Advances in epigenetic regulation of plant male germline cell development
-
摘要:
植物雄性生殖系细胞在发育过程中需经历染色质重塑、组蛋白修饰、DNA甲基化以及小RNA等途径所介导的表观遗传重编程。现已发现诸多基因参与塑造雄性生殖系细胞的表观遗传状态,并调控植物雄性育性。此外,随着各类组学技术的不断进步,一系列关于雄性生殖系细胞在不同发育阶段的特定表观遗传信息被揭示。本文简要梳理了近年来植物雄性生殖系细胞发育过程中表观遗传动态及其所涉及的分子机理的研究进展,并对表观遗传调控植物雄性生殖系细胞发育的后续研究进行了展望。
Abstract:Male germline cells in plants undergo epigenetic reprogramming mediated by chromatin remodeling, histone modification, DNA methylation, and small RNA during development. Many genes are involved in shaping the epigenetic state of male germline cells and regulating plant male fertility. Recent advances in multi-omics techniques have helped elucidate specific epigenetic profiles of male germline cells at different stages of development. In this review, we summarize recent advances in epigenetic dynamics and molecular mechanisms involved in the development of male germline cells in plants and discuss prospects for future studies on the epigenetic regulation of this developmental process.
-
山地地区既是生物多样性和遗传多样性的宝库,也是维持全球陆地生态系统平衡重要的组成部分[1, 2]。当今山地生物多样性的形成与演化受长时间尺度地质运动、气候变迁、地貌变化和生态过程的影响,最终落脚于物种形成、适应性进化、拓殖、物种存续和灭绝事件的综合过程[2]。值得注意的是,在大部分生物多样性富集的山地生态系统中都具有明显的垂直地带性差异,即从低海拔分布的森林生物区到高海拔分布的高寒生物区。其中,高寒生物区的形成与山体隆升的幅度及历史环境的变迁密切相关,对认识山地生物多样性形成具有关键性的意义。
高寒生物区位于天然树线以上,永久雪线以下,在各大洲的高山中都有分布,面积约占全球陆地面积的3%,其海拔分布范围因所处纬度不同,自低纬度向高纬度海拔逐渐降低,与各地区树线以及山峰冰川和雪线的高低密切相关(图1)。就植被类型而言,高寒生物区主要包括高山灌丛,草甸和冰缘带植被等[3]。由于低温(昼夜温差大)、大风、空气稀薄、紫外辐射强烈等独特的环境因素影响,高山植物普遍表现出与高山树线以下非乔木生活型植物显著不同的部分形态和生理属性,其植物区系组成主要是适应冰雪或严寒生境的低矮或匍匐状的灌木、禾草型植物、多年生草本、莲座状植物和各种类型的垫状植物[3]。据估计,全球高寒生物区大概有8 000 ~ 10 000种高等植物,分属于大约100个科和2 000余个属,占已知高等植物总数的4%左右[3]。虽然就植物多样性而言,高寒生物区植物种类比热带、亚热带雨林低,但因其自然环境严酷,植物区系极其特殊,同时对全球变暖非常敏感,生态系统极其脆弱,全球气候的变暖将使树线升高,压缩该植被带的范围,使物种灭绝的风险大大增加[4, 5],因此长期以来都是生物和生态学家关注的焦点。
图 1 高寒生物区分布图A:高寒生物区在全球的分布(平均海拔3 000 m左右),苔原用蓝色表示。全球SRTM 500 m DEM数据和60ºN以上的高程数据来自30弧秒分辨率全球多分辨率地形高程数据2010(GMTED2010);苔原依据WWF的划分标准。B:从赤道到两极主要山脉的高寒生物区海拔高度变化示意图(修改自Körner [3])。Figure 1. Distribution map of world alpine biomeA: Alpine regions are shown in color, tundra regions are shown in blue and non-alpine regions are shown in different degrees of gray. SRTM 500 m and latitude above 60°N are derived from the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) at 30 arc-second resolution. Tundra is depicted based on WWF global biome classification. B: Schematic of altitudinal position of alpine life zone from Arctic to Antarctic latitudes (modified from Körner[3]).高寒生物区作为山地地区海拔最高的生态系统,其形成与区域造山运动和气候变化密切相关,尤其在中低纬度地带,只有山体隆升到一定高度才有可能形成高寒生境,为高寒植物的拓殖和分化创造条件。例如,安第斯Páramos起源时间大概在3.5 Ma左右,与安第斯山北部地区隆升至现在高度的时间一致,同时受到第四纪冰期的塑造作用[6];新西兰的南阿尔卑斯山地区的高寒生物区不早于5 Ma[7, 8],研究表明能够适应高寒生境的类群形成始于山体抬升到一定高度并且气候变冷时,到1.9 Ma 高寒生境广泛且持续存在时,新西兰高寒生物才开始迅速多样化[7, 8];而高寒植物拓殖到东非高寒生物区的时间大概在5-10 Ma,这个时间晚于许多东非高山在渐新世的造山运动,其现今高寒植物多样性格局的形成主要受到更新世气候波动的影响[9]。泛青藏高原地区是全球温带高寒植物多样性最高的区域,也是山地生物多样性研究的热点和难点区域。长期以来,该地区的生物学研究受到早期地质学上整体抬升或近期快速隆升观点的影响,忽视了地域的差异性以及对最新地质学观点的吸纳,随着对青藏高原各地块构造演化历史研究的加深,我们对该地区生物多样性形成与演化的认识也有了长足的进步。青藏高原在地质历史时期经历了复杂而大规模的构造环境变化[10, 11],这一系列的地质运动不仅塑造了该地区复杂的地形地貌,引发了东亚季风系统的改变[12-14],也深刻影响着该地区植物多样性的形成与发展。目前,该地区的生物多样性研究已经逐步迈入到地质-气候-生物过程的交叉研究阶段[15, 16],未来多学科的贯穿融合也必将成为深入揭示该地区生物多样性演化过程及其形成机制的重要手段。
基于此,本文在综合考虑诸如造山运动和气候变化等地球物理过程如何影响高寒物种的积累和多样化过程,以及自然选择和杂交等在维持其生物多样性中发挥的作用,概述了青藏高原及其周边地区高寒植物多样性的起源和演化节奏、成分来源和区系交流及其内外驱动机制等方面的重要研究进展。
1. 青藏-喜马拉雅-横断山地区环境异质性和高寒植物多样性
1.1 青藏-喜马拉雅-横断山地区地质历史背景及现代地理环境差异
从地质构造上看,泛青藏高原并非整体抬升,它由来源和抬升历史不同的地块组成(图2)[17, 18]。构成青藏高原核心的羌塘地块和拉萨地块均来自南半球的冈瓦纳大陆,冈瓦纳大陆裂解后这两个地块北漂,分别于晚三叠世和早白垩世拼合成为欧亚大陆的一部分[19]。随着古高程研究的进一步深入,青藏高原隆升过程的复杂性和块体间差异被逐渐认识。藏南拉萨地块冈底斯山至少在51 Ma 以来就来一直保持着4 500 m以上的海拔[20]。从始新世到晚渐新世,印度-亚洲板块加速汇聚,由板块汇聚导致的地壳挤压增厚使西藏中部和南部进一步抬升[21]。直到新近纪,青藏高原主体中部高地才完全形成[22],到了中中新世,喜马拉雅才隆升至接近现在的高度[23]。横断山一直被认为是在晚中新世到上新世形成的[24],然而,最新的化石和构造证据表明,横断山部分地区在早渐新世就已经达到了接近现代的海拔高度[25]。考虑到高原腹地、横断山和喜马拉雅在形成时间、隆升节奏、地形地貌和气候条件等差异对区域生物多样性的形成与演化的影响[18],有必要将高原腹地、喜马拉雅和横断山区这3个地区区分来看[18, 26, 27](图2)。
青藏高原腹地的范围是指由广大高原面构成的主体,是阿尔金断裂以南,雅鲁藏布江缝合带以北,喀喇昆仑山脉走滑断层以东,秦岭、横断山以西,包括昆仑-祁连盆岭(山-盆)区[18, 26, 28]。高原腹地深处大陆内部,且高山环绕,在漫长的地质历史中经历了从湿润-半湿润-半干旱-干旱-极端干旱的气候转变[29],演化成今天包含多种生活型的高寒生态系统[30, 31],一般从东南向西北地势越高种类越少,大体上以草甸灌丛、荒漠草原和冰缘带植被为主,局部地区仍有小面积的森林和零星的森林树种分布[30]。
横断山地处广义青藏高原的东南缘,地域涵盖滇西北、川西、藏东和藏东南延伸至青海东南部和甘肃西南部,由数列南北近平行的山脉组成[26, 32],区域内河流深切,山体平均海拔从川西藏东的4 000 ~ 5 000 m到云南南部地区的2 000 m左右,其中5 000 m以上的极高山和3 500 ~ 5 000 m的高山占到总面积的73%,最高峰贡嘎山的海拔为7 556 m,而山脚海拔仅为1 100 m,岭谷之间相对高差悬殊[33],是世界上特殊环境类型最多的地域之一[34]。与寒旱少雨的青藏高原腹地相比[29],东南部的横断山地区受西南季风及东南季风的双重影响夏季多雨湿润,且高山峡谷逶迤南北,悬殊的谷、岭高差,导致其气候、植被和土壤巨大的垂直分异[35, 36]。由于其地理位置特殊及生境复杂多样,其南端与东南亚热带北缘相邻接,北部及西北部向青藏高原高寒地带过渡,各类植物区系成分交错混杂,形成了齐全的从河谷至高山的垂直植被带。
喜马拉雅山位于青藏高原南部,由数条大致东西向平行的支脉组成并向南凸出呈弧形。它西起克什米尔的南迦-帕尔巴特峰,东至雅鲁藏布江大拐弯处的南迦巴瓦峰,是印度河-雅鲁藏布江缝合带(也是印度板块和欧亚板块的界限)以南,主边界断层以北的地区(图2)[26, 27]。其南北向的断裂构造发育,经河流切割形成纵向深险峡谷,成为西南季风气流北进的通道。喜马拉雅山西部紧挨着兴都库什山系,东边紧靠印度-缅甸,北部紧靠喀喇昆仑山脉和冈底斯山。由于其独特的地理位置及周围毗邻地区生态环境的显著差异,喜马拉雅植物区系包含了许多不同的地理成分(东亚成分,马来-缅甸成分和中亚细亚及地中海成分等),植物区系和植被景观也呈现出明显的垂直地带性,其中热带成分在低海拔地区占优势,东亚温带成分则在亚高山和高山地带占优势,该地区不存在真正的特有科,特有属也不多[37],特有种主要在中高海拔地区[38]。
1.2 青藏-喜马拉雅-横断山地区高寒植物多样性
受区域地质构造历史及其环境异质性的影响,青藏高原腹地、喜马拉雅和横断山的高寒植物物种的丰富度和演化历史也表现出区域间的差异性和交融性。其中,横断山的高寒生物多样性尤其丰富。根据张大才和孙航[39]统计,在横断山4 100 m以上的海拔范围共有种子植物70科297属1 820种,而这一数字很可能低估了横断山高寒地区的植物多样性,因为横断山地区的树线在很多山区可下探至3 500 m左右(图3)。据最近的统计结果,除亚种和变种外,横断山高寒地区种子植物可达3 030种,其中包括12种裸子植物[40],远高于面积更广阔的青藏高原腹地(种子植物1883种)[30, 41],和喜马拉雅地区(据统计,以尼泊尔为代表的中喜马拉雅地区共有高寒种子植物1 227种,而西喜马拉雅则记录有约830种)[42, 43]。在植物区系的研究中,武素功等[30]指出,青藏高原主体的高寒植物区系属于中国-喜马拉雅区系的衍生或组成成分,缺乏古特有属,大部分类群是从分布较广、尤其是横断山和青藏高原低海拔的一些属种衍生而来。
2. 青藏-喜马拉雅-横断山地区高寒植物多样性演化历史
2.1 青藏-喜马拉雅-横断山地区高寒植物多样性的起源及演化节奏
从全球高寒植物多样性的形成历史来看,高寒植物区系是一个比较年轻的生物区,主要受到晚中新世以来各大洲山体最后阶段的抬升和第四纪冰期的驱动[7, 45, 46]。然而,相对于其他高寒生物区,青藏高原-喜马拉雅-横断山地区的高寒植物多样性更为丰富也更加古老,受到区域构造隆升和气候变化的强烈影响。
近几年,在青藏高原及其周边地区基于关键类群和特有类群在分子水平上开展了大量的谱系地理和生物地理学研究,为认识该地区重要类群的起源和高寒植物多样性演化发挥了重要作用。例如,Luo 等[47]对横断山-喜马拉雅冰缘带特有的4个物种的谱系地理分析结果表明,4种植物主要分化于晚上新世至早-中更新世;一些特有种比例较高的属,例如,毛冠菊属(Nannoglottis)、川木香属(Dolomiaea)、重羽菊属(Diplazoptilon)、黄缨菊属(Xanthopappus)、无心菜属(Arenaria)中的垫状类群以及高山竹类也是在上新世-第四纪快速分化[48-52];而橐吾(Ligularia)-垂头菊属(Cremanthodium)-蟹甲草属(Parasenecio)[53]、风毛菊属(Saussurea)[54]、锦鸡儿属(Caragana)[55]、绿绒蒿(Meconopsis)[56]、大黄属(Rheum)[57]和红景天属(Rhodiola)[58]则是在中中新世至晚中新世发生了快速多样化。然而,更古老的拓殖和分化事件仍然发现于其他广布且多样化的类群当中。Ebersbach等[59] 通过虎耳草属(Saxifraga)的生物地理分析把高寒类群拓殖于青藏高原的时间推进到晚始新世(49-34 Ma),与当时西藏南部已经有超过4 000 m的高山相吻合[20];随后的多样化发生在10-4 Ma认为是受到较晚抬升的横断山构造活动的影响。龙胆属(Gentiana)在始新世(40-34 Ma)起源于青藏高原及其周边地区,除了晚中新世-早上新世的突然加快,自晚始新世以来多样化速率增加缓慢[60]。Zhao 等[61]对喜马拉雅-横断山分布的高山姜类的研究发现,大概在早渐新世( ~ 32 Ma)象牙参属(Roscoea)和距药姜属(Cautleya)就与其姐妹群分化开来,而象牙参属在横断山与喜马拉雅的两个分支大概在渐新世-中新世之交分化[61]。从以上案例研究结果可以看出,青藏高原及其周边山地高寒植物的多样化过程基于不同研究类群的演化尺度,表现出了时空上的差异性,分化时间从古老到年轻,时间跨度大。另外,对广义青藏高原的笼统划分也限制了对不同地区演化历史及其驱动机制的深入理解和认识。为了克服这个问题,Ding 等[27]选取了青藏高原腹地,喜马拉雅和横断山高寒植物多样性较高的18个被子植物类群(总计包含3798种),通过应用系统发育比较方法和多类群大尺度的整合分析,重建了横断山、喜马拉雅以及青藏高原主体高寒植物多样性连续变化的时空演化历史,将横断山高寒植物的起源时间追溯到晚始新世到早渐新世[27],并结合古生物学和地质学证据,探讨了重大地质构造事件(山体隆升)和历史气候变化对高寒植物多样性形成的影响(图4)。研究表明,在横断山地区,高寒物种就地演化速率在早中新世到中中新世(23-15 Ma)和晚中新世(10-7 Ma)加快并一直保持较高的水平,是新近纪全球降温、横断山造山运动与亚洲季风增强共同作用的结果。而在喜马拉雅地区,物种演化速率的加快比横断山晚,主要在中中新世(19 Ma 一直持续到12 Ma),与喜马拉雅的隆升节奏和夏季季风的增强有关[27]。青藏高原地区高寒植物多样性增加紧随喜马拉雅其后(18 Ma),说明现今青藏高原(腹地)的高寒植物多样性很可能是喜马拉雅隆升后发展起来的[27]。因此,横断山及其周边地区高寒生物多样性的形成是自始新世降温以后,在造山运动和季风加强的共同影响下形成的,这些因素一起为生物多样性演化提供了一个生态-进化的舞台,并且一直持续至今。
图 4 横断山、喜马拉雅和青藏高原腹地高寒地区生物多样性演化速率与气候变化和地质历史之间的关系(修改自Ding 等[27])A:全球气候变化曲线来自深海氧同位素记录[64, 65]。蓝色线段表示亚洲季风演化趋势,由Farnsworth 等[66] 在理想CO2下模拟的青藏高原及其周边地区各地史阶段的年平均降水量表示。B:喜马拉雅(HIM)、青藏高原腹地(TP)和横断山(HDM)从晚始新世至今分3个阶段的地形示意图。红色带数字的圆点表示基于最新构造证据重建古高程的地点。C:横断山、喜马拉雅和青藏高原腹地高寒生物区植物多样性速率随时间的变化。青藏高原主体图中由浅至深的黄色条带代表了古近纪以来青藏高原腹地的干旱化程度。Figure 4. Rates of biotic assembly in relation to climate and geological history in the Hengduan Mountains, Himalaya, ibetan Plateau (modified from Ding et al.[27])A: Evolution of global climate is represented by deep-sea oxygen-isotope records[65] and estimated deep ocean temperatures by Hansen et al. [64]. Monsoon conditions are indicated by modeled mean annual precipitation (m) for each geological stage, represented by blue lines at idealized CO2 (solid blue circle) (modified from Farnsworth et al. [66]). B: Schematic of topography of the Himalaya (HIM), the Tibetan Plateau (TP), and the Hengduan Mountains (HDM) in three phases, from late Eocene to the present. C: Rolling estimates of rates through time in the HDM, HIM, and TP. Light to dark yellow bar in the last panel represents intensity of aridification in the TP since the Paleogene.2.2 青藏-喜马拉雅-横断山地区高寒植物的成分来源和区系交流
横断山和喜马拉雅的高寒植物多样性积累均以就地演化为主,而高原腹地则以迁入为主。此外,横断山高寒生物区和喜马拉雅、高原腹地之间还有着非常密切的区系联系,是喜马拉雅和青藏高原高寒生物多样性的主要供给地[27]。相比之下,横断山中低海拔要远高于其邻近高寒生物区对横断山高寒生物区的贡献,这可能与横断山整体上的温带植物区系性质有关,横断山也被认为是北温带分布型属的起源和分化中心[62]。喜马拉雅地处中纬度地区,下接亚热带气候类型,上接温带气候类型,直到早中新世-中中新世以后才快速隆起,而邻近的横断山和青藏高原地区隆升历史较早,尤其是横断山复杂的地形地貌维持了比较高的高寒生物多样性[62],因此,已经预适应高寒的横断山类群是喜马拉雅高寒生物区的重要来源。Hörandl和Emadzade[63]通过对毛茛属(Ranunculus)的生物地理研究也得出喜马拉雅地区的高寒类群,相对于从其他地方通过长距离扩散迁移过来(例如北极地区,中亚和北亚以及从台湾高山地区),从中低海拔就地演化而来的较少。另外,植物区系调查结果表明,喜马拉雅的特有成分主要集中在高寒/亚高山地带[38]。由此可见,喜马拉雅的快速隆升所形成的高寒地带为随后的迁移和就地演化创造了条件。由于隆升过程始终占主导地位,因而可以像横断山一样的温带成分得到极大地发展。
更新世冰期时,由于山岳冰川发育,树线比现在低,邻近山地高寒生物区之间的交流频率增加[67]。即使是位于赤道附近的埃塞俄比亚高地和乞力马扎罗山在冰期时高寒生物区的海拔也比现在低1 000~1 500 m[68],使得冰期时高寒生物区之间的联系更加密切。在以往的谱系地理研究中也发现,虽然不同物种在冰期、间冰期的扩张方式不同,但都多次出现从横断山回迁到青藏高原腹地的情况[69]。Ding 等[27]研究也发现,贯穿第四纪从横断山扩散到其周边地区,尤其是迁移到青藏高原的速率快速增加。
2.3 青藏-喜马拉雅-横断山地区高寒植物多样化的内在驱动力
长期以来的地质活动(山体隆升、河流重组等)和气候演变不断地塑造着青藏高原及其周边地区的地形地貌,由此产生的新生境、局域环境的改变和生态位的分化为物种形成、演化和迁移创造了机会[27, 70]。较高的生境异质性和气候的反复波动不仅促进了不同居群间的隔离和遗传分化[71],沿海拔梯度不同强度的自然选择压力以及局域微生境的多样化也使得有限的区域内居群承受的生态选择压力不同,进而导致生殖隔离的产生和同域物种形成[72]。大量群体基因组学的分析还发现基因流在青藏高原及其周边山地很多植物类群的物种形成过程中普遍存在,这可能受到第四纪气候震荡或者河流袭夺事件的影响,使得尚未分化完全的物种有了再次接触和基因交换的机会[73]。在一些多样化较高的类群中,如杜鹃花属(Rhododendron)[74]、龙胆属[75]等,频繁发生的种间杂交也为新物种的形成创造了机会,表明很多物种仍处于物种分化的过程当中[73]。同时,越来越多的证据指出异源多倍体对生物多样性的贡献很可能被低估。例如,蔊菜属(Rorippa)中高蔊菜(Rorippa elata (Hook. f. & Thomson) Hand.-Mazz.)和沼生蔊菜(Rorippa palustris (L.) Besser)的杂交起源及它们在横断山区从南到北反复拓殖的群体历史,表明多倍体物种种群扩张过程中种群的适应能力呈现出沿纬度梯度提高的趋势,多倍体可以通过调整适应性来应对扩张过程中的选择压力[76]。因此,生物因素(杂交,多倍化,基因渐渗)和生态过程(自然选择,适应性进化)作为物种形成和分化的内在驱动力,与构造运动和气候变化等外营力共同作用,在维持该区域遗传多样性和生物多样性上扮演着重要角色。
3. 展望
随着基于近几年对泛青藏高原构造演化历史及其所引发的气候演变的认识逐步加深,本文以不同地理单元的划分作为切入点,归纳并总结了横断山、喜马拉雅和高原腹地高寒植物多样性演化历史、过程及其形成机制的重要研究进展。首先,根据各地的环境差异和构造背景界定不同的生物地理区,如,横断山、喜马拉雅和青藏高原腹地的划分,进而比较其多样性形成历史的异同,在一定程度上解决了长期以来因为地域界定问题由不同类群推演出来生物地理历史和多样性成因互存争议的局面。此外,本文还阐述了杂交、多倍化和基因渐渗等生物过程在活跃的构造运动和气候波动下维持区域生物多样性的重要作用。
青藏高原及其周边山脉活跃的构造抬升、季风气候的加强以及更新世的冰川作用等环境变化深刻塑造了泛青藏高原的地形地貌和气候环境的异质性,为该地区的物种分化和形成创造了条件。自然选择、适应性进化和杂交作为物种多样性形成的内在驱动力,在维持该区域遗传多样性和生物多样性上也扮演着重要角色。泛青藏高原地区独特的地理环境和复杂的构造演化背景,在一定程度上对我们深入揭示其多样性的形成和维持机制提出了挑战,也正因如此,未来该地区的生物多样性研究势必推动生物学和地质学等多学科的交叉融合,通过地质-气候-生物的过程的耦合关系和相互作用的研究加深对地球环境变化和生物演化过程的认识。
不同山地地区现代环境、地形地貌差异显著,地质背景和环境演化历史迥异,其生物多样性的演化历史必然也呈现出时空格局上的差异。深入比较不同山地生物多样性形成演化历史的异同及与各自环境变化的关系、揭示其间的联系无疑将加深对现今山地生物多样性分布格局的理解。例如,以欧亚山地生态系统为代表的横断山、喜马拉雅、天山、高加索山和阿尔卑斯山,它们彼此在共有植物科属组成上都具有一定相似性,包括了以菊科、禾本科、十字花科、豆科、毛茛科、石竹科、蔷薇科、莎草科、虎耳草科、景天科、报春花科、紫堇科、龙胆科、百合科以及一些灌木类群,如杜鹃花科、小檗科、杨柳科等为代表的一些高寒植物类群,组成了欧亚大陆甚至北半球高寒生物区最主要的植物种类和多样性[3, 31, 77]。不同区域的构造演化和气候变化历史是否影响了它们之间的物种交流,又是否导致了这些山地地区间生物多样性的形成、演化历史的差异?利用这些在不同山区广泛分布的特征植物类群,比较其物种多样化的过程和联系,将有助于回答以上问题。此外,高寒生物区严苛的自然环境所造成的选择压力是否导致了不同类群在功能形态上的趋同演化或繁殖策略的改变,例如,与高寒植物的适应性进化策略相关的某些关键形态性状—温室结构、棉毛结构及垫状结构,这些特殊的生活型或生理代谢等有时会同时出现在亲缘关系较远的类群中。把这些关键性状的演化与特定生物区的演化结合起来分析并探究其适应性和内在遗传机制,将会进一步加深我们对生物多样性在不同时间尺度和驱动因素下演变的认识。
-
表 1 拟南芥精细胞与营养细胞的表观遗传修饰总结
Table 1 Epigenetic modifications in sperm and vegetative cells of Arabidopsis thaliana
类别
Category组蛋白变体
Histone variant类别
Category组蛋白修饰
Histone modification类别
CategoryDNA甲基化
DNA methylation营养细胞
VC精细胞
SC营养细胞
VC精细胞
SC营养细胞
VC精细胞
SCH1.1 – * H3K4me3 + + + + CG + + + + + H1.2 – * H3K9me2 – + + + CHG + + + + H2B.8 – * H3K27me3 + + + – CHH + + + + H3.3 * * H3K9ac + + + + H3.10 – * H3.14 * – cenH3 – * 注:VC,营养细胞;SC,精细胞;*,表示存在;–,表示不存在; + 、 + + 、 + + + ,分别表示营养细胞与精细胞之间的相对丰富度。组蛋白变体结果主要参考融合蛋白材料和免疫荧光实验数据;组蛋白修饰结果主要参考免疫荧光实验数据;DNA甲基化结果主要参考组学数据。 Notes: VC, vegetative cell; SC, sperm cell; *, indicates presence; –, indicates absence; + , + + , + + + , indicate relative abundance between vegetative and sperm cells. Histone variant results mainly refer to fusion protein plants and immunofluorescence assay data. Histone modification results mainly refer to immunofluorescence assay data. DNA methylation results mainly refer to -omics data. -
[1] Hackenberg D,Twell D. The evolution and patterning of male gametophyte development[J]. Curr Top Dev Biol,2019,131:257−298.
[2] Hafidh S,Honys D. Reproduction multitasking:the male gametophyte[J]. Annu Rev Plant Biol,2021,72:581−614. doi: 10.1146/annurev-arplant-080620-021907
[3] Houben A,Kumke K,Nagaki K,Hause G. CENH3 distribution and differential chromatin modifications during pollen development in rye (Secale cereale L. )[J]. Chromosome Res,2011,19 (4):471−480. doi: 10.1007/s10577-011-9207-6
[4] Calarco JP,Borges F,Donoghue MTA,van Ex F,Jullien PE,et al. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA[J]. Cell,2012,151 (1):194−205. doi: 10.1016/j.cell.2012.09.001
[5] Pandey P,Houben A,Kumlehn J,Melzer M,Rutten T. Chromatin alterations during pollen development in Hordeum vulgare[J]. Cytogenet Genome Res,2013,141 (1):50−57. doi: 10.1159/000351211
[6] Hsieh PH,He SB,Buttress T,Gao HB,Couchman M,et al. Arabidopsis male sexual lineage exhibits more robust maintenance of CG methylation than somatic tissues[J]. Proc Natl Acad Sci USA,2016,113 (52):15132−15137. doi: 10.1073/pnas.1619074114
[7] Walker J,Gao HB,Zhang JY,Aldridge B,Vickers M,et al. Sexual‐lineage‐specific DNA methylation regulates meiosis in Arabidopsis[J]. Nat Genet,2018,50 (1):130−137. doi: 10.1038/s41588-017-0008-5
[8] Buttress T,He SB,Wang L,Zhou SL,Saalbach G,et al. Histone H2B.8 compacts flowering plant sperm through chromatin phase separation[J]. Nature,2022,611 (7936):614−622. doi: 10.1038/s41586-022-05386-6
[9] Huang XR,Sun MX. H3K27 methylation regulates the fate of two cell lineages in male gametophytes[J]. Plant Cell,2022,34 (8):2989−3005. doi: 10.1093/plcell/koac136
[10] Long JC,Walker J,She WJ,Aldridge B,Gao HB,et al. Nurse cell-derived small RNAs define paternal epigenetic inheritance in Arabidopsis[J]. Science,2021,373 (6550):eabh0556. doi: 10.1126/science.abh0556
[11] Zhao YS,Wang SY,Wu WY,Li L,Jiang T,et al. Clearance of maternal barriers by paternal miR159 to initiate endosperm nuclear division in Arabidopsis[J]. Nat Commun,2018,9 (1):5011. doi: 10.1038/s41467-018-07429-x
[12] Borges F,Gomes G,Gardner R,Moreno N,McCormick S,et al. Comparative transcriptomics of Arabidopsis sperm cells[J]. Plant Physiol,2008,148 (2):1168−1181. doi: 10.1104/pp.108.125229
[13] Borg M,Brownfield L,Khatab H,Sidorova A,Lingaya M,et al. The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulon essential for sperm cell differentiation in Arabidopsis[J]. Plant Cell,2011,23 (2):534−549. doi: 10.1105/tpc.110.081059
[14] Duan CG,Zhu JK,Cao XF. Retrospective and perspective of plant epigenetics in China[J]. J Genet Genomics,2018,45 (11):621−638. doi: 10.1016/j.jgg.2018.09.004
[15] Henikoff S,Furuyama T,Ahmad K. Histone variants,nucleosome assembly and epigenetic inheritance[J]. Trends Genet,2004,20 (7):320−326. doi: 10.1016/j.tig.2004.05.004
[16] Borg M,Berger F. Chromatin remodelling during male gametophyte development[J]. Plant J,2015,83 (1):177−188. doi: 10.1111/tpj.12856
[17] He SB,Vickers M,Zhang JY,Feng XQ. Natural depletion of histone H1 in sex cells causes DNA demethylation,heterochromatin decondensation and transposon activation[J]. eLife,2019,8:e42530. doi: 10.7554/eLife.42530
[18] Tanaka I,Ono K,Fukuda T. The developmental fate of angiosperm pollen is associated with a preferential decrease in the level of histone H1 in the vegetative nucleus[J]. Planta,1998,206 (4):561−569. doi: 10.1007/s004250050433
[19] Banani SF,Lee HO,Hyman AA,Rosen MK. Biomolecular condensates:organizers of cellular biochemistry[J]. Nat Rev Mol Cell Biol,2017,18 (5):285−298. doi: 10.1038/nrm.2017.7
[20] Uversky VN. Intrinsically disordered proteins in overcrowded milieu:membrane-less organelles,phase separation,and intrinsic disorder[J]. Curr Opin Struct Biol,2017,44:18−30. doi: 10.1016/j.sbi.2016.10.015
[21] Larson AG,Elnatan D,Keenen MM,Trnka MJ,Johnston JB,et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin[J]. Nature,2017,547 (7662):236−240. doi: 10.1038/nature22822
[22] Strom AR,Emelyanov AV,Mir M,Fyodorov DV,Darzacq X,et al. Phase separation drives heterochromatin domain formation[J]. Nature,2017,547 (7662):241−245. doi: 10.1038/nature22989
[23] Okada T,Endo M,Singh MB,Bhalla PL. Analysis of the histone H3 gene family in Arabidopsis and identification of the male-gamete-specific variant AtMGH3[J]. Plant J,2005,44 (4):557−568. doi: 10.1111/j.1365-313X.2005.02554.x
[24] Stroud H,Otero S,Desvoyes B,Ramírez-Parra E,Jacobsen SE,et al. Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA,2012,109 (14):5370−5375. doi: 10.1073/pnas.1203145109
[25] Wollmann H,Holec S,Alden K,Clarke ND,Jacques PÉ,Berger F. Dynamic deposition of histone variant H3.3 accompanies developmental remodeling of the Arabidopsis transcriptome[J]. PLoS Genet,2012,8 (5):e1002658. doi: 10.1371/journal.pgen.1002658
[26] Ingouff M,Hamamura Y,Gourgues M,Higashiyama T,Berger F. Distinct dynamics of HISTONE3 variants between the two fertilization products in plants[J]. Curr Biol,2007,17 (12):1032−1037. doi: 10.1016/j.cub.2007.05.019
[27] Borg M,Jacob Y,Susaki D,LeBlanc C,Buendía D,et al. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin[J]. Nat Cell Biol,2020,22 (6):621−629. doi: 10.1038/s41556-020-0515-y
[28] Borg M,Rutley N,Kagale S,Hamamura Y,Gherghinoiu M,et al. An EAR-dependent regulatory module promotes male germ cell division and sperm fertility in Arabidopsis[J]. Plant Cell,2014,26 (5):2098−2113. doi: 10.1105/tpc.114.124743
[29] Russell SD,Gou XP,Wong CE,Wang XK,Yuan T,et al. Genomic profiling of rice sperm cell transcripts reveals conserved and distinct elements in the flowering plant male germ lineage[J]. New Phytol,2012,195 (3):560−573. doi: 10.1111/j.1469-8137.2012.04199.x
[30] Anderson SN,Johnson CS,Jones DS,Conrad LJ,Gou XP,et al. Transcriptomes of isolated Oryza sativa gametes characterized by deep sequencing:evidence for distinct sex-dependent chromatin and epigenetic states before fertilization[J]. Plant J,2013,76 (5):729−741. doi: 10.1111/tpj.12336
[31] Black BE,Bassett EA. The histone variant CENP-A and centromere specification[J]. Curr Opin Cell Biol,2008,20 (1):91−100. doi: 10.1016/j.ceb.2007.11.007
[32] Henikoff S,Furuyama T. The unconventional structure of centromeric nucleosomes[J]. Chromosoma,2012,121 (4):341−352. doi: 10.1007/s00412-012-0372-y
[33] Aw SJ,Hamamura Y,Chen Z,Schnittger A,Berger F. Sperm entry is sufficient to trigger division of the central cell but the paternal genome is required for endosperm development in Arabidopsis[J]. Development,2010,137 (16):2683−2690. doi: 10.1242/dev.052928
[34] Ravi M,Chan SWL. Haploid plants produced by centromere-mediated genome elimination[J]. Nature,2010,464 (7288):615−618. doi: 10.1038/nature08842
[35] Liu CY,Lu FL,Cui X,Cao XF. Histone methylation in higher plants[J]. Annu Rev Plant Biol,2010,61:395−420. doi: 10.1146/annurev.arplant.043008.091939
[36] Li W,Liu H,Cheng ZJ,Su YH,Han HN,et al. DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling[J]. PLoS Genet,2011,7 (8):e1002243. doi: 10.1371/journal.pgen.1002243
[37] Okada T,Singh MB,Bhalla PL. Histone H3 variants in male gametic cells of lily and H3 methylation in mature pollen[J]. Plant Mol Biol,2006,62 (4):503−512.
[38] Sano Y,Tanaka I. Distinct localization of histone H3 methylation in the vegetative nucleus of lily pollen[J]. Cell Biol Int,2010,34 (3):253−259. doi: 10.1042/CBI20090124
[39] Cartagena JA,Matsunaga S,Seki M,Kurihara D,Yokoyama M,et al. The Arabidopsis SDG4 contributes to the regulation of pollen tube growth by methylation of histone H3 lysines 4 and 36 in mature pollen[J]. Dev Biol,2008,315 (2):355−368. doi: 10.1016/j.ydbio.2007.12.016
[40] Pillot M,Autran D,Leblanc O,Grimanelli D. A role for CHROMOMETHYLASE3 in mediating transposon and euchromatin silencing during egg cell reprogramming in Arabidopsis[J]. Plant Signal Behav,2010,5 (10):1167−1170. doi: 10.4161/psb.5.10.11905
[41] Pinon V,Yao XZ,Dong AW,Shen WH. SDG2-mediated H3K4me3 is crucial for chromatin condensation and mitotic division during male gametogenesis in Arabidopsis[J]. Plant Physiol,2017,174 (2):1205−1215. doi: 10.1104/pp.17.00306
[42] Zhu DL,Wen Y,Yao WY,Zheng HY,Zhou SX,et al. Distinct chromatin signatures in the Arabidopsis male gametophyte[J]. Nat Genet,2023,55 (4):706−720. doi: 10.1038/s41588-023-01329-7
[43] Johnson L,Mollah S,Garcia BA,Muratore TL,Shabanowitz J,et al. Mass spectrometry analysis of Arabidopsis histone H3 reveals distinct combinations of post-translational modifications[J]. Nucl Acids Res,2004,32 (22):6511−6518. doi: 10.1093/nar/gkh992
[44] Zheng BL,He H,Zheng YH,Wu WY,McCormick S. An ARID domain-containing protein within nuclear bodies is required for sperm cell formation in Arabidopsis thaliana[J]. PLoS Genet,2014,10 (7):e1004421. doi: 10.1371/journal.pgen.1004421
[45] Sarnowski TJ,Ríos G,Jásik J,Świezewski S,Kaczanowski S,et al. SWI3 subunits of putative SWI/SNF chromatin-remodeling complexes play distinct roles during Arabidopsis development[J]. Plant Cell,2005,17 (9):2454−2472. doi: 10.1105/tpc.105.031203
[46] Roberts CWM,Orkin SH. The SWI/SNF complex–chromatin and cancer[J]. Nat Rev Cancer,2004,4 (2):133−142. doi: 10.1038/nrc1273
[47] Genau AC,Li ZH,Renzaglia KS,Fernandez Pozo N,Nogué F,et al. HAG1 and SWI3A/B control of male germ line development in P. patens suggests conservation of epigenetic reproductive control across land plants[J]. Plant Reprod,2021,34 (2):149−173. doi: 10.1007/s00497-021-00409-0
[48] Alver BH,Kim KH,Lu P,Wang XF,Manchester HE,et al. The SWI/SNF chromatin remodelling complex is required for maintenance of lineage specific enhancers[J]. Nat Commun,2017,8 (1):14648. doi: 10.1038/ncomms14648
[49] Wilson BG,Wang X,Shen XH,McKenna ES,Lemieux ME,et al. Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation[J]. Cancer Cell,2010,18 (4):316−328. doi: 10.1016/j.ccr.2010.09.006
[50] Pereman I,Mosquna A,Katz A,Wiedemann G,Lang D,et al. The Polycomb group protein CLF emerges as a specific tri-methylase of H3K27 regulating gene expression and development in Physcomitrella patens[J]. Biochim Biophys Acta (BBA)-Gene Regul Mech,2016,1859 (7):860−870. doi: 10.1016/j.bbagrm.2016.05.004
[51] Zemach A,Zilberman D. Evolution of eukaryotic DNA methylation and the pursuit of safer sex[J]. Curr Biol,2010,20 (17):R780−R785. doi: 10.1016/j.cub.2010.07.007
[52] Smith ZD,Meissner A. DNA methylation:roles in mammalian development[J]. Nat Rev Genet,2013,14 (3):204−220. doi: 10.1038/nrg3354
[53] Zhang HM,Lang ZB,Zhu JK. Dynamics and function of DNA methylation in plants[J]. Nat Rev Mol Cell Biol,2018,19 (8):489−506. doi: 10.1038/s41580-018-0016-z
[54] Law JA,Jacobsen SE. Establishing,maintaining and modifying DNA methylation patterns in plants and animals[J]. Nat Rev Genet,2010,11 (3):204−220. doi: 10.1038/nrg2719
[55] Huang K,Wu XX,Fang CL,Xu ZG,Zhang HW,et al. Pol Ⅳ and RDR2:a two‐RNA‐polymerase machine that produces double‐stranded RNA[J]. Science,2021,374 (6575):1579−1586. doi: 10.1126/science.abj9184
[56] Matzke MA,Mosher RA. RNA-directed DNA methylation:an epigenetic pathway of increasing complexity[J]. Nat Rev Genet,2014,15 (6):394−408. doi: 10.1038/nrg3683
[57] Lindroth AM,Cao XF,Jackson JP,Zilberman D,McCallum CM,et al. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation[J]. Science,2001,292 (5524):2077−2080. doi: 10.1126/science.1059745
[58] Stroud H,Do T,Du JM,Zhong XH,Feng SH,et al. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis[J]. Nat Struct Mol Biol,2014,21 (1):64−72. doi: 10.1038/nsmb.2735
[59] Zemach A,Kim MY,Hsieh PH,Coleman-Derr D,Eshed-Williams L,et al. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin[J]. Cell,2013,153 (1):193−205. doi: 10.1016/j.cell.2013.02.033
[60] Du JM,Zhong XH,Bernatavichute YV,Stroud H,Feng SH,et al. Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants[J]. Cell,2012,151 (1):167−180. doi: 10.1016/j.cell.2012.07.034
[61] Jackson JP,Lindroth AM,Cao XF,Jacobsen SE. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase[J]. Nature,2002,416 (6880):556−560. doi: 10.1038/nature731
[62] Malagnac F,Bartee L,Bender J. An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation[J]. EMBO J,2002,21 (24):6842−6852. doi: 10.1093/emboj/cdf687
[63] Jackson JP,Johnson L,Jasencakova Z,Zhang X,PerezBurgos L,et al. Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana[J]. Chromosoma,2004,112 (6):308−315. doi: 10.1007/s00412-004-0275-7
[64] Ebbs ML,Bartee L,Bender J. H3 lysine 9 methylation is maintained on a transcribed inverted repeat by combined action of SUVH6 and SUVH4 methyltransferases[J]. Mol Cell Biol,2005,25 (23):10507−10515. doi: 10.1128/MCB.25.23.10507-10515.2005
[65] Ebbs ML,Bender J. Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase[J]. Plant Cell,2006,18 (5):1166−1176. doi: 10.1105/tpc.106.041400
[66] Du JM,Johnson LM,Groth M,Feng SH,Hale CJ,et al. Mechanism of DNA methylation-directed histone methylation by KRYPTONITE[J]. Mol Cell,2014,55 (3):495−504. doi: 10.1016/j.molcel.2014.06.009
[67] Choi Y,Gehring M,Johnson L,Hannon M,Harada JJ,et al. DEMETER,a DNA glycosylase domain protein,is required for endosperm gene imprinting and seed viability in Arabidopsis[J]. Cell,2002,110 (1):33−42. doi: 10.1016/S0092-8674(02)00807-3
[68] Gong ZZ,Morales‐Ruiz T,Ariza RR,Roldán‐Arjona T,David L,et al. ROS1,a repressor of transcriptional gene silencing in Arabidopsis,encodes a DNA glycosylase/lyase[J]. Cell,2002,111 (6):803−814. doi: 10.1016/S0092-8674(02)01133-9
[69] Gehring M,Huh JH,Hsieh TF,Penterman J,Choi Y,et al. DEMETER DNA glycosylase establishes MEDEA polycomb gene self‐imprinting by allele‐specific demethylation[J]. Cell,2006,124 (3):495−506. doi: 10.1016/j.cell.2005.12.034
[70] Penterman J,Zilberman D,Huh JH,Ballinger T,Henikoff S,Fischer RL. DNA demethylation in the Arabidopsis genome[J]. Proc Natl Acad Sci USA,2007,104 (16):6752−6757. doi: 10.1073/pnas.0701861104
[71] Ortega-Galisteo AP,Morales-Ruiz T,Ariza RR,Roldán-Arjona T. Arabidopsis DEMETER-LIKE proteins DML2 and DML3 are required for appropriate distribution of DNA methylation marks[J]. Plant Mol Biol,2008,67 (6):671−681. doi: 10.1007/s11103-008-9346-0
[72] Zhu JK. Active DNA demethylation mediated by DNA glycosylases[J]. Annu Rev Genet,2009,43:143−166. doi: 10.1146/annurev-genet-102108-134205
[73] Pikaard CS,Scheid OM. Epigenetic regulation in plants[J]. Cold Spring Harb Perspect Biol,2014,6 (12):a019315. doi: 10.1101/cshperspect.a019315
[74] Seisenberger S,Peat JR,Hore TA,Santos F,Dean W,Reik W. Reprogramming DNA methylation in the mammalian life cycle:building and breaking epigenetic barriers[J]. Philos Trans Roy Soc B:Biol Sci,2013,368 (1609):20110330. doi: 10.1098/rstb.2011.0330
[75] Tang WWC,Kobayashi T,Irie N,Dietmann S,Surani MA. Specification and epigenetic programming of the human germ line[J]. Nat Rev Genet,2016,17 (10):585−600. doi: 10.1038/nrg.2016.88
[76] Vielle-Calzada JP. Linking stem cells to germ cells[J]. Science,2017,356 (6336):378−379. doi: 10.1126/science.aan2734
[77] Schmidt A,Schmid MW,Grossniklaus U. Plant germline formation:common concepts and developmental flexibility in sexual and asexual reproduction[J]. Development,2015,142 (2):229−241. doi: 10.1242/dev.102103
[78] Kawashima T,Berger F. Epigenetic reprogramming in plant sexual reproduction[J]. Nat Rev Genet,2014,15 (9):613−624. doi: 10.1038/nrg3685
[79] Ibarra CA,Feng XQ,Schoft VK,Hsieh TF,Uzawa R,et al. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes[J]. Science,2012,337 (6100):1360−1364. doi: 10.1126/science.1224839
[80] Huettel B,Kanno T,Daxinger L,Aufsatz W,Matzke AJM,et al. Endogenous targets of RNA-directed DNA methylation and Pol Ⅳ in Arabidopsis[J]. EMBO J,2006,25 (12):2828−2836. doi: 10.1038/sj.emboj.7601150
[81] He SB,Feng XQ. DNA methylation dynamics during germline development[J]. J Integr Plant Biol,2022,64 (12):2240−2251. doi: 10.1111/jipb.13422
[82] Patel P,Mathioni S,Kakrana A,Shatkay H,Meyers BC. Reproductive phasiRNAs in grasses are compositionally distinct from other classes of small RNAs[J]. New Phytol,2018,220 (3):851−864. doi: 10.1111/nph.15349
[83] Wu WY,Zheng BL. Intercellular delivery of small RNAs in plant gametes[J]. New Phytol,2019,224 (1):86−90. doi: 10.1111/nph.15854
[84] Honys D,Twell D. Transcriptome analysis of haploid male gametophyte development in Arabidopsis[J]. Genome Biol,2004,5 (11):R85. doi: 10.1186/gb-2004-5-11-r85
[85] Robert GD,Said H,David T,Hugh GD. Small RNA pathways are present and functional in the angiosperm male gametophyte[J]. Mol Plant,2009,2 (3):500−512. doi: 10.1093/mp/ssp003
[86] Grant-Downton R,Le Trionnaire G,Schmid R,Rodriguez-Enriquez J,Hafidh S,et al. MicroRNA and tasiRNA diversity in mature pollen of Arabidopsis thaliana[J]. BMC Genom,2009,10 (1):643. doi: 10.1186/1471-2164-10-643
[87] Achkar NP,Cambiagno DA,Manavella PA. miRNA biogenesis:a dynamic pathway[J]. Trends Plant Sci,2016,21 (12):1034−1044. doi: 10.1016/j.tplants.2016.09.003
[88] Matzke MA,Kanno T,Matzke AJM. RNA-directed DNA methylation:the evolution of a complex epigenetic pathway in flowering plants[J]. Annu Rev Plant Biol,2015,66:243−267. doi: 10.1146/annurev-arplant-043014-114633
[89] Feng XQ,Zilberman D,Dickinson H. A conversation across generations:soma-germ cell crosstalk in plants[J]. Dev Cell,2013,24 (3):215−225. doi: 10.1016/j.devcel.2013.01.014
[90] Gómez JF,Talle B,Wilson ZA. Anther and pollen development:a conserved developmental pathway[J]. J Integr Plant Biol,2015,57 (11):876−891. doi: 10.1111/jipb.12425
[91] Slotkin RK,Vaughn M,Borges F,Tanurdžić M,Becker JD,et al. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen[J]. Cell,2009,136 (3):461−472. doi: 10.1016/j.cell.2008.12.038
[92] Mamun EA,Cantrill LC,Overall RL,Sutton BG. Cellular organisation and differentiation of organelles in pre-meiotic rice anthers[J]. Cell Biol Int,2005,29 (9):792−802. doi: 10.1016/j.cellbi.2005.05.009
[93] Sager R,Lee JY. Plasmodesmata in integrated cell signalling:insights from development and environmental signals and stresses[J]. J Exp Bot,2014,65 (22):6337−6358. doi: 10.1093/jxb/eru365
[94] Smith LM,Pontes O,Searle I,Yelina N,Yousafzai FK,et al. An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis[J]. Plant Cell,2007,19 (5):1507−1521. doi: 10.1105/tpc.107.051540
[95] Zhou M,Palanca AMS,Law JA. Locus-specific control of the de novo DNA methylation pathway in Arabidopsis by the CLASSY family[J]. Nat Genet,2018,50 (6):865−873. doi: 10.1038/s41588-018-0115-y
[96] Zhou X,Huang K,Teng C,Abdelgawad A,Batish M,et al. 24-nt phasiRNAs move from tapetal to meiotic cells in maize anthers[J]. New Phytol,2022,235 (2):488−501. doi: 10.1111/nph.18167
[97] Zhai JX,Zhang H,Arikit S,Huang K,Nan GL,et al. Spatiotemporally dynamic,cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers[J]. Proc Natl Acad Sci USA,2015,112 (10):3146−3151. doi: 10.1073/pnas.1418918112
[98] Fei QL,Yang L,Liang WQ,Zhang DB,Meyers BC. Dynamic changes of small RNAs in rice spikelet development reveal specialized reproductive phasiRNA pathways[J]. J Exp Bot,2016,67 (21):6037−6049. doi: 10.1093/jxb/erw361
[99] Kakrana A,Mathioni SM,Huang K,Hammond R,Vandivier L,et al. Plant 24-nt reproductive phasiRNAs from intramolecular duplex mRNAs in diverse monocots[J]. Genome Res,2018,28 (9):1333−1344. doi: 10.1101/gr.228163.117
[100] Ono S,Liu H,Tsuda K,Fukai E,Tanaka K,et al. EAT1 transcription factor,a non-cell-autonomous regulator of pollen production,activates meiotic small RNA biogenesis in rice anther tapetum[J]. PLoS Genet,2018,14 (2):e1007238. doi: 10.1371/journal.pgen.1007238
[101] Xia R,Chen CJ,Pokhrel S,Ma WQ,Huang K,et al. 24-nt reproductive phasiRNAs are broadly present in angiosperms[J]. Nat Commun,2019,10 (1):627. doi: 10.1038/s41467-019-08543-0
[102] Johnson C,Kasprzewska A,Tennessen K,Fernandes J,Nan GL,et al. Clusters and superclusters of phased small RNAs in the developing inflorescence of rice[J]. Genome Res,2009,19 (8):1429−1440. doi: 10.1101/gr.089854.108
[103] Song XW,Li PC,Zhai JX,Zhou M,Ma LJ,et al. Roles of DCL4 and DCL3b in rice phased small RNA biogenesis[J]. Plant J,2012,69 (3):462−474. doi: 10.1111/j.1365-313X.2011.04805.x
[104] Teng C,Zhang H,Hammond R,Huang K,Meyers BC,et al. Dicer-like 5 deficiency confers temperature-sensitive male sterility in maize[J]. Nat Commun,2020,11 (1):2912. doi: 10.1038/s41467-020-16634-6
[105] Liu YL,Teng C,Xia R,Meyers BC. PhasiRNAs in plants:their biogenesis,genic sources,and roles in stress responses,development,and reproduction[J]. Plant Cell,2020,32 (10):3059−3080. doi: 10.1105/tpc.20.00335
[106] Zhang M,Ma XX,Wang CY,Li Q,Meyers BC,et al. CHH DNA methylation increases at 24-PHAS loci depend on 24-nt phased small interfering RNAs in maize meiotic anthers[J]. New Phytol,2021,229 (5):2984−2997. doi: 10.1111/nph.17060
[107] Zhou M,Coruh C,Xu GH,Martins LM,Bourbousse C,et al. The CLASSY family controls tissue-specific DNA methylation patterns in Arabidopsis[J]. Nat Commun,2022,13 (1):244. doi: 10.1038/s41467-021-27690-x
[108] Lippman Z,Gendrel AV,Black M,Vaughn MW,Dedhia N,et al. Role of transposable elements in heterochromatin and epigenetic control[J]. Nature,2004,430 (6998):471−476. doi: 10.1038/nature02651
[109] Creasey KM,Zhai JX,Borges F,van Ex F,Regulski M,et al. miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis[J]. Nature,2014,508 (7496):411−415. doi: 10.1038/nature13069
[110] Schoft VK,Chumak N,Choi Y,Hannon M,Garcia-Aguilar M,et al. Function of the DEMETER DNA glycosylase in the Arabidopsis thaliana male gametophyte[J]. Proc Natl Acad Sci USA,2011,108 (19):8042−8047. doi: 10.1073/pnas.1105117108
[111] Martínez G,Panda K,Köhler C,Slotkin RK. Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell[J]. Nat Plants,2016,2 (4):16030. doi: 10.1038/nplants.2016.30
[112] Borges F,Pereira PA,Slotkin RK,Martienssen RA,Becker JD. MicroRNA activity in the Arabidopsis male germline[J]. J Exp Bot,2011,62 (5):1611−1620. doi: 10.1093/jxb/erq452
[113] Palatnik JF,Wollmann H,Schommer C,Schwab R,Boisbouvier J,et al. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319[J]. Dev Cell,2007,13 (1):115−125. doi: 10.1016/j.devcel.2007.04.012
[114] Allen RS,Li JY,Alonso-Peral MM,White RG,Gubler F,et al. MicroR159 regulation of most conserved targets in Arabidopsis has negligible phenotypic effects[J]. Silence,2010,1 (1):18. doi: 10.1186/1758-907X-1-18
-
期刊类型引用(0)
其他类型引用(3)
计量
- 文章访问数: 151
- HTML全文浏览量: 31
- PDF下载量: 88
- 被引次数: 3