高级检索+

小麦维生素E基因TaHGGT-7AL的克隆与表达分析

郭启平, 张珊, 刘媛媛, 田书军, 李春莲, 闻珊珊

郭启平, 张珊, 刘媛媛, 田书军, 李春莲, 闻珊珊. 小麦维生素E基因TaHGGT-7AL的克隆与表达分析[J]. 植物科学学报, 2019, 37(3): 374-381. DOI: 10.11913/PSJ.2095-0837.2019.30374
引用本文: 郭启平, 张珊, 刘媛媛, 田书军, 李春莲, 闻珊珊. 小麦维生素E基因TaHGGT-7AL的克隆与表达分析[J]. 植物科学学报, 2019, 37(3): 374-381. DOI: 10.11913/PSJ.2095-0837.2019.30374
Guo Qi-Ping, Zhang Shan, Liu Yuan-Yuan, Tian Shu-Jun, Li Chun-Lian, Wen Shan-Shan. Cloning and expression analysis of Triticum aestivum vitamin E gene TaHGGT-7AL[J]. Plant Science Journal, 2019, 37(3): 374-381. DOI: 10.11913/PSJ.2095-0837.2019.30374
Citation: Guo Qi-Ping, Zhang Shan, Liu Yuan-Yuan, Tian Shu-Jun, Li Chun-Lian, Wen Shan-Shan. Cloning and expression analysis of Triticum aestivum vitamin E gene TaHGGT-7AL[J]. Plant Science Journal, 2019, 37(3): 374-381. DOI: 10.11913/PSJ.2095-0837.2019.30374
郭启平, 张珊, 刘媛媛, 田书军, 李春莲, 闻珊珊. 小麦维生素E基因TaHGGT-7AL的克隆与表达分析[J]. 植物科学学报, 2019, 37(3): 374-381. CSTR: 32231.14.PSJ.2095-0837.2019.30374
引用本文: 郭启平, 张珊, 刘媛媛, 田书军, 李春莲, 闻珊珊. 小麦维生素E基因TaHGGT-7AL的克隆与表达分析[J]. 植物科学学报, 2019, 37(3): 374-381. CSTR: 32231.14.PSJ.2095-0837.2019.30374
Guo Qi-Ping, Zhang Shan, Liu Yuan-Yuan, Tian Shu-Jun, Li Chun-Lian, Wen Shan-Shan. Cloning and expression analysis of Triticum aestivum vitamin E gene TaHGGT-7AL[J]. Plant Science Journal, 2019, 37(3): 374-381. CSTR: 32231.14.PSJ.2095-0837.2019.30374
Citation: Guo Qi-Ping, Zhang Shan, Liu Yuan-Yuan, Tian Shu-Jun, Li Chun-Lian, Wen Shan-Shan. Cloning and expression analysis of Triticum aestivum vitamin E gene TaHGGT-7AL[J]. Plant Science Journal, 2019, 37(3): 374-381. CSTR: 32231.14.PSJ.2095-0837.2019.30374

小麦维生素E基因TaHGGT-7AL的克隆与表达分析

基金项目: 

旱区作物逆境生物学国家重点实验室小麦生物学基础研究项目。

详细信息
    作者简介:

    郭启平(1993-),男,硕士研究生,研究方向作物遗传改良与种质创新(E-mail:1453008625@qq.com)。

    通讯作者:

    李春莲,E-mail:lclian@163.nwsuaf.edu.cn

    闻珊珊,E-mail:sswen@nwsuaf.edu.cn

  • 中图分类号: Q943.2

Cloning and expression analysis of Triticum aestivum vitamin E gene TaHGGT-7AL

Funds: 

This work was supported by a grant from the State Key Laboratory of Crop Stress Biology for Arid Areas.

  • 摘要: 从小麦(Triticum aestivum L.)品种‘科农199’籽粒中克隆出维生素E基因TaHGGT-7AL及其另外两个拷贝,通过生物信息学分析,对其序列结构特征及蛋白序列的系统发育关系进行了初步研究。结果显示:TaHGGT-7AL基因编码区长1227 bp,共编码408个氨基酸;TaHGGT-7AL与另外两个拷贝的序列一致性为95.45%。TaHGGT-7AL蛋白序列具有9个α-螺旋,该序列与禾本科HGGT蛋白的同源性在58.7%~98.5%之间。3个TaHGGT基因分别位于小麦基因组的7AL、7BL和7DL染色体上,均具有与膜相关的UbiA异戊烯基转移酶家族的保守结构域和一个转运肽。系统进化分析结果表明,TaHGGT-7AL与禾本科植物的亲缘关系较近。qRT-PCR分析结果显示,TaHGGT-7AL只在小麦颖壳和籽粒中表达,且在花后13 d籽粒的表达量最高。在ABA、4℃低温、干旱及黑暗胁迫处理下,TaHGGT-7AL表达量上调;NaCl处理24 h后,该基因表达量升高,表明TaHGGT-7AL可以对非生物胁迫产生响应。
    Abstract: The vitamin E gene TaHGGT-7AL and two other copies were cloned from Triticum aestivum L. variety ‘Kenong 199’and the sequence structure and phylogenetic relationship of the protein sequence were analyzed by bioinformatics. Results showed that the coding region of the TaHGGT-7AL gene was 1227 bp in length, encoding a total of 408 amino acids; the sequence identity of TaHGGT-7AL with the two other copies was 95.45%. The TaHGGT-7AL protein sequence had nine α-helices and showed the sequence homology with grass HGGT protein of between 58.7% and 98.5%. The three TaHGGT genes were located on the 7AL, 7BL, and 7DL chromosomes of the genome, each having a conserved domain of the UbiA prenyltransferase family associated with the membrane and a transit peptide. Phylogenetic analysis showed that TaHGGT-7AL was closely related to gramineous plants. The qRT-PCR analysis results showed that TaHGGT-7AL was only expressed in T.aestivum hulls and grains, and the highest expression was observed 13 d after flowering. Under ABA, low temperature (4℃), drought, and dark stress treatments, the expression of TaHGGT-7AL was up-regulated compared with the control; after 24h of NaCl treatment, the expression increased, indicating that TaHGGT-7AL responds to abiotic stress.
  • [1]

    Mène-Saffrané L. Vitamin E biosynthesis and its regulation in plants[J]. Antioxidants, 2017, 7(1):2.

    [2]

    Kim YH, Lee YY, Kim YH, Choi MS, Jeong KH, et al. Antioxidant activity and inhibition of lipid peroxidation in germinating seeds of transgenic soybean expressing OsHGGT[J]. J Agric Food Chem, 2011, 59(2):584-591.

    [3]

    Matringe M, Ksas B, Rey P, Havaux M. Tocotrienols, the unsaturated forms of vitamin E, can function as antioxi-dants and lipid protectors in tobacco leaves[J]. Plant Physiol, 2008, 147(2):764-778.

    [4]

    Hunter SC, Cahoon EB. Enhancing vitamin E in oilseeds:unraveling tocopherol and tocotrienol biosynthesis[J]. Lipids, 2007, 42(2):97-108.

    [5]

    Horvath G, Wessjohann L, Bigirimana J, Jansen M, Guisez Y, et al. Differential distribution of tocopherols and tocotrienols in photosynthetic and non-photosynthetic tissues[J]. Phytochem Lett, 2006, 67(12):1185-1195.

    [6] 张桂云. 水稻维生素E、C代谢调控研究[D]. 扬州:扬州大学, 2012.
    [7]

    Brenchley R, Spannagl M, Pfeifer M, Barker GL, D'Amore R, et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing[J]. Nature, 2012, 491(7426):705-710.

    [8]

    Gutierrez-Gonzalez JJ, Garvin DF. Subgenome-specific assembly of vitamin E biosynthesis genes and expression patterns during seed development provide insight into the evolution of oat genome[J]. Plant Biotechnol J, 2016, 14(11):2147-2157.

    [9]

    Hiroyuki T, Yukinori Y, Masahiro T, Noriaki T, Shigeru S, et al. Generation of transgenic tobacco plants with enhanced tocotrienol levels through the ectopic expression of rice homogentisate geranylgeranyl transferase[J]. Plant Biotechnol, 2015, 32(3):233-238.

    [10]

    Cahoon EB, Hall SE, Ripp KG, Ganzke TS, Hitz WD, et al. Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content[J]. Nat Biotechnol, 2003, 21(9):1082-1087.

    [11]

    Chen J, Liu C, Shi B, Chai Y, Han N, et al. Overexpression of HvHGGT enhances tocotrienol levels and antioxidant activity in barley[J]. J Agric Food Chem, 2017, 65(25):5181-5187.

    [12]

    Kong SL, Abdullah SNA, Chai LH. Molecular cloning, gene expression profiling and in silico sequence analysis of vitamin E biosynthetic genes from the oil palm[J]. Plant Gene, 2016, 5(C):100-108.

    [13] 谈晶晶. 小麦转基因技术优化的探索[D]. 扬州:扬州大学, 2018.
    [14] 田文, 郭启平, 李梓彰, 张珊, 闻珊珊, 等. 普通小麦DREB基因家族的全基因组鉴定及热胁迫下的表达模式分析[J]. 麦类作物学报, 2018, 38(10):1146-1156.

    Tian W, Guo QP, Li ZZ, Zhang S, Wen SS, et al. Genome-wide identification and expression analysis under heat stress of the DREB transcription factor family in bread wheat (Triticum aestivum L.)[J]. Journal of Triticeae Crops, 2018, 38(10):1146-1156.

    [15] 刘燕, 赵毅, 吕千, 张丽, 李立群, 等. 小麦TaHTAS-5A基因的克隆、表达分析及亚细胞定位[J]. 麦类作物学报, 2018, 38(10):1137-1145.

    Liu Y, Zhao Y, Lü Q, Zhang L, Li LQ, et al. Cloning, expression analysis and subcellular localization ofTaHTAS-5A gene from wheat (Triticum aestivum)[J]. Journal of Triticeae Crops, 2018, 38(10):1137-1145.

    [16]

    Yang W, Cahoon RE, Hunter SC, Zhang C, Han J, et al. Vitamin E biosynthesis:functional characterization of the monocot homogentisate geranylgeranyl transferase[J]. Plant J, 2011, 65(2):206-217.

    [17] 贾会丽, 王学敏, 高洪文, 董洁, 王运琦, 等. 紫花苜蓿γ-生育酚甲基转移酶(γ-TMT)基因的克隆与逆境下的表达分析[J]. 草业学报, 2012, 21(6):198-206.

    Jia HL, Wang XM, Gao HW, Dong J, Wang YQ, et al. Cloning of γ-tocopherol methyltransferase (γ-TMT) gene from alfalfa and its expression analysis under stress[J]. Journal of Grass Industry, 2012, 21(6):198-206.

    [18]

    Mène-Saffrané L, Pellaud S. Current strategies for vitamin E biofortification of crops[J]. Curr Opin Biotechnol, 2017, 44:189-197.

    [19]

    Li Y, Zhou Y, Wang Z, Xiao FS, Ke XT, et al. Engineering tocopherol biosynthetic pathway in Arabidopsis, leaves and its effect on antioxidant metabolism[J]. Plant Sci, 2010, 178(3):312-320.

    [20]

    Abbasi AR, Hajirezaei M, Hofius D, Daniel H, Uwe S, Lars MV, et al. Specific Roles of -and tocopherol in abiotic stress responses of transgenic tobacco[J]. Plant Physiol, 2007, 143(4):1720-1738.

    [21]

    Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, Tsimilli-Michael M, et al. Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress:Physiological and chlorophyll a fluorescence measurements[J]. BBA-Bioenergetics, 2010, 1797(8):1428-1438.

    [22]

    Zhang C, Cahoon RE, Hunter SC, Chen M, Han J, et al. Genetic and biochemical basis for alternative routes of tocotrienol biosynthesis for enhanced vitamin E antioxidant production[J]. Plant J, 2013, 73(4):628-639.

    [23]

    Suzuki YJ, Tsuchiya M, Wassall SR, Choo YM, Govil G, et al. Structural and dynamic membrane properties of alpha-tocopherol and alpha-tocotrienol:Implication to the molecular mechanism of their antioxidant potency[J]. Biochemistry, 1993, 32(40):10692-10699.

    [24]

    Chen D, Li Y, Fang T, Shi X, Chen X, et al. Specific roles of tocopherols and tocotrienols in seed longevity and germination tolerance to abiotic stress in transgenic rice[J]. Plant Sci, 2015, 244:31-39.

  • 期刊类型引用(1)

    1. 张玉玲,杜爽爽,田书军,闻珊珊. 小麦TaWRKYⅢ-A37和TaWRKYⅡc-D2基因的克隆与表达分析. 西北植物学报. 2020(06): 927-936 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  877
  • HTML全文浏览量:  1
  • PDF下载量:  444
  • 被引次数: 2
出版历程
  • 收稿日期:  2018-12-02
  • 修回日期:  2019-01-10
  • 网络出版日期:  2022-10-31
  • 发布日期:  2019-06-27

目录

    /

    返回文章
    返回