Analysis of nrDNA ITS Sequences in Ipomoea batatas and its Relative Wild Species
-
摘要: 采用核糖体DNA内转录间隔区(nrDNA ITS)序列比较分析了甘薯及其近缘野生种的遗传多样性及系统进化关系,首次报道了栽培种甘薯‘徐薯18’(Ipomoea batatas ‘Xushu18’)及其近缘野生种I.triloba (DOM),I.cordatotriloba (MEX),I.nil (PER),I.nil (JPN),I. hederacea Jacq. (USA),I. hederacea Jacq. (HK)和种间杂交种67-1 (I. batatas‘Xushu18’×I. hederacea Jacq.)及回交种 (67-1 × I. batatas ‘Xushu18’)的nrDNA ITS序列。序列分析表明,栽培种甘薯及其近缘野生种nrDNA ITS序列长度为570~ 600 bp。其中,ITS1序列为185~ 209 bp,GC含量为53.11%~ 61.83%;ITS2序列为214~ 226 bp,GC含量为61.21%~ 72.89%;5.8S序列均为165 bp,GC含量为54.55%~ 55.76%。此外,栽培种甘薯及其近缘野生种ITS序列信息位点均集中在ITS1和ITS2区;与其他甘薯属植物相比,I.wrightii ITS2的末端缺失了6~ 8个碱基。系统进化分析表明,栽培种甘薯‘徐薯18’(I. batatas ‘Xushu18’)和野生种I. triloba、I. cordatotriloba、I. lacunosa、I. trifida的亲缘关系较近,与I. wrightii、I. pes-tigridis、I. grandifolia、I. nil、I. hederacea Jacq.、I. purpurea的亲缘关系较远;杂交后代与栽培种甘薯‘徐薯18’(I. batatas‘Xushu18’)亲缘关系较近,与野生种父本I. hederacea Jacq.的亲缘关系较远。Abstract: In this study, the internal transcribed spacer of nucleus ribosome DNA (nrDNA ITS) copies from Ipomoea batatas and its wild relatives were cloned and sequenced to analyze their phylogenetic relationships. For the first time, we report on the nrDNA ITS sequences isolated from I. batatas ‘Xushu18’ and its relative wild species (I. triloba (DOM), I. cordatotriloba (MEX), I. nil (PER), I. nil (JPN), I. hederacea Jacq. (USA), I. hederacea Jacq. (HK)), an interspecific hybrid 67-1 (I. batatas ‘Xushu18’ × I. hederacea Jacq.), and a backcross line (67-1 × I. batatas ‘Xushu18’). Analysis showed that the nrDNA ITS sequences ranged from 570 bp to 600 bp. Among them, the ITS1 fragments ranged from 185 bp to 209 bp, with GC content of 53.11%-61.83%; the ITS2 regions ranged from 214 bp to 226 bp, with GC content of 61.21%-72.89%; the 5.8S sequences were 165 bp, with GC content of 54.55%-55.76%. Furthermore, the informative sites of I. batatas and its wild relatives lay in the ITS1 and ITS2 regions; in contrast to other Ipomoea germplasms, there was a 6-8 bp deletion in the ITS2 of I. wrightii. Phylogenetic analysis revealed that I. batatas ‘Xushu18’ had closer phylogenetic relationships with the wild relatives of I. triloba, I. cordatotriloba, I. lacunosa, and I. trifida than I. wrightii, I. pes-tigridis, I. grandifolia, I. nil, I. hederacea, and I. purpurea. Moreover, the interspecific hybrid and the backcross line had closer phylogenetic relationships with I. batatas ‘Xushu18’, compared to I. hederacea.
-
Keywords:
- Ipomoea batatas /
- nrDNA ITS /
- BLAST /
- Evolutionary divergence /
- Phylogenetic trees
-
-
[1] 李俊,王章英,罗忠霞,陈新亮,房伯平,李育军,刘小红.分子生物学技术在甘薯育种中的应用[J].广东农业科学,2011,38(15):108-112. [2] 胡玲,李强,王欣,唐忠厚,李秀英,李洪民,谢逸萍,唐君,曹清河,马代夫.甘薯地方品种和育成品种的遗传多样性[J].江苏农业学报,2010,26(5):925-935. [3] 盛家廉,袁宝忠,朱崇文.高产高抗根腐病甘薯新品种‘徐薯18’的选育[J].中国农业科学,1981,14(2):41-45. [4] 曹清河,张安,李鹏,李洪民,谢逸萍,李秀英,王欣,马代夫.甘薯近缘野生种的抗病性鉴定与新型种间杂种的获得[J].植物遗传资源学报,2009,10(2):224-229. [5] 谢一芝,邱瑞镰,张黎玉,戴起伟,徐品莲,林长平.国外甘薯种质资源的利用[J].作物品种资源,1992 (4):42-43. [6] Zhang DP,Cervantes J,Huaman Z,Carey E,Ghislain M.Assessing genetic diversity of sweet potato (Ipomoea batatas (L.) Lam.) cultivars from tropical America using AFLP[J].Genet Resour Crop Ev,2000,47(6):659-665.
[7] Huang JC,Corke H,Sun M.Highly polymorphic AFLP markers as a complementary tool to ITS sequences in assessing genetic diversity and phylogenetic relationships of sweetpotato (Ipomoea batatas (L.) Lam.) and its wild relatives[J].Genet Resour Crop Ev,2002,49(6):541-550.
[8] Veasey EA,Borges A,Rosa MS,Queiroz-Silva JR,Bressan E de A,Peroni N.Genetic diversity in Brazilian sweet potato (Ipomoea batatas (L.) Lam.,Solanales,Convolvulaceae) landraces assessed with microsatellite markers [J].Genet Mol Biol,2008,31(3):725-733.
[9] Roullier C,Kambouo R,Paofa J,Mckey D,Lebot V.On the origin of sweet potato (Ipomoea batatas (L.) Lam.) genetic diversity in New Guinea,a secondary centre of diversity[J].Heredity (Edinb),2013,110:594-604.
[10] Roullier C,Benoit L,McKey DB,Lebot V.Historical collections reveal patterns of diffusion of sweet potato in Oceania obscured by modern plant movements and recombination[J].PNAS,2013,110(6):2205-2210.
[11] Baldwin BG,Sanderson MJ,Porter JM,Wojciechowski MF,Campbell CS,Donoghue MJ.The ITS region of nuclear ribosomal DNA:a valuable source of evidence on angiosperm phylogeny[J].Ann Mo Bot Gard,1995,82(2):247-277.
[12] 田保华,王永勤,裴雁曦.应用ITS序列分析葱属植物发育关系[J].山西大学学报:自然科学版,2013,36(2):261-266. [13] 张靠稳,杨振华,刘建利,马爱瑛.四种贺兰山紫蘑菇rDNA ITS序列分析[J].生物技术通报,2011(12):88-91. [14] 刘峥,张汉尧.旋花科植物ITS序列分析[J].西部林业科学,2012,41(4):70-74. [15] Miller RE,McDonald JA,Manos PS.Systematics of Ipomoea subgenus Quamoclit (Convolvulaceae) based on ITS sequence data and a Bayesian phylogenetic analysis[J].Am J Bot,2004,91(8):1208-1218.
[16] 王晓峰,刘娜娜,季孔庶.黄杨属植物ITS序列分子进化特点分析[J].分子植物育种,2011,9(4):506-513. [17] Doyle JJ,Doyle JL.A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J].Phytochemical Bulletin,1987(19):11-15.
[18] Goryunova SV,Chikida NN,Gori M,Kochieva EZ.Analysis of nucleotide sequence polymorphism of internal transcribed spacers of ribosomal genes in diploid Aegilops (L.) Species[J].Mol Biol,2005,39(2):173-176.
[19] 栗丹,李振坚,毛萍,严雪锋,淳泽,马欣荣.基于ITS序列石斛材料的鉴定及系统进化分析[J].园艺学报,2012,39 (8):1539-1550. [20] Grajales A,Aguilar C,Sánchez JA.Phylogenetic reconstruction using secondary structures of Internal Transcribed Spacer 2 (ITS2,rDNA):finding the molecular and morphological gap in Caribbean gorgonian corals[J].BMC Evol Biol,2007,7:90.
[21] Balasubramani SP,Goraya GS,Venkatasubramanian P.Development of ITS sequence-based markers to distinguish Berberis aristata DC.from B.yceum Royle and B.asiatica Roxb[J].3 Biotech,2011,1(1):11-19
[22] 宋葆华,陈之端,汪小全,李法曾.中国苋属nrDNA的ITS序列分析及其系统学意义[J].植物学报,2000,42(11):1184-1189. [23] 周阿涛,岳亮亮,李旻,刘迪秋,丁元明.云南山茶 (Camellia reticulata) nrDNA ITS 序列多态性分析[J].植物科学学报,2013,31(1):1-10. [24] 董洋龙,於林江,周拓,郑红玉,王晓锋.基于ITS技术的11个茶花品种遗传多样性分析[J].中国农学通报,2013,29(13):145-149. [25] 雷天刚,何永睿,彭爱红,许兰珍,姚利晓,邹修平,刘小丰,陈善春.甜橙核糖体DNA ITS序列分析[J].西南大学学报:自然科学版,2013,35(8):55-60. [26] 董若铖,陈祥平,范小敏,张国正,柯皓天,梁燕梅,陈仁芳.四川几个特色桑品种ITS序列与亲缘关系分析[J].四川蚕业,2012,40(2):4-7. [27] 欧立军,张人文,谈智文,赵婷婷,佘朝文.我国不同地区天门东核DNA ITS序列分析[J].中草药,2011,42(7):1042-1046. [28] 刘磊,周广麟,李长田,金华.不同地区松茸ITS序列分析及系统发育研究[J].中国食用菌,2011,30(6):45-48. [29] Cao QH,Zhang A,Ma DF,Li HM,Li Q,Li P.Novel interspecific hybridization between sweetpotato (Ipomoea batatas (L.) Lam.) and its two diploid wild relatives[J].Euphytica,2009,169:345-352.
[30] 王建波,张文驹,陈家宽.核rDNA 的ITS 序列在被子植物系统与进化研究中的应用[J].植物分类学报,1999,37(4):407-416. [31] Srisuwan S,Sihachakr D,Yakovlev SS.The origin and evolution of sweet potato (Ipomoea batatas Lam.) and its wild relatives through the cytogenetic approaches[J].Plant Sci,2006,171(3):424-433.
[32] Huang JC,Sun M.Genetic diversity and relationships of sweetpotato and its wild relatives in Ipomoea series Batatas (Convolvulaceae) as revealed by inter-simple sequence repeat (ISSR) and restriction analysis of chloroplast DNA[J].Theor Appl Genet,2000,100(7):1050-1060.
[33] Roullier C,Duputié A,Wennekes P,Benoit L,Bringas VMF,Rossel G,Tay D,McKey D, Lebot V.Disentangling the origins of cultivated sweet potato (Ipomoea batatas (L.) Lam.)[J].PLoS One, 2013,8(5):e62707.
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量: