高级检索+

桑叶细脉中伴胞的超微结构研究

郭庆慧, 刘林

郭庆慧, 刘林. 桑叶细脉中伴胞的超微结构研究[J]. 植物科学学报, 2013, 31(1): 57-63. DOI: 10.3724/SP.J.1142.2013.10057
引用本文: 郭庆慧, 刘林. 桑叶细脉中伴胞的超微结构研究[J]. 植物科学学报, 2013, 31(1): 57-63. DOI: 10.3724/SP.J.1142.2013.10057
GUO Qing-Hui, LIU Lin. Ultrastructural Study on Companion Cells in Leaf Minor Veins of Morus alba[J]. Plant Science Journal, 2013, 31(1): 57-63. DOI: 10.3724/SP.J.1142.2013.10057
Citation: GUO Qing-Hui, LIU Lin. Ultrastructural Study on Companion Cells in Leaf Minor Veins of Morus alba[J]. Plant Science Journal, 2013, 31(1): 57-63. DOI: 10.3724/SP.J.1142.2013.10057
郭庆慧, 刘林. 桑叶细脉中伴胞的超微结构研究[J]. 植物科学学报, 2013, 31(1): 57-63. CSTR: 32231.14.SP.J.1142.2013.10057
引用本文: 郭庆慧, 刘林. 桑叶细脉中伴胞的超微结构研究[J]. 植物科学学报, 2013, 31(1): 57-63. CSTR: 32231.14.SP.J.1142.2013.10057
GUO Qing-Hui, LIU Lin. Ultrastructural Study on Companion Cells in Leaf Minor Veins of Morus alba[J]. Plant Science Journal, 2013, 31(1): 57-63. CSTR: 32231.14.SP.J.1142.2013.10057
Citation: GUO Qing-Hui, LIU Lin. Ultrastructural Study on Companion Cells in Leaf Minor Veins of Morus alba[J]. Plant Science Journal, 2013, 31(1): 57-63. CSTR: 32231.14.SP.J.1142.2013.10057

桑叶细脉中伴胞的超微结构研究

基金项目: 山东省自然科学基金(ZR2011CL002);临沂大学科研计划项目(HX09104).
详细信息
    作者简介:

    郭庆慧(1962- ),女,讲师,从事植物解剖学和生理学研究.

    通讯作者:

    刘林, E-mail: liulinlyu163@163.com

  • 中图分类号: Q945

Ultrastructural Study on Companion Cells in Leaf Minor Veins of Morus alba

  • 摘要: 为了解桑叶细脉中伴胞的超微结构,采用透射电子显微技术对桑叶细脉中伴胞进行观察,着重伴胞与相邻细胞界面上胞间连丝发生频率.结果表明,(1)伴胞含丰富细胞器,细胞壁光滑,无壁内突;(2)伴胞细胞壁上具有大量胞间连丝,胞间连丝通常聚集,并常发生分枝;(3)伴胞与不同类型细胞界面上的胞间连丝发生频率有差异,伴胞-维管束鞘细胞界面上发生频率为25.12±1.83个/μm2,伴胞-伴胞界面上20.18±1.7个2/μm2,伴胞-维管薄壁细胞界面上5.42±0.6个/μm2.基于上述观察,认为桑叶细脉中的伴胞属于1-2a型,韧皮部装载途径属于共质体类型.
    Abstract: The transfer of photosynthates from mesophyll cells to sieve element-companion cell complex is called phloem loading. Loading mechanisms are closely related to the ultrastructural features of companion cells. To understand the ultrastructural features of companion cells in leaf blades of Morus alba, companion cells in minor veins were characterized by transmission electron microscopy. We demonstrated that (a) companion cells had smooth walls and contained a whole set of organelles such as nucleus, vacuoles, mitochondria, plastids, and ribosomes. (b) Many plasmodesmata occurred at the interfaces between companion cells and adjacent cells. Plasmodesmata usually existed in groups and were often branched. (c) Plasmodesmatal frequencies were 25.12 ± 1.83 pd/μm2 at the interface between companion cells and bundle sheath cells and 20.18 ± 1.72 pd /μm2 at the interface between neighboring companion cells, in contrast to 5.42 ± 0.6 pd/μm2 at the interface between companion cells and vascular parenchyma cells. Based on these ultrastructural observations, it was supposed that companion cells in minor veins in leaf blades of M. alba be classified as type 1-2a, and therefore the phloem loading pathway was symplasmic.
  • [1] Gamalei Y.Structure and function of leaf minor veins in trees and herbs [J].Trees,1989,3 (2): 96-110.
    [2] McCaskill A, Turgeon R. Phloem loading in Verbascum phoeniceum L. depends on the synthesis of raffinose family oligosaccharides [J]. Proc Natl Acad Sci USA,2007,104 (49): 19619-19624.
    [3] Geiger D R,Giaquinta T,Sovonick S A,Fellows R J. Solute distribution in sugar beet leaves in relation to phloem loading and translocation [J]. Plant Physiol,1973,52 (6): 585-589.
    [4] Turgeon R. Phloem loading and plasmodesmata [J]. Trends Plant Sci,1996,1(12): 418-423.
    [5] Turgeon R. Plasmodesmata and solute exchange in the phloem [J]. Aust J Plant Physiol,2000,27 (6): 521-529.
    [6] Turgeon R,Medville R. Phloem loading. A reevaluation of the relationship between plasmodesmatal frequencies and loading strategies [J]. Plant Physiol,2004,136 (3): 3796-3803.
    [7] Hellmann H,Barker L,Funck D,Frommer W B. The regulation of assimilate allocation and transport [J]. Aust J Plant Physiol,2000,27 (6): 583-594.
    [8] Komor E. Source physiology and assimilate transport: the interaction of sucrose metabolism,starch storage and phloem export in source leaves and the effects on sugar status in phloem [J]. Aust J Plant Physiol,2000,27 (6): 497-505.
    [9] Lalonde S,Tegeder M,Throne H M,Frommer W B,Patrick J W. Phloem loading and unloading of sugars and amino acids [J]. Plant Cell Environ,2003,26(1): 37-56.
    [10] 刘林. '富有’柿果实韧皮部胞间连丝研究[J]. 果树学报,2012,29 (5): 872-876.
    [11] Rennie E A,Turgeon R. A comprehensive picture of phloem loading strategies [J]. Proc Natl Acad Sci USA,2009,106 (33): 14162-14167.
    [12] 郭庆慧,刘林.西瓜小叶脉超微结构研究[J].植物科学学报,2013(待发表).
    [13] Sauer N.Molecular physiology of higher plant sucrose transporters [J]. FEBS Lett,2007,581(12): 2309-2317.
    [14] Turgeon R. Phloem loading: How leaves gain their independence [J]. Bioscience,2006,56(1): 15-24.
    [15] Turgeon R,Hepler P K. Symplastic continuity between mesophyll and companion cells in minor veins of mature Cucurbita pepo L. leaves [J]. Planta,1989,179 (1): 24-31.
    [16] Turgeon R,Medville R. The absence of phloem loading in willow leaves [J]. Proc Natl Acad Sci USA,1998,95 (20): 12055-12060.
    [17] Reidel E J,Rennie E A,Amiard V,Cheng L,Turgeon R. Phloem loading strategies in three plant species that transport sugar alcohols [J]. Plant Physiol,2009,149 (3): 1601-1608.
    [18] Beebe D U,Turgeon R. Localization of galactinol, raffinose, and stachyose synthesis in Cucurbita pepo leaves [J]. Planta,1992,188 (3): 354-361.
计量
  • 文章访问数:  1396
  • HTML全文浏览量:  0
  • PDF下载量:  1488
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-18
  • 修回日期:  2012-11-17
  • 发布日期:  2013-02-27

目录

    /

    返回文章
    返回