高级检索+

中国山杨遗传多样性及遗传结构分析

杜淑辉, 王兆山, 胡晓艳, 张建国

杜淑辉, 王兆山, 胡晓艳, 张建国. 中国山杨遗传多样性及遗传结构分析[J]. 植物科学学报, 2018, 36(2): 245-251. DOI: 10.11913/PSJ.2095-0837.2018.20245
引用本文: 杜淑辉, 王兆山, 胡晓艳, 张建国. 中国山杨遗传多样性及遗传结构分析[J]. 植物科学学报, 2018, 36(2): 245-251. DOI: 10.11913/PSJ.2095-0837.2018.20245
Du Shu-Hui, Wang Zhao-Shan, Hu Xiao-Yan, Zhang Jian-Guo. Nucleotide polymorphism and genetic structure of Populus davidiana Dode[J]. Plant Science Journal, 2018, 36(2): 245-251. DOI: 10.11913/PSJ.2095-0837.2018.20245
Citation: Du Shu-Hui, Wang Zhao-Shan, Hu Xiao-Yan, Zhang Jian-Guo. Nucleotide polymorphism and genetic structure of Populus davidiana Dode[J]. Plant Science Journal, 2018, 36(2): 245-251. DOI: 10.11913/PSJ.2095-0837.2018.20245
杜淑辉, 王兆山, 胡晓艳, 张建国. 中国山杨遗传多样性及遗传结构分析[J]. 植物科学学报, 2018, 36(2): 245-251. CSTR: 32231.14.PSJ.2095-0837.2018.20245
引用本文: 杜淑辉, 王兆山, 胡晓艳, 张建国. 中国山杨遗传多样性及遗传结构分析[J]. 植物科学学报, 2018, 36(2): 245-251. CSTR: 32231.14.PSJ.2095-0837.2018.20245
Du Shu-Hui, Wang Zhao-Shan, Hu Xiao-Yan, Zhang Jian-Guo. Nucleotide polymorphism and genetic structure of Populus davidiana Dode[J]. Plant Science Journal, 2018, 36(2): 245-251. CSTR: 32231.14.PSJ.2095-0837.2018.20245
Citation: Du Shu-Hui, Wang Zhao-Shan, Hu Xiao-Yan, Zhang Jian-Guo. Nucleotide polymorphism and genetic structure of Populus davidiana Dode[J]. Plant Science Journal, 2018, 36(2): 245-251. CSTR: 32231.14.PSJ.2095-0837.2018.20245

中国山杨遗传多样性及遗传结构分析

基金项目: 

国家自然科学基金项目(31470665);优秀博士来晋奖励项目(K271799061)。

详细信息
    作者简介:

    杜淑辉(1985-),男,博士,讲师,研究方向为林木系统发育及物种形成(E-mail:agas231@163.com)。

    通讯作者:

    张建国,E-mail:zhangjg@caf.ac.cn

  • 中图分类号: Q943.2

Nucleotide polymorphism and genetic structure of Populus davidiana Dode

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31470665) and Reward to Outstanding Doctor Working in Shanxi (K271799061).

  • 摘要: 利用6个单拷贝核基因标记,对中国山杨(Populus davidiana Dode)14个自然居群的遗传多样性和遗传分化水平进行了研究。结果表明,中国山杨表现出较高的遗传多样性水平,各居群间基因流(Nm)为0.66;居群内的变异占总变异的百分比(71.82%)大于居群间(28.18%)。Mantel test检验结果显示居群遗传距离和地理距离间没有相关性。失配分布检测显示中国山杨历史上曾经历过种群的扩张。复杂的种群历史动态、高度异交和较高的碱基突变速率是中国山杨遗传多样性水平较高的原因;而较强的花粉和种子扩散能力及中国山杨的连续分布可能是其居群间遗传分化较小的原因。
    Abstract: In this study, six single-copy nuclear gene markers were used to study the nucleotide polymorphisms and genetic structures of 14 natural populations of Populus davidiana Dode. Results showed that P. davidiana harbored high levels of nucleotide polymorphisms. The average gene flow (Nm) among populations was 0.66; the percentage of variation within the population (71.82%) was greater than that among populations (28.18%). The Mantel test illustrated that there was no correlation between geographical and genetic distances. Results of mismatch distribution demonstrated that P. davidiana experienced historical population expansion. The comprehensive population history, high outcrossing, and high rate of base mutations were the main factors contributing to the high level of nucleotide polymorphisms. The high dispersal of pollen and seeds as well as continuous distribution resulted in the relatively low genetic differentiation.
  • [1] 李开隆, 周光达, 杨传平, 刘桂丰, 邢亚娟. 中国山杨与美洲山杨杂交育种的研究[J]. 植物研究, 2004, 24(2):215-219.

    Li KL, Zhou GD, Yang CP, Liu GF, Xing YJ. Study on crossing breeding of Populus davidiana and P. tremuloides[J]. Bulletin of Botanical Research, 2004, 24(2):215-219.

    [2] 郭树平, 李春明. 中国山杨资源与发展现状[J]. 林业科技, 2012, 37(1):48-52.

    Guo SP, Li CM. Resources and development of Populus davidiana[J]. Forestry Science and Technology, 2012, 37(1):48-52.

    [3] 韩建军, 邢亚娟. 中美山杨杂种三倍体选育[J]. 东北林业大学学报, 2009, 37(7):13-15.

    Han JJ, Xing YJ. Cultivation of triploid variety of Populus davidiana×P. tremuloides[J]. Journal of Northeast Fores-try University, 2009, 37(7):13-15.

    [4] 刘培林. 山杨育种研究[M]. 哈尔滨:黑龙江省科学技术出版社, 1993.
    [5] 何承忠, 李佳蔓, 员涛, 纵丹, 周安佩, 等. 地理隔离对西南藏区山杨居群遗传结构影响的SRAP分析[J]. 林业科学研究, 2015, 28(2):152-157.

    He CZ, Li JM, Yuan T, Zong D, Zhou AP, et al. SRAP analysis on the effect of geographic isolation on population genetic structure of Populus davidiana in Tibetan-inhabited regions in Southwest China[J]. Forest Research, 2015, 28(2):152-157.

    [6] 张金然, 尚洁, 王秋玉. 山杨杂种无性系的SSR分子标记遗传多样性[J]. 植物研究, 2006, 26(4):447-451.

    Zhang JR, Shang J, Wang QY. Genetic diversity among the clones of aspen hybrid by simple sequence repeat DNA marker[J]. Bulletin of Botanical Research, 2006, 26(4):447-451.

    [7] 白卉. 山杨遗传多样性研究与核心种质构建及利用[D]. 哈尔滨:东北林业大学, 2010.
    [8]

    Harris A. The utility of single-copy nuclear genes for phylogenetic resolution of Acer and Dipteronia (Aceraceae, Sapindaceae)[J]. Ann Bot Fenn, 2017, 54:209-222.

    [9]

    Chen J, Zeng YF, Liao WJ, Yan PC, Zhang JG. A novel set of single-copy nuclear gene markers in white oak and implications for species delimitation[J]. Tree Genet Genomes, 2017, 13(2):50.

    [10]

    Du SH, Wang ZS, Ingvarsson PK, Wang DS, Wang JH, et al. Multilocus analysis of nucleotide variation and speciation in three closely related Populus (Salicaceae) species[J]. Mol Ecol, 2015, 24(19):4994-5005.

    [11]

    Du SH, Wang ZS, Zhang JG. A novel set of single-copy nuclear DNA markers for the genetic study of Salicaceae[J]. Genet Mol Res, 2014, 13(3):4911-4917.

    [12]

    Nei M. Molecular Evolutionary Genetics[M]. Columbia:Columbia University Express, 1987.

    [13]

    Nei M. Evolution of human races at the gene level[J]. Prog Cli Bio Res, 1982, 103:167-181.

    [14]

    Nei M, Li WH. Mathematical model of studying genetic variation in terms of restriction endonucleases[J]. P Nat Acad Sci USA, 1979, 76(10):5269-5273.

    [15]

    Watterson GA. On the number of segregating sites in genetical models without recombination[J]. Theor Popul Biol, 1975, 7(2):256-276.

    [16]

    Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism[J]. Genetics, 1989, 123(3):585-595.

    [17]

    Fu YX. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection[J]. Genetics, 1997, 147(2):915-925.

    [18]

    Moeller DA, Tenaillon MI, Tiffin P. Population structure and its effects on patterns of nucleotide polymorphism in teosinte (Zea mays ssp. parviglumis)[J]. Genetics, 2007, 176(3):1799-1809.

    [19]

    Hudson RR, Kreitman M, Aguadé M. A test of neutral molecular evolution based on nucleotide data[J]. Genetics, 1987, 116(1):153-159.

    [20]

    Pyhäjärvi T, Garcia MR, Knurr T, Mikkonen M, Wacho-wiak W, Savolainen O. Demographic history has influenced nucleotide diversity in European Pinus sylvestris populations[J]. Genetics, 2007, 177(3):1713-1724.

    [21]

    Heuertz M, De Paoli E, Kallman T, Larsson H, Jurman I, et al. Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce (Picea abies (L.) Karst)[J]. Genetics, 2006, 174(4):2095-2105.

    [22]

    Ramos-Onsins SE, Stranger BE, Mitchellolds T, Aguade M. Multilocus analysis of variation and speciation in the closely related species Arabidopsis halleri and A. lyrata[J]. Genetics, 2004, 166(1):373-388.

    [23]

    Ramos-Onsins SE, Puerma E, Balana-Alcaide D, Salguero D, Aguadé M. Multilocus analysis of variation using a large empirical data set:phenylpropanoid pathway genes in Arabidopsis thaliana[J]. Mol Ecol, 2008, 17(5):1211-1223.

    [24]

    Morrell PL, Lundy KE, Clegg MT. Distinct geographic patterns of genetic diversity are maintained in wild barley (Hordeum vulgare ssp. spontaneum) despite migration[J]. P Natl Acad Sci USA, 2003, 100(19):10812-10817.

    [25]

    Ismail M, Soolanayakanahally RY, Ingvarsson PK, Guy RD, Janssom S. Comparative nucleotide diversity across north American and European Populus species[J]. J Mol Evol, 2012, 74(5):257-272.

    [26]

    Difazio SP, Slavov GT, Joshi CP. Genetics Genomics and Breeding of Poplar[M]. New York:Science Publisher, 2011.

    [27]

    Breen AL, Gleen E, Yeager A, Olson MS. Nucleotide diversity among natural populations of a north American poplar (Populus balsamifera, Salicaceae)[J]. New Phytol, 2009, 182(3):763-773.

    [28]

    Olson MS, Robertson AL, Takebayashi N, Silim S, Sch-roeder WR, Tiffin P. Nucleotide diversity and linkage disequilibrium in balsam poplar (Populus balsamifera)[J]. New Phytol, 2010, 186(2):526-536.

    [29]

    Wright SI, Gaut BS. Molecular population genetics and the search for adaptive evolution in plants[J]. Mol Biol Evol, 2005, 22(3):506-519.

    [30]

    Charlesworth D. Effects of inbreeding on the genetic diversity of populations[J]. Philos T R Soc B:Bio Sci, 2003, 358(1434):1051-1070.

    [31]

    Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)[J]. Science, 2006, 313(5793):1596-1604.

    [32]

    Richardson JE, Pennington RT, Pennington TD,Hollingsworth PM. Rapid diversification of a species-rich genus of neotropical rain forest trees[J]. Science, 2001, 293(5538):2242-2245.

  • 期刊类型引用(4)

    1. 倪婉凝,惠楠,韦若冰,张建国,王兆山. 3种杨树HSFB1基因CDS遗传多样性和系统演化分析. 林业科学研究. 2024(06): 112-120 . 百度学术
    2. 赵丹丹,张建国,惠楠,陈为涛,王兆山. 中国山杨群体CDS遗传多样性格局与谱系地理分析. 林业科学研究. 2023(05): 12-20 . 百度学术
    3. 刘巍,蔄胜军,侯庚. 我国杨树种质资源研究进展. 辽宁林业科技. 2020(05): 47-52 . 百度学术
    4. 邓小红,姬拉拉,王健健. 施氮对镉胁迫下山杨幼苗叶片氮磷钾吸收及镉积累量的影响. 西北植物学报. 2020(11): 1932-1939 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  1039
  • HTML全文浏览量:  0
  • PDF下载量:  950
  • 被引次数: 5
出版历程
  • 收稿日期:  2017-09-24
  • 网络出版日期:  2022-10-31
  • 发布日期:  2018-04-27

目录

    /

    返回文章
    返回