高级检索+

拟南芥AtJ3通过核质转运调控植物质膜H+-ATPase活性与ABA响应

赵菲佚, 焦成瑾, 贾贞, 周辉, 王茂, 赵雷

赵菲佚, 焦成瑾, 贾贞, 周辉, 王茂, 赵雷. 拟南芥AtJ3通过核质转运调控植物质膜H+-ATPase活性与ABA响应[J]. 植物科学学报, 2016, 34(3): 406-419. DOI: 10.11913/PSJ.2095-0837.2016.30406
引用本文: 赵菲佚, 焦成瑾, 贾贞, 周辉, 王茂, 赵雷. 拟南芥AtJ3通过核质转运调控植物质膜H+-ATPase活性与ABA响应[J]. 植物科学学报, 2016, 34(3): 406-419. DOI: 10.11913/PSJ.2095-0837.2016.30406
ZHAO Fei-Yi, JIAO Cheng-Jin, JIA Zhen, ZHOU Hui, WANG Mao, ZHAO Lei. Trafficking of AtJ3 from the Nucleus to the Cytoplasm Regulates Plasma Membrane H+-ATPase Activity and ABA Response in Arabidopsis[J]. Plant Science Journal, 2016, 34(3): 406-419. DOI: 10.11913/PSJ.2095-0837.2016.30406
Citation: ZHAO Fei-Yi, JIAO Cheng-Jin, JIA Zhen, ZHOU Hui, WANG Mao, ZHAO Lei. Trafficking of AtJ3 from the Nucleus to the Cytoplasm Regulates Plasma Membrane H+-ATPase Activity and ABA Response in Arabidopsis[J]. Plant Science Journal, 2016, 34(3): 406-419. DOI: 10.11913/PSJ.2095-0837.2016.30406
赵菲佚, 焦成瑾, 贾贞, 周辉, 王茂, 赵雷. 拟南芥AtJ3通过核质转运调控植物质膜H+-ATPase活性与ABA响应[J]. 植物科学学报, 2016, 34(3): 406-419. CSTR: 32231.14.PSJ.2095-0837.2016.30406
引用本文: 赵菲佚, 焦成瑾, 贾贞, 周辉, 王茂, 赵雷. 拟南芥AtJ3通过核质转运调控植物质膜H+-ATPase活性与ABA响应[J]. 植物科学学报, 2016, 34(3): 406-419. CSTR: 32231.14.PSJ.2095-0837.2016.30406
ZHAO Fei-Yi, JIAO Cheng-Jin, JIA Zhen, ZHOU Hui, WANG Mao, ZHAO Lei. Trafficking of AtJ3 from the Nucleus to the Cytoplasm Regulates Plasma Membrane H+-ATPase Activity and ABA Response in Arabidopsis[J]. Plant Science Journal, 2016, 34(3): 406-419. CSTR: 32231.14.PSJ.2095-0837.2016.30406
Citation: ZHAO Fei-Yi, JIAO Cheng-Jin, JIA Zhen, ZHOU Hui, WANG Mao, ZHAO Lei. Trafficking of AtJ3 from the Nucleus to the Cytoplasm Regulates Plasma Membrane H+-ATPase Activity and ABA Response in Arabidopsis[J]. Plant Science Journal, 2016, 34(3): 406-419. CSTR: 32231.14.PSJ.2095-0837.2016.30406

拟南芥AtJ3通过核质转运调控植物质膜H+-ATPase活性与ABA响应

基金项目: 

国家自然科学基金资助项目(31260568,31160060)。

详细信息
    作者简介:

    赵菲佚(1972-),男,副教授,博士,主要从事植物分子生物学研究。

    通讯作者:

    赵菲佚,E-mail: tspaulzhao@163.com

  • 中图分类号: Q78

Trafficking of AtJ3 from the Nucleus to the Cytoplasm Regulates Plasma Membrane H+-ATPase Activity and ABA Response in Arabidopsis

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31260568,31160060).

  • 摘要: 拟南芥AtJ3(Arabidopsis thaliana DnaJ homolog 3)为一蛋白分子伴侣,在植物体内可通过与PKS5(SOS2-like protein kinase 5)蛋白激酶形成复合物来抑制PKS5的活性;同时AtJ3-PKS5复合物可对质膜上H+-ATPase质子转运活性进行正向调节,并参与对外源ABA的响应。为揭示AtJ3-PKS5复合物参与质膜H+-ATPase活性调节及对外源ABA响应中的作用,本研究以拟南芥AtJ3、PKS5不同突变体为材料,在盐及ABA共同处理下对AtJ3-PKS5复合物的功能及作用机制进行了探讨。结果显示,在2种因素共同处理下,AtJ3-PKS5复合物可同时对处理因素进行响应。即AtJ3-PKS5复合物可对质膜上H+-ATPase质子转运活性进行调节,并使细胞内pH值发生变化,同时还可诱导ABI5下游ABA响应基因的表达;外源ABA可引起AtJ3从细胞核向细胞质的转运,从而增强了AtJ3对H+-ATPase活性的调节。说明AtJ3-PKS5复合物在对H+-ATPase活性调节及对外源ABA响应的交互代谢途径中起着关键调节子的作用。
    Abstract: Arabidopsis thaliana DnaJ homolog 3 (AtJ3), an Arabidopsis chaperone, interacts with SOS2-like protein kinase 5 (PKS5) to form the AtJ3-PKS5 complex and achieves its function through repressing activity of PKS5 in vivo. Moreover, the AtJ3-PKS5 complex positively regulates plasma membrane H+-ATPase activity and is involved in exogenous ABA response in Arabidopsis. In this study, salt- and ABA-treated Arabidopsis AtJ3 and PKS5 mutants were explored to elucidate the function and mechanism of the AtJ3-PKS5 complex in the simultaneous regulation of membrane H+-ATPase activity and ABA response. Results showed that the AtJ3-PKS5 complex not only led to changes in the cytosolic pH value via regulation of plasma membrane H+-ATPase activity, but also activated expression of the ABA-related responsive genes under the two treatments. Additionally, exogenous application of ABA induced trafficking of AtJ3 from the nucleus to the cytoplasm to enhance H+-ATPase activity, indicating that the AtJ3-PKS5 complex functions in ABA-meditated pH homeostasis. Taken together, our results suggest that the AtJ3-PKS5 complex might serve as a key regulator in a crosstalk metabolic pathway of H+-ATPase activity regulation and exogenous ABA response.
  • [1] 平军娇, 张珍, 蔡振锋, 汤贤春, 钱刚. 千里光热激蛋白90-3(Hsp90-3)的生物信息学与功能分析[J]. 植物科学学报, 2012, 30(4): 385-393.
    [2]

    Ping JJ, Zhang Z, Cai ZF, Tang XC, Qian G. Functional roles of heat shock proteins 90-3 (Hsp90-3) in Senecio scandens Buch.-Ham. ex D. Don based on its bioinforma-tics[J]. Plant Science Journal , 2012, 30(4): 385-393.

    [2]

    Boston RS, Viitanen PV, Vierling E. Molecular chaperones and protein folding in plants[J]. Plant Mol Biol ,1996, 32(1/2): 191-222.

    [3]

    Waters ER, Lee GJ, Vierling E. Evolution, structure and function of the small heat shock proteins in plants[J]. J Exp Bot , 1996, 47(3): 325-338.

    [5]

    Wang W, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response[J]. Trends Plant Sci , 2004, 9(5): 244-252.

    [6]

    Miernyk JA. The J-domain proteins of Arabidopsis thaliana : An unexpectedly large and diverse family of chaperones[J]. Cell Stress Chaperones , 2001, 6(3): 209-218.

    [7]

    Shen L, Yu H. J3 regulation of flowering time is mainly contributed by its activity in leaves[J]. Plant Signal Behav , 2011, 6(4): 601-603.

    [8]

    Shen L, Kang YG, Liu L, Yu H. The J-domain protein J3 mediates the integration of flowering signals in Arabidopsis [J]. Plant Cell , 2011, 23(2): 499-514.

    [9] 李坤, 王鲜萍, 杨凤博, 许守明. MAPK级联途径参与ABA信号转导调节的植物生长发育过程[J]. 植物科学学报, 2014, 32(5): 531-539.

    Li K, Wang XP, Yang FB, Xu SM. Roles of mitogen-activated protein kinase cascades in ABA signaling regulation of plant development[J]. Plant Science Journal , 2014, 32(5): 531-539.

    [10]

    Hrabak EM, Chan CW, Gribskov M, Harper JF, et al . The Arabidopsis CDPK-SnRK superfamily of protein kinases[J]. Plant Physiol , 2003,132(2): 666-680.

    [11]

    Weinl S, Kudla J. The CBL-CIPK Ca2+-decoding signaling network: function and perspectives[J]. New Phytol , 2009, 184(3): 517-528.

    [12]

    Sheen J, Zhou L, Jang J. Sugars as signaling molecules[J]. Curr Opin Plant Biol , 1999, 2(5): 410-418.

    [13]

    Cheong YH, Kim KN, Pandey GK,Gupta R, Grant JJ, Luan S. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis [J]. Plant Cell , 2003, 15(8): 1833-1845.

    [14]

    Gong DM, Gong ZZ, Guo Y, Chen X, Zhu JK. Biochemical and functional characterization of PKS11, a novel Arabidopsis protein kinase[J]. J Biol Chem , 2002, 277(31): 28340-28350.

    [15]

    Qin YZ, Guo M, Li X, Xiong XY, He CZ, Nie XZ, Liu XM. Stress responsive gene CIPK14 is involved in phytochrome A-mediated far-red light inhibition of greening in Arabidopsis [J]. Sci China Ser C , 2010, 40(10): 970-977.

    [16]

    Qin YZ, Li X, Guo M, Deng KQ, Lin JZ, Tang DY, Guo XH,Liu XM. Regulation of salt and ABA responses by CIPK14, a calcium sensor interacting protein kinase in Arabidopsis [J]. Sci China Ser C , 2008, 38(5): 446-457.

    [17]

    Fuglsang AT , Guo Y, Cuin TA , Qiu Q, Song C, Kristiansen KA, Bych K, Schulz A, Shabala S, Schumaker KS, Palmgren MG, Zhu JK. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein[J]. Plant Cell , 2007, 19(5): 1617-1634.

    [18]

    Yang YQ, Qin YX, Xie CG, Zhao FY, et al . The Arabidopsis chaperone J3 regulates the plasma membrane H+-ATPase through interaction with the PKS5 kinase[J]. Plant cell , 2010, 22(4): 1313-1332.

    [19]

    Zhou XL, Hao HM, Zhang YG, Bai YL, et al . SOS2-LIKE PROTEIN KINASE5, an SNF1-RELATED PROTEIN KINASE3-type protein kinase, is important for abscisic acid responses in Arabidopsis through phosphorylation of ABSCISIC ACID-INSENSITIVE5[J]. Plant Physiol , 2015, 168(2): 659-676.

    [20]

    Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana , by SOS2 and SOS3[J]. Proc Natl Acad Sci USA , 2002, 99(12): 8436-8441.

    [21]

    Yan F, Zhu YY, Muller C, Zörb C, Schubert S. Adaptation of H+-pumping and plasma membrane H+-ATPase activity in proteoid roots of whitelupin under phosphate deficiency[J]. Plant Physiol , 2002, 129(1): 50-63.

    [22]

    Ozkan P, Mutharasan R. A rapid method for measuring intracellular pH using BCECF-AM[J]. Biochim Biophys Acta , 2002, 1572(1):143-148.

    [23]

    Quan RD, Lin H X, Mendoza I, Zhang YG, Cao WH, Yang YQ, Shang M, Chen SY, Pardo JM,Guo Y. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress[J]. Plant Cell , 2007, 19(4): 1415-1431.

    [24]

    Guo Y, Halfter U, Ishitani M, Zhu JK. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance[J]. Plant Cell , 2001, 13(6): 1383-1399.

    [25]

    Gong DM, Zhang CQ, Chen XY, Gong ZZ, Zhu JK. Constitutive activation and transgenic evaluation of the function of an Arabidopsis PKS protein kinase[J]. J Bio Chem , 2002, 277(44): 42088-42096.

    [26]

    Gong DM, Guo Y, Schumaker KS, Zhu JK. The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabid opsis [J]. Plant Physiol , 2004, 134(3): 919-926.

    [27] 赵菲佚, 焦成瑾, 陈荃, 袁毅君, 王廷璞, 呼丽萍. 拟南芥 PKS5 点突变体对盐碱胁迫的响应特性[J]. 西北植物学报, 2013, 33(1): 53-59.

    Zhao FY, Jiao CJ, Chen Q, Yuan YJ, Wang TP, Hu LP. Characteristics of the point mutants of PKS5 respond to the salt-alkali stress in Arabidopsis [J]. Acta Botanica-occidentalia Sinica , 2013, 33(1): 53-59.

    [28]

    Shang Y, Yan L, Liu ZQ. The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition[J]. Plant Cell, 2010, 22(6):1909-1935.

计量
  • 文章访问数:  1010
  • HTML全文浏览量:  4
  • PDF下载量:  1233
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-03
  • 修回日期:  2016-01-04
  • 网络出版日期:  2022-10-31
  • 发布日期:  2016-06-27

目录

    /

    返回文章
    返回