Recent research progress on the molecular regulation of flowering time in Arabidopsis thaliana
-
摘要: 植物从营养生长到生殖生长的转变是开花发育的关键,在合适的时间开花对植物的生长和繁衍极为重要,植物开花时间的调控对农业生产发展意义重大。植物开花是由遗传因子和环境因子协同调节的一个复杂过程。近年来,对不同植物开花调控的研究,特别是对模式植物拟南芥(Arabidopsis thaliana(L.) Heynh.)的开花调控研究取得了显著进展,已探明开花时间分子调控的6条主要途径分别是光周期途径、春化途径、自主途径、温度途径、赤霉素途径和年龄途径。各遗传调控途径既相互独立又相互联系,构成一个复杂的开花调控网络。本文综述了模式植物拟南芥开花时间调控分子机制相关研究的最新进展,并对未来的研究进行了展望。Abstract: The transformation of plants from vegetative to reproductive growth is the key to flowering and development.Flowering at the right time is important for plant growth and inheritance.Control of flowering time also plays a crucial role in the development of agricultural production.Plant flowering molecular regulation is a complex synergistic regulation of endogenous and exogenous factors.In recent years,research on flowering control of different plants,especially Arabidopsis thaliana(L.) Heynh.,has made remarkable progress.The mechanism of flowering control mainly involves six major pathways,including the photoperiodic,vernalization,autonomous,temperature,gibberellin,and age pathways.A variety of genetic control channels that are independent and interrelated form a complex flowering network.Here we focused on the latest research progress on the functions of newly identified genes underlying plant flowering.This paper could help to further understand the molecular mechanisms involved in the transition from vegetative to reproductive growth in plants.
-
Keywords:
- Arabidopsis thaliana /
- Flowering time /
- Molecular regulation /
- Gene
-
-
[1] Blumel M, Dally N, Jung C. Flowering time regulation in crops-what did we learn from Arabidopsis?[J]. Curr Opin Biotechnol, 2015, 32:121-129.
[2] Bouche F, Lobet G, Tocquin P, Perilleux C. FLOR-ID:an interactive database of flowering-time gene networks in Arabidopsis thaliana[J]. Nucleic Acids Res, 2016,44(D1):D1167-D1171.
[3] Jaeger KE, Pullen N, Lamzin S, Morris RJ, Wigge PA. Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis[J]. Plant Cell, 2013, 25(3):820-833.
[4] Song YH, Smith RW, To BJ, Millar AJ, Imaizumi T. FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering[J]. Science, 2012, 336(6084):1045-1049.
[5] Rosas U, Mei Y, Xie QG, Banta JA, Zhou RW, Seufferheld G, et al. Variation in Arabidopsis flowering time associated with cis-regulatory variation in CONSTANS[J]. Nat Commun, 2014, 5:3651.
[6] Song YH, Estrada DA, Johnson RS, Kim SK, Lee SY, MacCoss MJ, et al. Distinct roles of FKF1, GIGANTEA, and ZEITLUPE proteins in the regulation of CONSTANS stability in Arabidopsis photoperiodic flowering[J]. Proc Natl Acad Sci USA, 2014, 111(49):17672-17677.
[7] Lazaro A, Mouriz A, Piñeiro M, Jarillo JA. Red light-mediated degradation of CONSTANS by the E3 ubiquitin ligase HOS1 regulates photoperiodic flowering in Arabidopsis[J]. Plant Cell, 2015, 27(9):2437-2454.
[8] Yu Y, Liu Z, Wang L, Kim SG, Seo PJ, Qiao M, et al. WRKY71 accelerates flowering via the direct activation of FLOWERING LOCUS Tand LEAFY in Arabidopsis thaliana[J]. Plant J, 2016, 85(1):96-106.
[9] Navarro C, Abelenda JA, Cruz-Oró E, Cuéllar CA, Tamaki S, Silva J, et al. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T[J]. Nature, 2011, 478(7367):119-122.
[10] González-Schain ND, Díaz-Mendoza M, Żurczak M, Suárez-López P. Potato CONSTANS is involved in photoperiodic tuberization in a graft-transmissible manner[J]. Plant J, 2012, 70(4):678-690.
[11] Lee R, Baldwin S, Kenel F, McCallum J, Macknight R. FLOWERING LOCUS Tgenes control onion bulb formation and flowering[J]. Nat Commun, 2013, 4:2884.
[12] Navarro C, Cruz-Oró E, Prat S. Conserved function of FLOWERING LOCUS T (FT) homologues as signals for storage organ differentiation[J]. Curr Opin Plant Biol, 2015, 23:45-53.
[13] Förderer A, Zhou Y, Turck F. The age of multiplexity:recruitment and interactions of Polycomb complexes in plants[J]. Curr Opin Plant Biol, 2016, 29:169-178.
[14] Yang H, Howard M, Dean C. Antagonistic roles for H3K36me3 and H3K27me3 in the cold-induced epigenetic switch at Arabidopsis FLC[J]. Curr Biol,2014, 24(15):1793-1797.
[15] Sung S, Amasino RM. Vernalization in Arabidopsis thalianais mediated by the PHD finger protein VIN3[J]. Nature, 2004, 427(6970):159-164.
[16] Greb T, Mylne JS, Crevillen P, Geraldo N, An H, Gendall AR, et al. The PHD finger protein VRN5 functions in the epigenetic silencing of Arabidopsis FLC[J]. Curr Biol, 2007, 17(1):73-78.
[17] De LF, Crevillen P, Jones AM, Greb T, Dean C. A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLCduring vernalization[J]. Proc Natl Acad Sci USA, 2008, 105(44):16831-16836.
[18] Coustham V, Li P, Strange A, Lister C, Song J, Dean C. Quantitative modulation of polycomb silencing underlies natural variation in vernalization[J]. Science, 2012, 337(6094):584-587.
[19] Angel A, Song J, Yang H, Questa JI, Dean C, Howard M. Vernalizing cold is registered digitally at FLC[J]. Proc Natl Acad Sci USA, 2015, 112(13):4146-4151.
[20] Lee J, Yun JY, Zhao W, Shen WH, Amasino RM. A methyltransferase required for proper timing of the vernalization response in Arabidopsis[J]. Proc Natl Acad Sci USA, 2015, 112(7):2269-2274.
[21] Chekanova JA. Long non-coding RNAs and their functions in plants[J]. Curr Opin Plant Biol, 2015, 27:207-216.
[22] Crevillén P, Yang H, Cui X, Greeff C, Trick M, Qiu Q, et al. Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state[J]. Nature, 2014, 515(7528):587-590.
[23] Li P, Filiault D, Box MS, Kerdaffrec E, Oosterhout C, Wilczek AM, et al. Multiple FLChaplotypes defined by independent cis-regulatory variation underpin life history diversity in Arabidopsis thaliana[J]. Genes Dev, 2014, 28(15):1635-1640.
[24] Li P, Tao Z, Dean C. Phenotypic evolution through variation in splicing of the noncoding RNA COOLAIR[J]. Genes Dev, 2015, 29(7):696-701.
[25] Wang ZW, Wu Z, Raitskin O, Sun Q, Dean C. Antisense-mediated FLC transcriptional repression requires the P-TEFb transcription elongation factor[J]. Proc Natl Acad Sci USA, 2014, 111(20):7468-7473.
[26] Marquardt S, Raitskin O, Wu Z, Liu F, Sun Q, Dean C. Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription[J]. Mol Cell, 2014, 54(1):156-165.
[27] Sun Q, Csorba T, Skourti-Stathaki K, Proudfoot NJ, Dean C. R-loop stabilization represses antisense transcription at the Arabidopsis FLClocus[J]. Science, 2013, 340(6132):619-621.
[28] Liu F, Bakht S, Dean C. Cotranscriptional role for Arabidopsis DICER-LIKE 4 in transcription termination[J]. Science, 2012, 335(6076):1621-1623.
[29] Zhang Y, Gu L, Hou Y, Wang L, Deng X, Hang R, et al. Integrative genome-wide analysis reveals HLP1, a novel RNA-binding protein, regulates plant flowering by targeting alternative polyadenylation[J]. Cell Res, 2015, 25(7):864-876.
[30] Kumar SV, Lucyshyn D, Jaeger KE, Alós E, Alvey E, Harberd NP, et al. Transcription factor PIF4 controls the thermosensory activation of flowering[J]. Nature, 2012, 484(7393):242-245.
[31] Lee JH, Ryu HS, Chung KS, Posé D, Kim S, Schmid M, et al. Regulation of temperature-responsive flowering by MADS-box transcription factor repressors[J]. Science, 2013, 342(6158):628-632.
[32] Lee JH, Kim SH, Kim JJ, Ahn JH. Alternative splicing and expression analysis of high expression of osmotically responsive genes1(HOS1) in Arabidopsis[J]. BMB Rep, 2012, 45(9):515-520.
[33] Song YH, Ito S, Imaizumi T. Flowering time regulation:photoperiod-and temperature-sensing in leaves[J]. Trends Plant Sci,2013, 18(10):575-583.
[34] Galvão VC, Horrer D, Küttner F, Schmid M. Spatial control of flowering by DELLA proteins in Arabidopsis thaliana[J]. Development, 2012, 139(21):4072-4082.
[35] Yu S, Galvão VC, Zhang YC, Horrer D, Zhang TQ, Hao YH, et al. Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE transcription factors[J]. Plant Cell,2012, 24(8):3320-3332.
[36] D'Aloia M, Bonhomme D, Bouché F, Tamseddak K, Ormenese S, Torti S, et al. Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FTpara-logue TSF[J]. Plant J,2011, 65(6):972-979.
[37] Wang JW, Czech B, Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana[J]. Cell, 2009, 138(4):738-749.
[38] Bhogale S, Mahajan AS, Natarajan B, Rajabhoj M, Thulasiram HV, Banerjee AK. MicroRNA156:a potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosumssp. andigena[J]. Plant Physiol,2014, 164(2):1011-1027.
[39] Yu S, Lian H, Wang JW. Plant developmental transitions:the role of microRNAs and sugars[J]. Curr Opin Plant Biol, 2015, 27:1-7.
[40] Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, et al. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana[J]. Science, 2013, 339(6120):704-707.
[41] Mateos JL, Madrigal P, Tsuda K, Rawat V, Richter R, Romera-Branchat M, et al. Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in Arabidopsis[J]. Genome Biol, 2015, 16(1):31.
[42] Zhou CM, Zhang TQ, Wang X, Yu S, Lian H, Tang H, et al. Molecular basis of age-dependent vernalization in Cardamine flexuosa[J]. Science, 2013, 340(6136):1097-1100.
[43] Jung JH, Seo PJ, Ahn JH, Park CM. ArabidopsisRNA-binding protein FCA regulates microRNA172 processing in thermosensory flowering[J]. J Biol Chem, 2012, 287(19):16007-16016.
[44] Liu D, Hu R, Palla KJ, Tuskan GA, Yang X. Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research[J]. Curr Opin Plant Biol, 2016, 30:70-77.
计量
- 文章访问数: 2343
- HTML全文浏览量: 93
- PDF下载量: 2622