高级检索+

热带雨林木质藤本植物叶片性状及其关联

丁凌子, 陈亚军, 张教林

丁凌子, 陈亚军, 张教林. 热带雨林木质藤本植物叶片性状及其关联[J]. 植物科学学报, 2014, 32(4): 362-370. DOI: 10.3724/SP.J.1142.2014.40362
引用本文: 丁凌子, 陈亚军, 张教林. 热带雨林木质藤本植物叶片性状及其关联[J]. 植物科学学报, 2014, 32(4): 362-370. DOI: 10.3724/SP.J.1142.2014.40362
DING Ling-Zi, CHEN Ya-Jun, ZHANG Jiao-Lin. Leaf Traits and Their Associations among Liana Species in Tropical Rainforest[J]. Plant Science Journal, 2014, 32(4): 362-370. DOI: 10.3724/SP.J.1142.2014.40362
Citation: DING Ling-Zi, CHEN Ya-Jun, ZHANG Jiao-Lin. Leaf Traits and Their Associations among Liana Species in Tropical Rainforest[J]. Plant Science Journal, 2014, 32(4): 362-370. DOI: 10.3724/SP.J.1142.2014.40362
丁凌子, 陈亚军, 张教林. 热带雨林木质藤本植物叶片性状及其关联[J]. 植物科学学报, 2014, 32(4): 362-370. CSTR: 32231.14.SP.J.1142.2014.40362
引用本文: 丁凌子, 陈亚军, 张教林. 热带雨林木质藤本植物叶片性状及其关联[J]. 植物科学学报, 2014, 32(4): 362-370. CSTR: 32231.14.SP.J.1142.2014.40362
DING Ling-Zi, CHEN Ya-Jun, ZHANG Jiao-Lin. Leaf Traits and Their Associations among Liana Species in Tropical Rainforest[J]. Plant Science Journal, 2014, 32(4): 362-370. CSTR: 32231.14.SP.J.1142.2014.40362
Citation: DING Ling-Zi, CHEN Ya-Jun, ZHANG Jiao-Lin. Leaf Traits and Their Associations among Liana Species in Tropical Rainforest[J]. Plant Science Journal, 2014, 32(4): 362-370. CSTR: 32231.14.SP.J.1142.2014.40362

热带雨林木质藤本植物叶片性状及其关联

基金项目: 

国家自然科学基金项目(31270453,31100291);云南省中青年学术和技术带头人后备人才计划项目(2012HB039)。

详细信息
    作者简介:

    丁凌子(1988-),女,硕士研究生,主要研究方向为植物生理生态学(E-mail:dinglingzi@xtbg.org.cn)。

    通讯作者:

    张教林,E-mail:zjl@xtbg.org.cn

  • 中图分类号: Q948.11

Leaf Traits and Their Associations among Liana Species in Tropical Rainforest

  • 摘要: 热带雨林中木质藤本植物较为丰富。随着全球气候变化加剧,木质藤本植物的丰富度具有不断增加的趋势,有可能对热带森林的结构、功能和动态产生重要影响。然而,目前对木质藤本响应环境变化的机制所知甚少。本研究以13个科20种热带雨林常见木质藤本植物为材料,测定了冠层叶片的17个形态特征及结构性状,并分析了性状间的相互关系。结果表明,叶片相对含水量的种间变异最小(变异系数为5%),而上表皮厚度的种间变异最大(变异系数为80%),其它性状的种间变异系数为24%~61%。木质藤本植物的叶脉密度、叶片密度均与气孔密度呈显著正相关,叶片干物质含量与比叶面积呈显著负相关。与相同生境的树木相比,木质藤本的叶面积更小、气孔密度和叶片密度更低、比叶面积更高,但两种植物类群的叶片横切面组织结构厚度无显著差异。研究结果对理解木质藤本植物的生态适应性具有重要意义。
    Abstract: Lianas are abundant in tropical rainforest. With global climate change, liana density and biomass are increasing. This can significantly influence co-occurring tree recruitment, growth, mortality and survival, which, in turn, may have a significant effect on the structure, functioning and dynamics of tropical forests. In this study, we measured 17 leaf traits of 20 tropical rainforest liana species from 13 families and analyzed trait associations across lianas. Our results showed that relative water content of liana leaves exhibited the smallest interspecific variation, with a coefficient of variation (CV) of 5%, adaxial epidermis thickness presented the largest interspecific variation (CV of 80%), with the CV of the other 15 traits ranging from 24% to 61%. Across the lianas studied, both vein density and leaf density were positively correlated with stomatal density; and, specific leaf area was negatively correlated with leaf dry matter content. Compared with trees growing in the same habitats, lianas had lower values for leaf area, stomatal density and leaf density, but higher specific leaf area, with no significant differences in leaf anatomical traits between lianas and trees. These results are essential for understanding the ecological adaptation of lianas in tropical rainforest.
  • [1]

    Schnitzer SA, Bongers F. The ecology of lianas and their role in forests[J]. Trends Ecol Evol, 2002, 17(5): 223-230.

    [2]

    Schnitzer SA. A mechanistic explanation for global pattern of liana abundance and distribution[J]. Am Nat, 2005, 166(2): 262-276.

    [3]

    Schnitzer SA, Bongers F. Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms[J]. Ecol Lett, 2011, 14(4): 397-406.

    [4]

    Putz FE. Liana biomass and leaf area of a tierrafirme forest in the Rio Negro basin, Venezuela[J]. Biotropica, 1983, 15(3): 185-189.

    [5]

    Avalos G, Mulkey SS, Kitajima K. Leaf optical properties of trees and lianas in the outer canopy of a tropical dry forest[J]. Biotropica, 1999, 31(3): 517-520.

    [6] 孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能[J]. 植物生态学报, 2007, 31(1): 150-165.
    [7]

    Vendramini F, Díaz S, Gurvich DE, Wilson PJ, Thompson K, Hodgson JG. Leaf traits as indicators of resource-use strategy in floras with suc-culent species[J]. New Phytol, 2002, 154(1): 147-157.

    [8] 刘金环, 曾智慧, Lee DK. 科尔沁沙地东南部地区主要植物叶片性状及其相互关系[J]. 生态学杂志, 2006, 25(8): 921-925.
    [9]

    Brodribb TJ, Feild TS. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification[J]. Ecol Lett, 2010, 13(2): 175-183.

    [10]

    Sack L, Frole K. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees[J]. Ecology, 2006, 87(2): 483-491.

    [11]

    Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985): 821-827.

    [12]

    Zhang SB, Guan ZJ, Sun M, Zhang JJ, Cao KF, Hu H. Evolutionary association of stomatal traits with leaf vein density in Paphiopedilum, Orchidaceae[J]. PloS ONE, 2012, 7(6): e40080.

    [13]

    Peter JW, Ken T, John GH. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies[J]. New Phytol, 1999, 143(1): 155-162.

    [14]

    Kitajima K, Poorter L. Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species[J]. New Phytol, 2010, 186(3): 708-721.

    [15]

    Zhang JL, Poorter L, Cao KF. Productive leaf functional traits of Chinese savanna species[J]. Plant Ecol, 2012, 213(9): 1449-1460.

    [16]

    Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. Biodiversity hotspots for conservation priorities[J]. Nature, 2000, 403(6772): 853-858.

    [17] 朱华, 许再富, 王洪, 李保贵. 西双版纳片断热带雨林植物区系成分及变化趋势[J]. 生物多样性, 2000, 8(2): 139-145.
    [18]

    Zhu H, Xu ZF, Wang H, Li BG. Tropical rain fo-rest fragmentation and its ecological and species diversity changes in southern Yunnan[J]. Biodivers Conserv, 2004, 13(7): 1355-1372.

    [19]

    Angiosperm Phylogeny Group. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG Ⅲ[J]. Bot J Linn Soc, 2009, 161(2): 105-121.

    [20]

    Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis[J]. Nat Methods, 2012, 9(7): 671-675.

    [21]

    R Core Team. R: A Language and Environment for Statistical Computing[M]. Vienna, Austria: R Foundation for Statistical Computing, 2013.

    [22] 朱师丹. 热带雨林木质藤本和树木的叶片性状、水力结构和光合作用的比较[D]. 昆明:中国科学院西双版纳热带植物园, 2010.
    [23]

    Zhang JL, Cao KF. Stem hydraulics mediates leaf water status, carbon gain, nutrient use efficiencies and plant growth rates across dipterocarp species[J]. Funct Ecol, 2009, 23(4): 658-667.

    [24]

    Tang Y, Kitching RL, Cao M. Lianas as structural parasites: a re-evaluation[J]. Chin Sci Bull, 2012, 57(4): 307-312.

    [25]

    Salzer J, Matezki S, Kazda M. Nutritional differe-nces and leaf acclimation of climbing plants and the associated vegetation in different types of an Andean montane rainforest[J]. Oecologia, 2006, 147(3): 417-425.

    [26] 李乐, 曾辉, 郭大立. 叶脉网络功能性状及其生态学意义[J]. 植物生态学报, 2013, 37(7): 691-698.
计量
  • 文章访问数:  1588
  • HTML全文浏览量:  8
  • PDF下载量:  2493
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-06
  • 修回日期:  2014-01-14
  • 网络出版日期:  2022-11-01
  • 发布日期:  2014-08-29

目录

    /

    返回文章
    返回