Respiration Characteristics of Different Sized Soil Aggregates and Their Contribution to Carbon Emissions
-
摘要: 通过土盆培养试验研究了不同粒级黄棕壤团聚体呼吸特征及其对碳排放的贡献, 结果表明:各粒级土壤团聚体及原状土在培养初期土壤呼吸速率较高, 之后逐渐降低。在整个培养期间原状土保持了最大的土壤呼吸速率;土壤团聚体类型对土壤呼吸速率影响较大, 3种粒级团聚体土壤呼吸速率大小表现为(>5 mm)>(<1 mm)≈(1~5 mm), 其中以>5 mm团聚体对土壤碳排放的贡献最大。相关性分析表明, 指数模型能较好地描述不同粒级团聚体的土壤呼吸对温度变化的响应;Q10值介于2.53~5.11之间且与土壤有机碳、全氮含量的变化规律基本一致, 表现为>1 mm团聚体有机碳、全氮含量和Q10值较大, >5 mm、1~5 mm团聚体有机碳、全氮含量和Q10值相对较低, 说明土壤团聚体粒级越小, 其呼吸速率对温度越敏感。土壤有机碳、氮含量与土壤结构是影响土壤呼吸温度敏感性的重要因素。Abstract: The respiration characteristics of different sized yellow brown soil aggregates and their contribution to carbon emissions were assessed by soil pot experiment. Results showed that the respiration rates of aggregates and homogenized soil were highest at the beginning of the incubation, and then showed a descending tendency during the period of incubation. During the incubation time, the homogenized soil had the highest respiration rate. The respiration rates varied with aggregate size: (>5 mm)>(<1 mm)≈(1~5 mm). This indicated that the largest macroaggregates (>5 mm) had the highest contribution to carbon emissions. Correlation analysis showed that the respiration rates of different sized soil aggregates were significantly and exponentially correlated with soil temperature. The Q10 values ranged from 2.53 to 5.11 and had the same variation tendency in different aggregates with soil organic carbon (SOC) and total nitrogen (TN). The <1 mm aggregates had the highest Q10 value and SOC and TN contents, while>5mm and 1~5 mm aggregates had lower Q10 values and SOC and TN contents. Our results suggested that both the contents of SOC and TN and the soil structure affected temperature sensitivity of soil respiration.
-
Keywords:
- Soil aggregate /
- Soil respiration /
- Carbon emission /
- Temperature sensitivity (Q10)
-
-
[1] Schimel DS. Terrestrial ecosystems and the carbon cycle[J]. Global Change Biol, 1995, 1(1): 77-91.
[2] Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677): 1623-1627.
[3] Singh JS, Gupta SR. Plant decomposition and soil respiration in terrestrial ecosystems[J]. Bot Rev, 1977, 43(4): 449-528.
[4] Schlesinger WH, Andrews JA. Soil respiration and the global carbon cycle[J]. Biogeochemistry, 2000, 48(1): 7-20.
[5] 韩广轩, 周广胜. 土壤呼吸作用时空动态变化及其影响机制研究与展望[J]. 植物生态学报, 2009, 33(1): 197-205. [6] Wiant HV. Influence of temperature on the rate of soil respiration[J]. J Forest, 1967, 65(7): 489-490.
[7] Six J, Elliott ET, Paustian K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biol Biochem, 2000, 32(14): 2099-2103.
[8] Chenu C, Bissonnais LY, Arrouays D. Organic matter influence on clay wettability and soil aggregate stability[J]. Soil Sci Soc Am J, 2000, 64(4): 1479-1486.
[9] Semenov VM, Lvannikova LA, Semenova NA, Khodzhaeva AK, Udal’tsov SN. Organic matter mineralization in different soil aggregate fractions[J]. Eurasian Soil Sci, 2010, 43(2): 141-148.
[10] Six J, Paustian K, Elliott ET, Combrik C. Soil structure and organic matter:Ⅰ. Distribution of aggregate-size classes and aggregate-associated carbon[J]. Soil Sci Soc Am J, 2000, 64(2): 681-689.
[11] Grandy AS, Robertson GP. Aggregation and organic matter protection following tillage of a previously uncultivated soil[J]. Soil Sci Soc Am J, 2006, 70(4): 1398-1406.
[12] Wu HH, Wiesmeier M, Yu Q, Steffens M, Han XG, Kögel-Knabner I. Labile organic C and N mine-ralization of soil aggregate size classes in semiarid grasslands as affected by grazing management[J]. Biol Fert Soils, 2012, 48(3): 305-313.
[13] Luo YQ, Wan SQ, Hui DF, Wallace LL. Acclimatization of soil respiration to warming in a tall grass prairie[J]. Nature, 2001, 413(6856): 622-625.
[14] Lloyd J, Taylor JA. On the temperature depen-dence of soil respiration[J]. Funct Ecol, 1994, 8(3): 315-323.
[15] 刘中良, 宇万太. 土壤团聚体中有机碳研究进展[J]. 中国生态农业学报, 2011, 19(2): 447-455. [16] 窦森, 李凯, 关松. 土壤团聚体中有机碳研究进展[J]. 土壤学报, 2011, 48(2): 412-418. [17] 李忠佩, 张桃林, 陈碧云. 可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J]. 土壤学报, 2004, 41(4):544-552. [18] 刘绍辉, 方精云. 土壤呼吸的影响因素及全球尺度下温度的影响[J]. 生态学报, 1997, 17(5): 469-476. [19] 唐英平. 土壤呼吸温度敏感性及土壤有机碳分解速率的研究[D]. 福州:福建师范大学, 2008:19. [20] Fang C, Moncrieff JB. The dependence of soil CO2 efflux on temperature[J]. Soil Biol Biochem, 2001, 33(2): 155-165.
[21] Winkler JP, Cherry RS, Schlesinger WH. The Q10 relationship of microbial respiration in a temperate forest soil[J]. Soil Biol Biochem, 1996, 28(8): 1067-1072.
[22] 文倩, 赵小蓉, 陈焕伟, 妥德宝, 林启美. 半干旱地区不同土壤团聚体中微生物量碳的分布特征[J]. 中国农业科学, 2004, 37(10): 1504-1509. [23] Gupta VVSR, Germida JJ. Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation[J]. Soil Biol Biochem, 1988, 20(6): 777-786.
[24] 张平究, 李恋卿, 潘根兴, 张俊伟. 长期不同施肥下太湖地区黄泥土表土微生物碳、氮量及基因多样性变化[J]. 生态学报, 2004, 24(12): 2818-2824. [25] Goebel MO, Bachmann J, Woche SK, Fischer WR. Soil wettability, aggregate stability, and the decomposition of soil organic matter[J]. Geoderma, 2005, 128(1): 80-93.
[26] Six J, Elliott ET, Paustian K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems[J]. Soil Sci Soc Am J, 1999, 63(5): 1350-1358.
[27] 李玲, 仇少君, 刘京涛, 刘庆, 陆兆华. 土壤溶解性有机碳在陆地生态系统碳循环中的作用[J]. 应用生态学报, 2012, 23(5): 1407-1414. [28] Fernández R, Quiroga A, Zorati C, Noellemeyer E. Carbon contents and respiration rates of aggregate size fractions under no-till and conventional tillage[J]. Soil Till Res, 2010, 109(2): 103-109.
[29] 王君, 宋新山, 严登华, 陈燕. 多重干湿交替格局下土壤Birch效应的响应机制[J]. 中国农学通报, 2013, 29(27): 120-125. [30] Fang C, Moncrieff JB. A model for soil CO2 production and transport 1: Model development[J]. Agr Forest Meteorol, 1999, 95(4): 225-236.
[31] Raich JW, Schlesinger WH. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus B, 1992, 44(2): 81-99.
[32] 张金波, 宋长春, 杨文燕. 不同土地利用下土壤呼吸温度敏感性差异及影响因素分析[J]. 环境科学学报, 2005, 25(11): 1537-1542.
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量: