[J]. 生命科学,2018,30(10):1060−1071. doi: 10.13376/j.cbls/2018128 Jiang ZM,Wang W,Chu CC. Towards understanding of nitrogen use efficiency in plants[J]. Chinese Bulletin of Life Sciences,2018,30 (10):1060−1071. doi: 10.13376/j.cbls/2018128
[12] Gojon A. Nitrogen nutrition in plants:rapid progress and new challenges[J]. J Exp Bot,2017,68 (10):2457−2462. doi: 10.1093/jxb/erx171
[13] Srikanth A,Schmid M. Regulation of flowering time:all roads lead to Rome[J]. Cell Mol Life Sci,2011,68 (12):2013−2037. doi: 10.1007/s00018-011-0673-y
[14] Blümel M,Dally N,Jung C. Flowering time regulation in crops:what did we learn from Arabidopsis?[J]. Curr Opin Biotechnol,2015,32:121−129. doi: 10.1016/j.copbio.2014.11.023
[15] 孙昌辉,邓晓建,方军,储成才. 高等植物开花诱导研究进展[J]. 遗传,2007,29(10):1182−1190. doi: 10.3321/j.issn:0253-9772.2007.10.005 Sun CH,Deng XJ,Fang J,Chu CC. An overview of flowering transition in higher plants[J]. Hereditas (Beijing)
,2007,29 (10):1182−1190. doi: 10.3321/j.issn:0253-9772.2007.10.005 [16] 张艺能,周玉萍,陈琼华,黄小玲,田长恩. 拟南芥开花时间调控的分子基础[J]. 植物学报,2014,49(4):469−482. doi: 10.3724/SP.J.1259.2014.00469 Zhang YN,Zhou YP,Chen QH,Huang XL,Tian CE. Molecular basis of flowering time regulation in Arabidopsis[J]. Chinese Bulletin of Botany,2014,49 (4):469−482. doi: 10.3724/SP.J.1259.2014.00469
[17] Komeda Y. Genetic regulation of time to flower in Arabidopsis thaliana[J]. Annu Rev Plant Biol,2004,55:521−535. doi: 10.1146/annurev.arplant.55.031903.141644
[18] Wahl V,Ponnu J,Schlereth A,Arrivault S,Langenecker T,et al. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana[J]. Science,2013,339 (6120):704−707. doi: 10.1126/science.1230406
[19] Teotia S,Tang GL. To bloom or not to bloom:role of MicroRNAs in plant flowering[J]. Mol Plant,2015,8 (3):359−377. doi: 10.1016/j.molp.2014.12.018
[20] Achard P,Cheng H,de Grauwe L,Decat J,Schoutteten H,et al. Integration of plant responses to environmentally activated phytohormonal signals[J]. Science,2006,311 (5757):91−94. doi: 10.1126/science.1118642
[21] Balasubramanian S,Sureshkumar S,Lempe J,Weigel D. Potent induction of Arabidopsis thaliana flowering by elevated growth temperature[J]. PLoS Genetics,2006,2 (7):e106. doi: 10.1371/journal.pgen.0020106
[22] Martínez C,Pons E,Prats G,León J. Salicylic acid regulates flowering time and links defence responses and reproductive development[J]. Plant J,2004,37 (2):209−217. doi: 10.1046/j.1365-313X.2003.01954.x
[23] Vidal EA,Moyano TC,Canales J,Gutiérrez RA. Nitrogen control of developmental phase transitions in Arabidopsis thaliana[J]. J Exp Bot,2014,65 (19):5611−5618. doi: 10.1093/jxb/eru326
[24] Kitamoto N,Ueno S,Takenaka A,Tsumura Y,Washitani I,Ohsawa R. Effect of flowering phenology on pollen flow distance and the consequences for spatial genetic structure within a population of Primula sieboldii (Primulaceae)[J]. Am J Bot,2006,93 (2):226−233. doi: 10.3732/ajb.93.2.226
[25] Elzinga JA,Atlan A,Biere A,Gigord L,Weis AE,Bernasconi G. Time after time:flowering phenology and biotic interactions[J]. Trends Ecol Evol,2007,22 (8):432−439. doi: 10.1016/j.tree.2007.05.006
[26] Lemoine NP,Doublet D,Salminen JP,Burkepile DE,Parker JD. Responses of plant phenology,growth,defense,and reproduction to interactive effects of warming and insect herbivory[J]. Ecology,2017,98 (7):1817−1828. doi: 10.1002/ecy.1855
[27] Vermeulen PJ. On selection for flowering time plasticity in response to density[J]. New Phytol,2015,205 (1):429−439. doi: 10.1111/nph.12984
[28] 万亚楠. 菊花的花期调控方法初探[J]. 现代园艺,2013(20):50−51. doi: 10.3969/j.issn.1006-4958.2013.20.035 [29] 张树林, 戴思兰. 中国菊花全书[M]. 北京: 中国林业出版社, 2013: 1-100. [30] 陈洪国,马容明. GA3对菊花开花和花瓣某些生理生化指标的影响[J]. 安徽农业科学,2006,34(6):1050−1051. doi: 10.3969/j.issn.0517-6611.2006.06.005 Chen HG,Ma RM. Effects of GA3 on the flowering and some physiological indexes of chrysanthemum[J]. Journal of Anhui Agricultural Sciences,2006,34 (6):1050−1051. doi: 10.3969/j.issn.0517-6611.2006.06.005
[31] 刘敏,丁江南,王飞翔,于晓英. 叶面喷施赤霉素对瓜叶菊生长与开花的影响[J]. 天津农业科学,2010,16(6):36−38. doi: 10.3969/j.issn.1006-6500.2010.06.014 Liu M,Ding JN,Wang FX,Yu XY. Effects of gibberellins treatment on growth and flowering of Senecio × hybridus[J]. Tianjin Agricultural Sciences,2010,16 (6):36−38. doi: 10.3969/j.issn.1006-6500.2010.06.014
[32] 张秋玲,杨秀珍,戴思兰,张倩,罗虹,张伯晗. 不同氮磷钾水平对毛华菊生长发育的影响[J]. 山东农业大学学报(自然科学版),2020,51(4):611−616. doi: 10.3969/j.issn.1000-2324.2020.04.005 Zhang QL,Yang XZ,Dai SL,Zhang Q,Luo H,Zhang BH. Effect of different N,P,K proportions on the development of Chrysanthemum vestitum[J]. Journal of Shandong Agricultural University (Natural Science Edition)
,2020,51 (4):611−616. doi: 10.3969/j.issn.1000-2324.2020.04.005 [33] 张秋玲,杨秀珍,戴思兰,邱丹丹,董南希,李清清. 不同氮水平下毛华菊形态性状的差异分析[J]. 中国农业大学学报,2020,25(5):70−77. doi: 10.11841/j.issn.1007-4333.2020.05.07 Zhang QL,Yang XZ,Dai SL,Qiu DD,Dong NX,Li QQ. Difference analysis of morphological traits of Chrysanthemum vestitum under different nitrogen levels[J]. Journal of China Agricultural University,2020,25 (5):70−77. doi: 10.11841/j.issn.1007-4333.2020.05.07
[34] 马朝峰. 甘菊和毛华菊PHYA和PHYB同源基因表达分析及ClPHYB功能验证[D]. 北京: 北京林业大学, 2019: 1-10. [35] 王富刚,张静,张雄. 光敏色素与植物的光形态建成[J]. 基因组学与应用生物学,2017,36(8):3167−3171. doi: 10.13417/j.gab.036.003167 Wang FG,Zhang J,Zhang X. Phytochromes and plant photomorphogenesis[J]. Genomics and Applied Biology,2017,36 (8):3167−3171. doi: 10.13417/j.gab.036.003167
[36] 王君杰,田翔,秦慧彬,王海岗,曹晓宁,等. 光周期对糜子生长发育及叶片内源激素的调控效应[J]. 中国农业科学,2021,54(2):286−295. doi: 10.3864/j.issn.0578-1752.2021.02.005 Wang JJ,Tian X,Qin HB,Wang HG,Cao XN,et al. Regulation effects of photoperiod on growth and leaf endogenous hormones in broomcorn millet[J]. Scientia Agricultura Sinica,2021,54 (2):286−295. doi: 10.3864/j.issn.0578-1752.2021.02.005
[37] 贺玉利. 菊花矮化及提前开花栽培技术[J]. 北方园艺,2003(3):80. doi: 10.3969/j.issn.1001-0009.2003.03.055 [38] 姜贝贝,房伟民,陈发棣,赵宏波,顾俊杰. 植株营养生长天数对切花菊花芽分化与品质的影响[J]. 中国农业科学,2008,41(6):1755−1760. doi: 10.3864/j.issn.0578-1752.2008.06.024 Jiang BB,Fang WM,Chen FD,Zhao HB,Gu JJ. Effect of vegetative growth days on flower bud differentiation and quality of cut chrysanthemum[J]. Scientia Agricultura Sinica,2008,41 (6):1755−1760. doi: 10.3864/j.issn.0578-1752.2008.06.024
[39] 陆思宇,杨再强,杨立,张源达,郑涵. 不同光周期对菊花生长发育及内源激素的影响[J]. 华北农学报,2021,36(6):106−115. doi: 10.7668/hbnxb.20192386 Lu SY,Yang ZQ,Yang L,Zhang YD,Zheng H. Effects of different photoperiods on the growth and development process and endogenous hormones of chrysanthemum[J]. Acta Agriculturae Boreali-Sinica,2021,36 (6):106−115. doi: 10.7668/hbnxb.20192386
[40] 陆思宇. 光周期对‘红面’菊花生长发育的影响机理[D]. 南京: 南京信息工程大学, 2022: 1-10. [41] Hsu PY,Harmer SL. Wheels within wheels:the plant circadian system[J]. Trends Plant Sci,2014,19 (4):240−249. doi: 10.1016/j.tplants.2013.11.007
[42] Yu JW,Rubio V,Lee NY,Bai SL,Lee SY,et al. COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability[J]. Molecular Cell,2008,32 (5):617−630. doi: 10.1016/j.molcel.2008.09.026
[43] Song YH,Shim JS,Kinmonth-Schultz HA,Imaizumi T. Photoperiodic flowering:time measurement mechanisms in leaves[J]. Annu Rev Plant Biol,2015,66:441−464. doi: 10.1146/annurev-arplant-043014-115555
[44] Shim JS,Kubota A,Imaizumi T. Circadian clock and photoperiodic flowering in Arabidopsis:CONSTANS is a hub for signal integration[J]. Plant Physiol,2017,173 (1):5−15. doi: 10.1104/pp.16.01327
[45] Jing YJ,Guo Q,Lin RC. The chromatin-remodeling factor PICKLE antagonizes polycomb repression of FT to promote flowering[J]. Plant Physiol,2019,181 (2):656−668. doi: 10.1104/pp.19.00596
[46] Jing YJ,Guo Q,Zha P,Lin RC. The chromatin‐remodelling factor PICKLE interacts with CONSTANS to promote flowering in Arabidopsis[J]. Plant Cell Environ,2019,42 (8):2495−2507. doi: 10.1111/pce.13557
[47] Kadman-Zahavi A,Yahel H. Phytochrome effects in night-break illuminations on flowering of Chrysanthemum[J]. Physiol Plant,1971,25 (1):90−93. doi: 10.1111/j.1399-3054.1971.tb01094.x
[48] Jeong SW,Park S,Jin JS,Seo ON,Kim GS,et al. Influences of four different light-emitting diode lights on flowering and polyphenol variations in the leaves of chrysanthemum (Chrysanthemum morifolium)[J]. J Agric Food Chem,2012,60 (39):9793−9800. doi: 10.1021/jf302272x
[49] Nissim-Levi A,Kitron M,Nishri Y,Ovadia R,Forer I,et al. Effects of blue and red LED lights on growth and flowering of Chrysanthemum morifolium[J]. Sci Hortic,2019,254:77−83. doi: 10.1016/j.scienta.2019.04.080
[50] Yang LW,Wen XH,Fu JX,Dai SL. ClCRY2 facilitates floral transition in Chrysanthemum lavandulifolium by affecting the transcription of circadian clock-related genes under short-day photoperiods[J]. Hortic Res,2018,5:58. doi: 10.1038/s41438-018-0063-9
[51] Yang LW,Fu JX,Qi S,Hong Y,Huang H,Dai SL. Molecular cloning and function analysis of ClCRY1a and ClCRY1b,two genes in Chrysanthemum lavandulifolium that play vital roles in promoting floral transition[J]. Gene,2017,617:32−43. doi: 10.1016/j.gene.2017.02.020
[52] Wang SJ,Zhang CL,Zhao J,Li RH,Lv JH. Expression analysis of four pseudo-response regulator (PRR) genes in Chrysanthemum morifolium under different photoperiods[J]. PeerJ,2019,7:e6420. doi: 10.7717/peerj.6420
[53] 陈丹丹,邹庆军,郭巧生,汪涛. 短日照处理对野菊CO基因表达量的影响[J]. 中国中药杂志,2019,44(4):648−653. doi: 10.19540/j.cnki.cjcmm.2019.0014 Chen DD,Zou QJ,Guo QS,Wang T. Effect of short-day treatment on expression of CO gene in Chrysanthemum indicum[J]. China Journal of Chinese Materia Medica,2019,44 (4):648−653. doi: 10.19540/j.cnki.cjcmm.2019.0014
[54] Oda A,Narumi T,Li TP,Kando T,Higuchi Y,et al. CsFTL3,a chrysanthemum FLOWERING LOCUS T-like gene,is a key regulator of photoperiodic flowering in chrysanthemums[J]. J Exp Bot,2012,63 (3):1461−1477. doi: 10.1093/jxb/err387
[55] Higuchi Y,Narumi T,Oda A,Nakano Y,Sumitomo K,et al. The gated induction system of a systemic floral inhibitor,antiflorigen,determines obligate short-day flowering in chrysanthemums[J]. Proc Natl Acad Sci USA,2013,110 (42):17137−17142. doi: 10.1073/pnas.1307617110
[56] Sun J,Wang H,Ren LP,Chen SM,Chen FD,et al. CmFTL2 is involved in the photoperiod- and sucrose-mediated control of flowering time in chrysanthemum[J]. Hortic Res,2017,4:17001. doi: 10.1038/hortres.2017.1
[57] Zuo L,Wang T,Guo Q,Yang F,Zou Q,et al. Conserved CO-FT module regulating flowering time in Chrysanthemum indicum L.[J]. Russ J Plant Physiol,2021,68 (6):1018−1028. doi: 10.1134/S102144372106025X
[58] Oda A,Higuchi Y,Hisamatsu T. Photoperiod-insensitive floral transition in chrysanthemum induced by constitutive expression of chimeric repressor CsLHY-SRDX[J]. Plant Sci,2017,259:86−93. doi: 10.1016/j.plantsci.2017.03.007
[59] Oda A,Higuchi Y,Hisamatsu T. Constitutive expression of CsGI alters critical night length for flowering by changing the photo-sensitive phase of anti-florigen induction in chrysanthemum[J]. Plant Sci,2020,293:110417. doi: 10.1016/j.plantsci.2020.110417
[60] 赵航, 梁丽, 张淑欣. 温度调控植物开花的研究进展[J/OL]. 分子植物育种, 2022. https: //kns.cnki.net/kcms/detail/46.1068.S.20220420.1718.020.html. Zhao H, Liang L, Zhang SX. Research progress on temperature-regulated of plant flowering[J]. Molecular Plant Breeding, 2022. https: //kns.cnki.net/kcms/detail/46.1068.S.20220420.1718.020.html.
[61] Laurie DA. Comparative genetics of flowering time[J]. Plant Mol Biol,1997,35 (1-2):167−177.
[62] Trevaskis B,Hemming MN,Dennis ES,Peacock WJ. The molecular basis of vernalization-induced flowering in cereals[J]. Trends Plant Sci,2007,12 (8):352−357. doi: 10.1016/j.tplants.2007.06.010
[63] Bouché F,Woods DP,Amasino RM. Winter memory throughout the plant kingdom:different paths to flowering[J]. Plant Physiol,2017,173 (1):27−35. doi: 10.1104/pp.16.01322
[64] Kim DH,Sung S. Vernalization-triggered intragenic chromatin loop formation by long noncoding RNAs[J]. Dev Cell,2017,40 (3):302−312.e4. doi: 10.1016/j.devcel.2016.12.021
[65] Xu SJ,Xiao J,Yin F,Guo XY,Xing LJ,et al. The protein modifications of O-GlcNAcylation and phosphorylation mediate vernalization response for flowering in winter wheat[J]. Plant Physiol,2019,180 (3):1436−1449. doi: 10.1104/pp.19.00081
[66] Lutz U,Nussbaumer T,Spannagl M,Diener J,Mayer KF,Schwechheimer C. Natural haplotypes of FLM non-coding sequences fine-tune flowering time in ambient spring temperatures in Arabidopsis[J]. eLife,2017,6:e22114. doi: 10.7554/eLife.22114
[67] Kumar SV,Lucyshyn D,Jaeger KE,Alós E,Alvey E,et al. Transcription factor PIF4 controls the thermosensory activation of flowering[J]. Nature,2012,484 (7393):242−245. doi: 10.1038/nature10928
[68] Song YH,Ito S,Imaizumi T. Flowering time regulation:photoperiod- and temperature-sensing in leaves[J]. Trends Plant Sci,2013,18 (10):575−583. doi: 10.1016/j.tplants.2013.05.003
[69] Jin SY,Ahn JH. Regulation of flowering time by ambient temperature:repressing the repressors and activating the activators[J]. New Phytol,2021,230 (3):938−942. doi: 10.1111/nph.17217
[70] Posé D,Verhage L,Ott F,Yant L,Mathieu J,et al. Temperature-dependent regulation of flowering by antagonistic FLM variants[J]. Nature,2013,503 (7476):414−417. doi: 10.1038/nature12633
[71] Kim JJ,Lee JH,Kim W,Jung HS,Huijser P,Ahn JH. The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis[J]. Plant Physiol,2012,159 (1):461−478. doi: 10.1104/pp.111.192369
[72] Jung JH,Seo PJ,Ahn JH,Park CM. Arabidopsis RNA-binding protein FCA regulates MicroRNA172 processing in thermosensory flowering[J]. J Biol Chem,2012,287 (19):16007−16016. doi: 10.1074/jbc.M111.337485
[73] Kumar SV,Wigge PA. H2A. Z-containing nucleosomes mediate the thermosensory response in Arabidopsis[J]. Cell,2010,140 (1):136−147. doi: 10.1016/j.cell.2009.11.006
[74] Zheng SZ,Hu HM,Ren HM,Yang ZL,Qiu Q,et al. The Arabidopsis H3K27me3 demethylase JUMONJI 13 is a temperature and photoperiod dependent flowering repressor[J]. Nat Commun,2019,10 (1):1303. doi: 10.1038/s41467-019-09310-x
[75] Huang H,Nusinow DA. Into the evening:complex interactions in the Arabidopsis circadian clock[J]. Trends Genet,2016,32 (10):674−686. doi: 10.1016/j.tig.2016.08.002
[76] Ezer D,Jung JH,Lan H,Biswas S,Gregoire L,et al. The evening complex coordinates environmental and endogenous signals in Arabidopsis[J]. Nat Plants,2017,3 (7):17087. doi: 10.1038/nplants.2017.87
[77] Zhao H,Xu D,Tian T,Kong FY,Lin K,et al. Molecular and functional dissection of EARLY-FLOWERING 3 (ELF3) and ELF4 in Arabidopsis[J]. Plant Sci,2021,303:110786. doi: 10.1016/j.plantsci.2020.110786
[78] Cho AR,Kim YJ. Night temperature determines flowering time and quality of Chrysanthemum morifolium during a high day temperature[J]. J Hortic Sci Biotechnol,2021,96 (2):239−248. doi: 10.1080/14620316.2020.1834460
[79] Cockshull KE,Kofranek AM. High night temperatures delay flowering,produce abnormal flowers and retard stem growth of cut-flower chrysanthemums[J]. Sci Hortic,1994,56 (3):217−234. doi: 10.1016/0304-4238(94)90004-3
[80] Nakano Y,Higuchi Y,Sumitomo K,Oda A,Hisamatsu T,Naro N. Delay of flowering by high temperature in chrysanthemum:heat-sensitive time-of-day and heat effects on CsFTL3 and CsAFT gene expression[J]. J Hortic Sci Biotechnol,2015,90 (2):143−149. doi: 10.1080/14620316.2015.11513165
[81] Nakano Y,Takase T,Sumitomo K,Suzuki S,Tsuda-Kawamura K,Hisamatsu T. Delay of flowering at high temperature in chrysanthemum:duration of darkness and transitions in lighting determine daily peak heat sensitivity[J]. Hortic J,2020,89 (5):602−608. doi: 10.2503/hortj.UTD-192
[82] Luo C,Liu H,Ren JN,Chen DL,Cheng X,et al. Cold-inducible expression of an Arabidopsis thaliana AP2 transcription factor gene,AtCRAP2,promotes flowering under unsuitable low-temperatures in chrysanthemum[J]. Plant Physiol Biochem,2020,146:220−230. doi: 10.1016/j.plaphy.2019.11.022
[83] Lyu J,Aiwaili P,Gu ZY,Xu YJ,Zhang YH,et al. Chrysanthemum MAF2 regulates flowering by repressing gibberellin biosynthesis in response to low temperature[J]. Plant J,2022,112 (5):1159−1175. doi: 10.1111/tpj.16002
[84] Sumitomo K,Nakano Y,Hisamatsu T,Oda A,Narumi-Kawasaki T,et al. Delayed flowering due to ‘cold memory’ is regulated by suppression of FLOWERING LOCUS T-like 3 gene in chrysanthemums[J]. J Hortic Sci Biotechnol,2023,98 (3):334−341. doi: 10.1080/14620316.2022.2136112
[85] Zhang XY,Zhang P,Wang G,Bao ZL,Ma FF. Chrysanthemum lavandulifolium homolog ClMAD1 modulates the floral transition during temperature shift[J]. Environ Exp Bot,2022,194:104720. doi: 10.1016/j.envexpbot.2021.104720
[86] Sumitomo K,Li TP,Hisamatsu T. Gibberellin promotes flowering of chrysanthemum by upregulating CmFL,a chrysanthemum FLORICAULA/LEAFY homologous gene[J]. Plant Sci,2009,176 (5):643−649. doi: 10.1016/j.plantsci.2009.02.003
[87] Wilson RN,Heckman JW,Somerville CR. Gibberellin is required for flowering in Arabidopsis thaliana under short days[J]. Plant Physiol,1992,100 (1):403−408. doi: 10.1104/pp.100.1.403
[88] Murase K,Hirano Y,Sun TP,Hakoshima T. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1[J]. Nature,2008,456 (7221):459−463. doi: 10.1038/nature07519
[89] Yan JD,Li XM,Zeng BJ,Zhong M,Yang JX,et al. FKF1 F‐box protein promotes flowering in part by negatively regulating DELLA protein stability under long‐day photoperiod in Arabidopsis[J]. J Integr Plant Biol,2020,62 (11):1717−1740. doi: 10.1111/jipb.12971
[90] Achard P,Herr A,Baulcombe DC,Harberd NP. Modulation of floral development by a gibberellin-regulated microRNA[J]. Development,2004,131 (14):3357−3365. doi: 10.1242/dev.01206
[91] Allen RS,Li JY,Stahle MI,Dubroué A,Gubler F,Millar AA. Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family[J]. Proc Natl Acad Sci USA,2007,104 (41):16371−16376. doi: 10.1073/pnas.0707653104
[92] Pharis RP. Flowering of Chrysanthemum under non-inductive long days by gibberellins and N6-benzyladenine[J]. Planta,1972,105 (3):205−212. doi: 10.1007/BF00385392
[93] Dong B,Deng Y,Wang HB,Gao R,Stephen GU,et al. Gibberellic acid signaling is required to induce flowering of chrysanthemums grown under both short and long days[J]. Int J Mol Sci,2017,18 (6):1259. doi: 10.3390/ijms18061259
[94] Yang YJ,Ma C,Xu YJ,Wei Q,Imtiaz M,et al. A zinc finger protein regulates flowering time and abiotic stress tolerance in chrysanthemum by modulating gibberellin biosynthesis[J]. Plant Cell,2014,26 (5):2038−2054. doi: 10.1105/tpc.114.124867
[95] Zhu L,Guan YX,Liu YN,Zhang ZH,Jaffar MA,et al. Regulation of flowering time in chrysanthemum by the R2R3 MYB transcription factor CmMYB2 is associated with changes in gibberellin metabolism[J]. Hortic Res,2020,7 (1):96. doi: 10.1038/s41438-020-0317-1
[96] Wu G,Park MY,Conway SR,Wang JW,Weigel D,Poethig RS. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis[J]. Cell,2009,138 (4):750−759. doi: 10.1016/j.cell.2009.06.031
[97] Wang JW,Czech B,Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana[J]. Cell,2009,138 (4):738−749. doi: 10.1016/j.cell.2009.06.014
[98] Fornara F,Coupland G. Plant phase transitions make a SPLash[J]. Cell,2009,138 (4):625−627. doi: 10.1016/j.cell.2009.08.011
[99] Yang HC,Han ZF,Cao Y,Fan D,Li H,et al. A companion cell–dominant and developmentally regulated H3K4 demethylase controls flowering time in Arabidopsis via the repression of FLC expression[J]. PLoS Genet,2012,8 (4):e1002664. doi: 10.1371/journal.pgen.1002664
[100] Song AP,Gao TW,Wu D,Xin JJ,Chen SM,et al. Transcriptome-wide identification and expression analysis of chrysanthemum SBP-like transcription factors[J]. Plant Physiol Biochem,2016,102:10−16. doi: 10.1016/j.plaphy.2016.02.009
[101] 朱文静. 菊花转录因子CmSPL4. 1/5. 1/6/13的克隆与功能鉴定[D]. 南京: 南京农业大学, 2020: 1-10. [102] 魏倩. 菊花核因子NF-YB调节开花时间和干旱胁迫耐性的机理分析[D]. 北京: 中国农业大学, 2015: 1-10. [103] Wei Q,Ma C,Xu YJ,Wang TL,Chen YY,et al. Control of chrysanthemum flowering through integration with an aging pathway[J]. Nat Commun,2017,8 (1):829. doi: 10.1038/s41467-017-00812-0
[104] 马超. 菊花成花调控机制: 第三届全国植物开花·衰老与采后生物学大会论文摘要集[C]. 杭州: 中国植物生理与植物分子生物学学会, 2019. [105] Jiang JF, Zhang ZX, Hu Q, Zhu YQ, Gao Z, et al. The flowering repressor SVP recruits the TOPLESS co-repressor to control flowering in chrysanthemum and Arabidopsis[J/OL]. BioRxiv, 2021. doi: 10.1101/2021.11.23.469726.
[106] Wang CQ,Guthrie C,Sarmast MK,Dehesh K. BBX19 interacts with CONSTANS to repress FLOWERING LOCUS T transcription,defining a flowering time checkpoint in Arabidopsis[J]. Plant Cell,2014,26 (9):3589−3602. doi: 10.1105/tpc.114.130252
[107] Yuan L,Yu YJ,Liu MM,Song Y,Li HM,et al. BBX19 fine-tunes the circadian rhythm by interacting with PSEUDO-RESPONSE REGULATOR proteins to facilitate their repressive effect on morning-phased clock genes[J]. Plant Cell,2021,33 (8):2602−2617. doi: 10.1093/plcell/koab133
[108] Zhang T. Tick-tock:BBX19 functions as a novel regulator of the circadian clock[J]. Plant Cell,2021,33 (8):2511−2512. doi: 10.1093/plcell/koab142
[109] Wang LJ,Sun J,Ren LP,Zhou M,Han XY,et al. CmBBX8 accelerates flowering by targeting CmFTL1 directly in summer chrysanthemum[J]. Plant Biotechnol J,2020,18 (7):1562−1572. doi: 10.1111/pbi.13322
[110] Wang LJ,Cheng H,Wang Q,Si CN,Yang YM,et al. CmRCD1 represses flowering by directly interacting with CmBBX8 in summer chrysanthemum[J]. Hortic Res,2021,8:79. doi: 10.1038/s41438-021-00516-z
[111] Chen H,Huang F,Liu YN,Cheng PL,Guan ZY,et al. Constitutive expression of chrysanthemum CmBBX29 delays flowering time in transgenic Arabidopsis[J]. Can J Plant Sci,2020,100 (1):86−94. doi: 10.1139/cjps-2018-0154
[112] Ping Q,Cheng PL,Huang F,Ren LP,Cheng H,et al. The heterologous expression in Arabidopsis thaliana of a chrysanthemum gene encoding the BBX family transcription factor CmBBX13 delays flowering[J]. Plant Physiol Biochem,2019,144:480−487. doi: 10.1016/j.plaphy.2019.10.019
[113] Morita S,Murakoshi Y,Hojo A,Chisaka K,Harada T,Satoh S. Early flowering and increased expression of a FLOWERING LOCUS T-like gene in chrysanthemum transformed with a mutated ethylene receptor gene mDG-ERS1(etr1-4)[J]. J Plant Biol,2012,55 (5):398−405. doi: 10.1007/s12374-012-0109-8
[114] Huang YY,Xing XJ,Tang Y,Jin JY,Ding L,et al. An ethylene‐responsive transcription factor and a flowering locus KH domain homologue jointly modulate photoperiodic flowering in chrysanthemum[J]. Plant Cell Environ,2022,45 (5):1442−1456. doi: 10.1111/pce.14261
[115] Gomi K. Jasmonic acid:an essential plant hormone[J]. Int J Mol Sci,2020,21 (4):1261. doi: 10.3390/ijms21041261
[116] Guan YX,Ding L,Jiang JF,Shentu YY,Zhao WQ,et al. Overexpression of the CmJAZ1-like gene delays flowering in Chrysanthemum morifolium[J]. Hortic Res,2021,8:87. doi: 10.1038/s41438-021-00525-y
[117] Yuan S,Zhang ZW,Zheng C,Zhao ZY,Wang Y,et al. Arabidopsis cryptochrome 1 functions in nitrogen regulation of flowering[J]. Proc Natl Acad Sci USA,2016,113 (27):7661−7666. doi: 10.1073/pnas.1602004113
[118] Lin YL,Tsay YF. Influence of differing nitrate and nitrogen availability on flowering control in Arabidopsis[J]. J Exp Bot,2017,68 (10):2603−2609. doi: 10.1093/jxb/erx053
[119] Sanagi M,Aoyama S,Kubo A,Lu Y,Sato Y,et al. Low nitrogen conditions accelerate flowering by modulating the phosphorylation state of FLOWERING BHLH 4 in Arabidopsis[J]. Proc Natl Acad Sci USA,2021,118 (19):e2022942118. doi: 10.1073/pnas.2022942118
[120] Zhang SN,Zhang YY,Li KN,Yan M,Zhang JF,et al. Nitrogen mediates flowering time and nitrogen use efficiency via floral regulators in rice[J]. Curr Biol,2021,31 (4):671−683.e5. doi: 10.1016/j.cub.2020.10.095
-
期刊类型引用(0)
其他类型引用(3)