高级检索+

箭叶淫羊藿EsUF3GT基因的克隆及表达分析

王应丽, 黄文俊, 王瑛

王应丽, 黄文俊, 王瑛. 箭叶淫羊藿EsUF3GT基因的克隆及表达分析[J]. 植物科学学报, 2014, 32(6): 602-611. DOI: 10.11913/PSJ.2095-0837.2014.60602
引用本文: 王应丽, 黄文俊, 王瑛. 箭叶淫羊藿EsUF3GT基因的克隆及表达分析[J]. 植物科学学报, 2014, 32(6): 602-611. DOI: 10.11913/PSJ.2095-0837.2014.60602
WANG Ying-Li, HUANG Wen-Jun, WANG Ying. Cloning and Expression Analysis of the EsUF3GT Gene in Epimedium sagittatum (Sieb. and Zucc.) Maxim.[J]. Plant Science Journal, 2014, 32(6): 602-611. DOI: 10.11913/PSJ.2095-0837.2014.60602
Citation: WANG Ying-Li, HUANG Wen-Jun, WANG Ying. Cloning and Expression Analysis of the EsUF3GT Gene in Epimedium sagittatum (Sieb. and Zucc.) Maxim.[J]. Plant Science Journal, 2014, 32(6): 602-611. DOI: 10.11913/PSJ.2095-0837.2014.60602
王应丽, 黄文俊, 王瑛. 箭叶淫羊藿EsUF3GT基因的克隆及表达分析[J]. 植物科学学报, 2014, 32(6): 602-611. CSTR: 32231.14.PSJ.2095-0837.2014.60602
引用本文: 王应丽, 黄文俊, 王瑛. 箭叶淫羊藿EsUF3GT基因的克隆及表达分析[J]. 植物科学学报, 2014, 32(6): 602-611. CSTR: 32231.14.PSJ.2095-0837.2014.60602
WANG Ying-Li, HUANG Wen-Jun, WANG Ying. Cloning and Expression Analysis of the EsUF3GT Gene in Epimedium sagittatum (Sieb. and Zucc.) Maxim.[J]. Plant Science Journal, 2014, 32(6): 602-611. CSTR: 32231.14.PSJ.2095-0837.2014.60602
Citation: WANG Ying-Li, HUANG Wen-Jun, WANG Ying. Cloning and Expression Analysis of the EsUF3GT Gene in Epimedium sagittatum (Sieb. and Zucc.) Maxim.[J]. Plant Science Journal, 2014, 32(6): 602-611. CSTR: 32231.14.PSJ.2095-0837.2014.60602

箭叶淫羊藿EsUF3GT基因的克隆及表达分析

基金项目: 

国家自然科学基金(31270340, 31200225)

中国科学院科研装备研制项目(YZ201227)。

详细信息
    作者简介:

    王应丽(1988-), 女, 硕士研究生, 研究方向为比较功能基因组学(E-mail: Xiaoli1225163@163.com)。

    通讯作者:

    王瑛,E-mail:yingwang@wbgcas.cn

  • 中图分类号: Q78

Cloning and Expression Analysis of the EsUF3GT Gene in Epimedium sagittatum (Sieb. and Zucc.) Maxim.

  • 摘要: 类黄酮3-O-糖基转移酶(flavonoid 3-O-glucosyltransferase, UF3GT)可以把不稳定的花色素催化成花色素苷。本研究采用同源基因克隆技术获得箭叶淫羊藿Epimedium sagittatum (Sieb. and Zucc.) Maxim. UF3GT基因cDNA开放阅读框(Open Reading Frame, ORF)序列, 命名为EsUF3GT(GenBank注册号为KJ648620)。序列分析表明, 该基因ORF全长为1356 bp, 编码451个氨基酸, 与其它植物中UF3GT蛋白序列的相似性为40%~50%。进化树分析发现, EsUF3GT同催化类黄酮3-O糖基化的糖基转移酶聚为一枝。qRT-PCR分析结果显示, EsUF3GT在花中的表达量最高, 约为叶片、花蕾中表达水平的2.3倍, 果实及根中表达水平的19倍。花青素含量检测表明, 花蕾中的含量最高(130.4 mg/100 g), 分别是叶片、花、果实及根中含量的3.5、5.2、72、87倍。我们推测EsUF3GT参与了箭叶淫羊藿花色素苷的生物合成, 此结果为深入开展EsUF3GT的生化功能研究奠定了基础。
    Abstract: Flavonoid 3-O-glycosyltransferase (UF3GT) can catalyze unstable anthocyanidin into anthocyanin. In this study, the Open Reading Frame (ORF) sequence of a novel UF3GT gene, designated as EsUF3GT, was isolated from Epimedium sagittatum (Sieb. and Zucc.) Maxim. using homologous gene cloning. The sequence was logged into the GenBank database with an accession No. of KJ648620. Its cDNA sequence contained a 1356 bp complete ORF, encoding 451 amino acids, and the deduced amino acid showed 40%-50% homology with other plant UF3GTs. Phylogenetic analysis revealed that EsUF3GT had a close relationship with glycosyltransferases (GTs) that catalyze the flavonoid 3-O glycosylation from various species. qRT-PCR analysis indicated that EsUF3GT showed the highest expression level in flowers, about 2.3 times that found in leaves and flower buds, and 19 times that found in the fruit and roots. Anthocyanin showed the highest accumulation level of 130.4 mg/100 g in flower buds, about 3.5, 5.2, 72 and 87 times that found in leaves, flowers, fruits and roots, respectively. We speculated that EsUF3GT was involved in anthocyanin biosynthesis in E. sagittatum. These results lay a foundation for further exploration of the function of EsUF3GT.
  • [1]

    Stearn WT, Shaw JMH. The Genus Epimedium and Other Herbaceous Berberidaceae[M]. Portland: Timber Press Inc., 2004: 202-203.

    [2]

    Ma HP, He XR, Yang Y, Li MX, Hao DG, Jia ZP. The genus Epimedium: An ethnopharmacological and phytochemical review[J]. J Ethnopharmacol, 2011, 134: 519-541.

    [3] 国家药典委员会. 中华人民共和国药典(一部)[S]. 北京:中国医药科技出版社, 2010: 306-308.
    [4] 黄秀兰, 周亚伟, 王伟. 淫羊藿黄酮类化合物药理研究进展[J]. 中成药, 2005, 27(6): 719-721.
    [5] 任璘, 戴思兰, 王瑛. 淫羊藿属植物种质资源及其园林应用[J]. 武汉植物学研究, 2008, 26(6): 644-649.
    [6]

    Winkel-Shiley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology[J]. Plant Physiol, 2001, 126(2): 485-493.

    [7] 于晓南, 张启翔. 观赏植物的花色素苷与花色[J]. 林业科学, 2002, 38(3): 148-152.
    [8]

    Forkmann G. Flavonoids as flower pigments: the formation of the natural spectrum and its extension by genetic engineering[J]. Plant Breeding, 1991, 106(1): 1-26.

    [9]

    Springob K, Nakajima JI, Yamazaki M, Saito K. Recent advances in the biosynthesis and accumulation of anthocyanins[J]. Nat Prod Rep, 2003, 20(3): 288-303.

    [10]

    Sakakibara KY, Nakayama T, Yamazaki M, Saito K. Modification and Stabilization of Anthocyanins[M]. New York: Springer, 2009: 169-190.

    [11] 侯夫云, 王庆美, 李爱贤, 张海燕, 董顺旭, 解备涛. 植物花青素合成酶的研究进展[J]. 中国农学通报, 2009, 25(21): 188-190.
    [12]

    Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima JI, Awazuhara M, Inoue E, Takahashi H, Goodenowe DB, Kitayama M, Noji M, Yamazaki M, Saito K. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor[J]. Plant J, 2005, 42(2): 218-235.

    [13] 王军, 侯丙凯. 植物小分子化合物的糖基化与糖基转移酶[J]. 植物生理学通讯, 2008, 44(5): 997-1003.
    [14]

    Goto T, Kondo T, Tamura H, Imagawa H. Structure of gentiodelphin, an acylated anthocyanin isolated from Gentiana makinoi, that is stable in dilute aqueous solution[J]. Tetrahedron Lett, 1982, 23(36): 3695-3698.

    [15]

    Ford CM, Boss PK, Hoj PB. Cloning and characterization of Vitis vinifera UDP-Glucose: Flavonoid 3-O-Glucosyltransferase, a homologue of the enzyme encoded by the maize Bronze-1 locus that may primarily serve to glucosylate anthocyanidins in vivo[J]. J Biol Chem, 1998, 273(15): 9224-9233.

    [16]

    Hall D, Yuan XX, Murata J, Luca VD. Molecular cloning and biochemical characterization of the UDP-glucose: Flavonoid 3-O-glucosyltransferase from Concord grape (Vitis labrusca) [J]. Phytochemistry, 2012, 74(4): 90-99.

    [17]

    Tanaka Y, Yoshikazu K, Fukuchi-Mizutani M, Fukui Y, Fujiwara H, Ashikari T, Kusumi T. Molecular and biochemical characterization of three anthocyanin synthetic enzymes from Gentiana triflora[J]. Plant Cell Physiol, 1996, 37(5): 711-716.

    [18]

    Yamazaki M, Yamagishi E, Gong ZZ, Mizutani MF, Fukui Y, Tanaka Y, Kusumi T, Yamaguchi M, Saito K. Two avonoid glucosyltransferases from Petunia hybrida: molecular cloning, biochemical properties and developmentally regulated expression[J]. Plant Mol Biol, 2002, 48(4): 401-411.

    [19] 李作洲,徐艳琴,王瑛,黄宏文. 淫羊藿属药用植物的研究现状与展望[J]. 中草药, 2005, 36(2): 289-295.
    [20]

    Zeng SH, Xiao G, Guo J, Fei ZJ, Xu YQ, Roe BA, Wang Y. Development of a EST dataset and characterization of EST-SSRs in a traditional Chinese medicinal plant, Epimedium sagittatum (Sieb. and Zucc.) Maxim.[J]. BMC genomics, 2010, 11(1): 94-95.

    [21]

    Offen W, Fleites CM, Yang M, Lim EK, Davis BG, Tarling CA, Ford CM, Bowles DJ, Davies GJ. Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modication[J]. EMBO J, 2006, 25(6): 1396-1405.

    [22]

    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408.

    [23]

    Kong JM, Chia LS, Goh NK, Chia TF, Brouillard R. Analysis and biological activities of anthocyanins[J]. Phytochemistry, 2003, 64(5): 923-933.

    [24]

    Nakajima JI, Tanaka Y, Yamazaki M, Saito K. Reaction mechanism from leucoanthocyanidin to anthocyanidin 3-glucoside, a key reaction for coloring in anthocyanin biosynthesis[J]. J Biol Chem, 2001, 276(28): 25797-25803.

    [25]

    Davies KM, Schwinn KE. Flavonoids in Foods[M]//Andersen OM, Markham KR, eds. Flavonoids: Chemistry, Biochemistry and Applications. Boca Raton: CRC Press Inc., 2006: 143-218.

    [26]

    Hughes J, Hughes MA. Multiple secondary plant product UDP-glucose glucosyltransferase genes expressed in cassava (Manihot esculenta Crantz) cotyledons[J]. Mitochondrial DNA, 1994, 5(1): 41-49.

    [27]

    Sawada S, Suzuki H, Ichimaida F, Yamaguchi M, Iwashita T, FukuiY, Hemmi H, Nishino T, Nakayama T. UDP-glucuronic acid: anthocyanin glucuronosyltransferase from red daisy (Bellis perennis) flowers[J]. J Biol Chem, 2005, 280(2): 899-906.

    [28]

    Gachon CM, Meurinne ML, Saindrenan P. Plant secondary metabolism glycosyltransferases: the emerging functional analysis[J]. Trends Plant Sci, 2005, 10(11): 542-549.

    [29]

    Sakakibara KY, Hanada K. An evolutionary view of functional diversity in family 1 glycosyltransferases[J].Plant J, 2011, 66(1): 182-193.

    [30]

    Wang XQ. Structure, mechanism and engineering of plant natural product glycosyltransferases[J].FEBS Lett, 2009, 583(20): 3303-3309.

    [31]

    Shao H, He XZ, Achnine L, Blount JW, Dixon RA, Wang XQ. Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula[J]. Plant Cell, 2005, 17(11): 3141-3154.

    [32]

    Li LN, Modolo LV, Trevino LE, Achnine L, Dixon RA, Wang XQ. Crystal structure of Medicago truncatula UGT85H2-insights into the trusctural basis of a multifunctional (iso) flavonoid glycosyltransferase[J]. J Mol Biol, 2007, 370(5): 951-963.

    [33]

    Modolo LV, Li LN, Pan HY, Blount JW, Dixon RA, Wang XQ. Crystal structures of glycosyltransferase UGT78G1 reveal the molecular basis for glycosylation and deglycosylation of (iso) flavonoids[J]. J Mol Biol, 2009, 392(5): 1292-1302.

    [34]

    Kubo A, Arai Y, Nagashima S, Yoshikawa T. Alteration of sugar donor specificities of plant glycosyltransferases by a single point mutation[J].Arch Biochem Biophys, 2004, 429(2): 198-203.

    [35]

    Gong ZZ, Yamazaki M, Sugiyama M, Tanaka Y, Saito K. Cloning and molecular analysis of structural genes involved in anthocyanin biosynthesis and expressed in a forma-specific manner in Perilla frutescens[J]. Plant Mol Biol,1997, 35(6): 915-927.

    [36] 黄春辉, 俞波, 苏俊, 舒群, 滕元文. ‘美人酥’和 ‘云红梨1号’红皮砂梨果实的着色生理[J].中国农业科学, 2010, 43(7): 1433-1440.
    [37] 张琼, 王红清, 冷平, 贾乐新. 草莓果实发育过程中花色苷和黄酮醇类物质的形成机制[J]. 园艺学报, 2008, 35(12): 1735-1741.
    [38] 王惠聪, 黄旭明, 胡桂兵, 黄辉白. 荔枝果皮花青苷合成与相关酶的关系研究[J]. 中国农业科学, 2004, 37(12): 2028-2032.
    [39]

    Boss PK, Davies C, Robinson SP. Expression of anthocyanin biosynthesis pathway genes in red and white grapes[J]. Plant Mol Biol, 1996, 32(3): 565-569.

    [40]

    De Paoli E, Dorantes-Acosta A, Zhai JX, Accerbi M, Jeong DH, Park S, Meyers BC, Jorgensen RA, Green PJ. Distinct extremely abundant siRNAs associated with cosuppression in petunia[J].RNA, 2009, 15(11): 1965-1970.

    [41] 唐亚萍, 原慧, 覃建兵. 天山雪莲UDP葡萄糖-类黄酮-3-O-葡萄糖基转移酶基因的克隆及功能分析[J].生物工程学报, 2012, 28(6): 705-714.
    [42]

    Zeng SH, Liu YL, Hu WM, Liu YL, Shen XF, Wang Y. Integrated transcriptional and phytoche-mical analyses of the flavonoid biosynthesis pathway in Epimedium[J]. Plant Cell Tiss Org, 2013, 115(3): 355-365.

    [43]

    Huang WJ, Sun W, Lv HY, Luo M, Zeng SH, Pattanaik S, Yuan L, Wang Y. A R2R3-MYB transcription factor from Epimedium sagittatum regulates the flavonoid biosynthetic pathway[J]. PloS One, 2013, 8(8): 1-16.

计量
  • 文章访问数:  1329
  • HTML全文浏览量:  0
  • PDF下载量:  1719
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-11
  • 网络出版日期:  2022-10-31
  • 发布日期:  2014-12-29

目录

    /

    返回文章
    返回