高级检索+

基部被子植物气孔性状与叶脉密度的关联进化

张亚, 杨石建, 孙梅, 曹坤芳

张亚, 杨石建, 孙梅, 曹坤芳. 基部被子植物气孔性状与叶脉密度的关联进化[J]. 植物科学学报, 2014, 32(4): 320-328. DOI: 10.3724/SP.J.1142.2014.40320
引用本文: 张亚, 杨石建, 孙梅, 曹坤芳. 基部被子植物气孔性状与叶脉密度的关联进化[J]. 植物科学学报, 2014, 32(4): 320-328. DOI: 10.3724/SP.J.1142.2014.40320
ZHANG Ya, YANG Shi-Jian, SUN Mei, CAO Kun-Fang. Stomatal Traits are Evolutionarily Associated with Vein Density in Basal Angiosperms[J]. Plant Science Journal, 2014, 32(4): 320-328. DOI: 10.3724/SP.J.1142.2014.40320
Citation: ZHANG Ya, YANG Shi-Jian, SUN Mei, CAO Kun-Fang. Stomatal Traits are Evolutionarily Associated with Vein Density in Basal Angiosperms[J]. Plant Science Journal, 2014, 32(4): 320-328. DOI: 10.3724/SP.J.1142.2014.40320
张亚, 杨石建, 孙梅, 曹坤芳. 基部被子植物气孔性状与叶脉密度的关联进化[J]. 植物科学学报, 2014, 32(4): 320-328. CSTR: 32231.14.SP.J.1142.2014.40320
引用本文: 张亚, 杨石建, 孙梅, 曹坤芳. 基部被子植物气孔性状与叶脉密度的关联进化[J]. 植物科学学报, 2014, 32(4): 320-328. CSTR: 32231.14.SP.J.1142.2014.40320
ZHANG Ya, YANG Shi-Jian, SUN Mei, CAO Kun-Fang. Stomatal Traits are Evolutionarily Associated with Vein Density in Basal Angiosperms[J]. Plant Science Journal, 2014, 32(4): 320-328. CSTR: 32231.14.SP.J.1142.2014.40320
Citation: ZHANG Ya, YANG Shi-Jian, SUN Mei, CAO Kun-Fang. Stomatal Traits are Evolutionarily Associated with Vein Density in Basal Angiosperms[J]. Plant Science Journal, 2014, 32(4): 320-328. CSTR: 32231.14.SP.J.1142.2014.40320

基部被子植物气孔性状与叶脉密度的关联进化

基金项目: 

国家自然科学基金资助项目(31170399)。

详细信息
    作者简介:

    张亚(1990-),男,硕士研究生,主要研究方向为植物生理生态学(E-mail:zhangya@xtbg.org.cn)。

    通讯作者:

    曹坤芳,E-mail:caokf@xtbg.ac.cn

  • 中图分类号: Q945.79

Stomatal Traits are Evolutionarily Associated with Vein Density in Basal Angiosperms

  • 摘要: 植物叶片通过气孔的水分蒸腾散失和叶脉的水分供应达到水分平衡,而基部被子植物在进化过程中叶片水分供应和蒸腾散失是否达到平衡或关联进化还缺乏了解。本研究以11种基部被子植物为材料,测定了气孔密度、气孔长度、叶脉密度和叶片厚度4个叶片性状,并结合系统发育树,利用系统发育独立对比的方法分析这些性状之间的关联进化。结果显示:沿进化方向,气孔密度和叶脉密度逐渐增加,而气孔长度和叶片厚度有减小的趋势;无论是否考虑系统发育的影响,气孔密度都与叶脉密度呈显著正相关关系,说明二者之间存在关联进化,并证实了基部被子植物叶片水分平衡假说;气孔密度和长度、叶脉密度均与叶片厚度呈显著线性相关,但在去除系统发育的影响后这种线性相关关系不再显著,说明叶片厚度与其它三个叶片性状不存在关联进化。本研究结果还表明,叶片的水分供应和散失乃至CO2通透性的平衡主导着基部被子植物叶片结构和功能的进化。
    Abstract: Plant leaves reach water balance by evaporative water loss through stomata and water supply from leaf veins. However,it is still unclear whether water supply and transpiration demand maintained balance during the evolution of basal angiosperms. In the present study,we measured stomatal density,stomatal length,vein density and leaf thickness from 11 basal angiosperm species and applied phylogenetically independent contrasts,combined with phylogenetic trees,to detect correlated-evolution between traits. Our results showed that along the evolutionary direction,stomatal density and vein density increased gradually while stomatal length and leaf thickness expressed a declining trend; whether phylogeny was considered or not,stomatal density was positively correlated with vein density,indicating their correlated-evolution,and supporting the hypothesis that leaf water balance existed in basal angiosperms; leaf thickness was correlated significantly with both stomatal traits and vein density; however,after removing the phylogenetic effect,these correlations disappeared,indicating non-correlated evolution between these traits. The results of the present study revealed that the maintenance of the balance between water demand and supply,and even CO2 supply,drove the evolution of leaf structure and function in basal angiosperms.
  • [1]

    Zhang SB, Sun M, Cao KF, Hu H, Zhang JJ. Leaf photosynthetic rate of tropical ferns is evolutionarily linked to water transport capacity[J]. PLoS ONE, 2014, 9:e84682.

    [2]

    Brodribb TJ, Feild TS. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification[J]. Ecol Lett, 2010, 13(2):175-183.

    [3]

    Brodribb TJ, Feild TS, Jordan GJ. Leaf maximum photosynthetic rate and venation are linked by hydraulics[J]. Plant Physiol, 2007, 144(4):1890-1898.

    [4]

    Boyce CK, Brodribb TJ, Feild TS, Zwieniecki MA. Angiosperm leaf vein evolution was physiologically and environmentally transformative[J]. Proc R Soc B, 2009, 276(1663):1771-1776.

    [5] 李乐, 曾辉, 郭大立. 叶脉网络功能性状及其生态学意义[J]. 植物生态学报, 2013, 37(7):691-698.
    [6]

    Brodribb TJ, Holbrook NM, Zwieniecki MA, Palma B. Leaf hydraulic capacity in ferns, conifers and angiosperms:impacts on photosynthetic maxima[J]. New Phytol, 2005, 165(3):839-846.

    [7]

    Brodribb TJ, Jordan GJ, Carpenter RJ. Unified changes in cell size permit coordinated leaf evolution[J]. New Phytol, 2013, 199(2):559-570.

    [8]

    Brodribb TJ, Jordan GJ. Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees[J]. New Phytol, 2011, 192(2):437-448.

    [9]

    Franks PJ, Drake PL, Beerling DJ. Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density:an analysis using Eucalyptus globulus[J]. Plant Cell Environ, 2009, 32(12):1737-1748.

    [10]

    Zhang SB, Guan ZJ, Sun M, Zhang JJ, Cao KF, Hu H. Evolutionary association of stomatal traits with leaf vein density in Paphiopedilum, Orchidaceae[J]. PLoS ONE, 2012, 7:e40080.

    [11]

    Xu ZZ, Zhou GS. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass[J]. J Exp Bot, 2008, 59(12):3317-3325.

    [12]

    Drake PL, Froend RH, Franks PJ. Smaller, faster stomata:scaling of stomatal size, rate of response, and stomatal conductance[J]. J Exp Bot, 2013, 64(2):495-505.

    [13]

    Ogburn RM, Edwards EJ. Quantifying succulence:a rapid, physiologically meaningful metric of plant water storage[J]. Plant Cell Environ, 2012, 35(9):1533-1542.

    [14]

    Scoffoni C, Rawls M, McKown A, Cochard H, Sack L. Decline of leaf hydraulic conductance with dehydration:Relationship to leaf size and venation architecture[J]. Plant Physiol, 2011, 156(2):832-843.

    [15]

    Beerling DJ, Kelly CK. Evolutionary comparative analyses of the relationship between leaf structure and function[J]. New Phytol, 1996, 134(1):35-51.

    [16]

    Soltis PS, Soltis DE. The origin and diversification of angiosperms[J]. Amer J Bot, 2004, 91(10):1614-1626.

    [17]

    Feild TS, Arens NC, Doyle JA, Dawson TE, Donoghue MJ. Dark and disturbed:a new image of early angiosperm ecology[J]. Paleobiology, 2004, 30(1):82-107.

    [18]

    Feild TS, Arens NC. The ecophysiology of early angiosperms[J]. Plant Cell Environ, 2007, 30(3):291-309.

    [19]

    Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants:APG Ⅲ[J]. Bot J Linn Soc, 2009, 161(2):105-121.

    [20]

    Feild TS, Arens NC. Form, function, and environments of the early angiosperms:merging extant phylogeny and ecophysiology with fossils[J]. New Phytol, 2005, 166(2):383-408.

    [21]

    Abràmoff MD, Magalhaes PJ, Ram SJ. Image processing with ImageJ[J]. Biophotonics International, 2004, 11:36-42.

    [22]

    Blomberg SP, Garland TJr, Ives AR. Testing for phylogenetic signal in comparative data:beha-vioral traits are more labile[J]. Evolution, 2003, 57(4):717-745.

    [23]

    Kembel SW, Cahill JrJF. Independent evolution of leaf and root traits within and among temperate grassland plant communities[J]. PLoS ONE, 2011, 6:e19992.

    [24]

    Aasamaa K, Sber A, Rahi M. Leaf anatomical characteristics associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees[J]. Aust J Plant Phy-siol, 2001, 28(8):765-774.

    [25]

    Feild TS, Brodribb TJ, Jaffre T, Holbrook NM. Acclimation of leaf anatomy, photosynthetic light use, and xylem hydraulics to light in Amborella trichopoda (Amborellaceae)[J]. Int J Plant Sci, 2001, 162(5):999-1008.

    [26]

    Feild TS, Franks PJ, Sage TL. Ecophysiological shade adaptation in the basal angiosperm, Austrobaileya scandens (Austrobaileyaceae)[J]. Int J Plant Sci, 2003, 164(2):313-324.

    [27]

    Sack L, Scoffoni C. Leaf venation:structure, function, development, evolution, ecology and applications in the past, present and future[J]. New Phytol, 2013, 198(4):983-1000.

    [28]

    Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA. Genome size is a stronger predictor of cell size and stomatal density in angiosperms[J]. New Phytol, 2008, 179(4):975-986.

    [29]

    Ackerly DD, Donoghue MJ. Leaf size, sapling allometry, and Corner's rules:Phylogeny and correlated evolution in maples (Acer)[J]. Amer Na-turalist, 1998, 152(6):767-791.

    [30]

    Murphy MRC, Jordan GJ, Brodribb TJ. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata[J]. Plant Cell Environ, 2014, 37(1):124-131.

    [31]

    Sack L, Cowan PD, Jaikumar N, Holbrook NM. The‘hydrology'of leaves:co-ordination of stru-cture and function in temperate woody species[J]. Plant Cell Environ, 2003, 26(8):1343-1356.

    [32]

    Ackerly DD, Reich PB. Convergence and correlations among leaf size and function in seed plants:a comparative test using independent contrasts[J]. Amer J Bot, 1999, 86(9):1272-1281.

    [33]

    Ackerly D. Self-shading, carbon gain and leaf dynamics:a test of alternative optimality models[J]. Oecologia, 1999, 119(3):300-310.

    [34]

    Woodward FI. Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels[J]. Nature, 1987, 327(6123):617-618.

    [35]

    Schluter U, Muschak M, Berger D, Altmann T. Photosynthetic performance of an Arabidopsis mutant with elevated stomatal density (sdd 1-1) under different light regimes[J]. J Exp Bot, 2003, 54(383):867-874.

    [36]

    Cunningham SA, Summerhayes B, Westoby M. Evolutionary divergences in leaf structure and che-mistry, comparing rainfall and soil nutrient gradients[J]. Ecol Monogr, 1999, 69(4):569-588.

    [37]

    Manetas Y, Petropoulou Y, Stamatakis K, Niko-lopoulos D, Levizou E, Psaras G, Karabourniotis G. Beneficial effects of enhanced UV-B radiation under field conditions:Improvement of needle water relations and survival capacity of Pinus pinea L. seedlings during the dry Mediterranean summer[J]. Plant Ecol, 1997, 128(1-2):101-108.

    [38]

    Kerstiens G. Water transport in plant cuticles:An update[J]. J Exp Bot, 2006, 57(11):2493-2499.

计量
  • 文章访问数:  1864
  • HTML全文浏览量:  18
  • PDF下载量:  2985
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-16
  • 修回日期:  2014-04-07
  • 网络出版日期:  2022-11-01
  • 发布日期:  2014-08-29

目录

    /

    返回文章
    返回