高级检索+

臭柏天然居群遗传多样性及演变历史分析

路东晔, 张国盛, 李娅翔, 郭文雨, 张玉琨, 于利峰, 呼斯楞, 敖民, 王爱君

路东晔, 张国盛, 李娅翔, 郭文雨, 张玉琨, 于利峰, 呼斯楞, 敖民, 王爱君. 臭柏天然居群遗传多样性及演变历史分析[J]. 植物科学学报, 2020, 38(2): 151-161. DOI: 10.11913/PSJ.2095-0837.2020.20151
引用本文: 路东晔, 张国盛, 李娅翔, 郭文雨, 张玉琨, 于利峰, 呼斯楞, 敖民, 王爱君. 臭柏天然居群遗传多样性及演变历史分析[J]. 植物科学学报, 2020, 38(2): 151-161. DOI: 10.11913/PSJ.2095-0837.2020.20151
Lu Dong-Ye, Zhang Guo-Sheng, Li Ya-Xiang, Guo Wen-Yu, Zhang Yu-Kun, Yu Li-Feng, Hu Si-Leng, Ao Ming, Wang Ai-Jun. Genetic diversity and evolutionary history analysis of natural populations of Juniperus sabina L.[J]. Plant Science Journal, 2020, 38(2): 151-161. DOI: 10.11913/PSJ.2095-0837.2020.20151
Citation: Lu Dong-Ye, Zhang Guo-Sheng, Li Ya-Xiang, Guo Wen-Yu, Zhang Yu-Kun, Yu Li-Feng, Hu Si-Leng, Ao Ming, Wang Ai-Jun. Genetic diversity and evolutionary history analysis of natural populations of Juniperus sabina L.[J]. Plant Science Journal, 2020, 38(2): 151-161. DOI: 10.11913/PSJ.2095-0837.2020.20151

臭柏天然居群遗传多样性及演变历史分析

基金项目: 

国家自然科学基金项目(31460204)。

详细信息
    作者简介:

    路东晔(1992-),女,博士研究生,研究方向为林木种质资源评价与遗传改良(E-mail:ludongye123@163.com)。

    通讯作者:

    张国盛,E-mail:zgsemail@163.com

  • 中图分类号: Q346

Genetic diversity and evolutionary history analysis of natural populations of Juniperus sabina L.

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (31460204).

  • 摘要: 为了合理有效地保育天然臭柏(Juniperus sabina L.)种质资源,追溯和阐释其分布格局的历史成因,本文对我国内蒙古自治区、陕西省、甘肃省和青海省共10个天然臭柏居群388个个体的核糖体内转录间隔区(ITS)序列片段进行测序分析。结果显示:臭柏ITS序列总长度为1089 bp,共含有25个变异位点,定义32个单倍型,其中H4和H6单倍型为共有单倍型;分子变异分析(AMOVA)显示,臭柏居群变异主要来源于居群内,遗传变异为95.04%,而居群间遗传变异仅4.96%,居群间差异水平极显著(FST=0.0496,P<0.001);Network单倍型网络分析表明,H4和H6为古老单倍型,其他单倍型是由他们衍生而来;遗传分化系数NST(0.072)< GST(0.105),表明臭柏居群不存在明显的谱系地理结构,且历史上未经历过明显的扩张过程;单倍型最大简约树将32个单倍型聚为两大支;Mantel检验结果表明,臭柏居群间的遗传距离与地理距离无显著相关性(R2=0.0649,P>0.05)。推测臭柏起源于第三纪中新世(Miocene)中期约12.38 Mya,在第四纪冰期可能存在多个小型避难所。沙埋产生不定根的扩繁能力和较好的有性更新环境可能是沙地居群遗传多样性高于山地居群的决定性因素。
    Abstract: To conserve the natural germplasm resources of Juniperus sabina L. reasonably and effectively, the historical origin of the distribution pattern was traced and explained. In this paper, ribosomal DNA internal transcribed spacer (ITS) sequences of 388 individuals from 10 natural J. sabina populations in the Inner Mongolia Autonomous Region, Shaanxi, Gansu, and Qinghai Province of China were sequenced and analyzed. Results showed that the total length of the ITS sequence was 1089 bp, which contained 25 mutation sites and defined 32 haplotypes, including shared haplotypes H4 and H6. Based on molecular variation analysis (AMOVA), J. sabina exhibited mainly within-population variation, accounting for 95.04%, with only 4.96% of variation among populations. Differences between populations were significant (FST=0.0496, P<0.001). Haplotype network analysis showed that H4 and H6 were ancient haplotypes, from which other haplotypes were derived. The genetic differentiation coefficient NST (0.072) was less than GST (0.105), indicating that there was no obvious pedigree geographic structure in the J. sabina populations, and they had not experienced a significant expansion process in history. The maximum parsimony (MP) tree showed all haplotypes were divided into two clusters. Mantel test indicated that there was no significant correlation between genetic distance and geographic distance (R2=0.0649,P>0.05). It is speculated that J. sabina originated about 12.38 Mya in the Middle Miocene of the Tertiary, with possibly many small refuges of J. sabina in the Quaternary glacial period. Sand burial, which has a better ability to produce adventitious roots, and sexual regeneration environments may be the decisive factors for the higher genetic diversity of sandy land populations than that of mountain populations.
  • [1] 李云章, 温国胜, 李春和. 毛乌素沙地臭柏变异类型的研究[J]. 内蒙古林学院学报, 1998, 20(3):10-15.

    Li YZ, Wen GS, Li CH. Studies on vaciable types of Sabina vulgaris in Mao Wu Su desert[J]. Journal of Inner Mongolia Forestry College, 1998, 20(3):10-15.

    [2] 徐任生, 范芝芸, 沙也夫·木沙德林, 吴剑飞, 巴杭·扎卡尔亚. 叉子圆柏种子中的化学成分[J]. 植物学报, 1991, 33(8):589-592.

    Xu RX, Fan ZY, Sayef M, Wu JF, Bahang Z. Chemical constituents of the seeds of Sabina vulgaris Antoine[J]. Acta Botanica sinica, 1991, 33(8):589-592.

    [3] 红雨, 王林和, 张国盛, 恩和巴雅尔, 梁小荣. 不同演替阶段臭柏种群的遗传多样性[J]. 应用生态学报, 2006, 17(11):2006-2010.

    Hong Y, Wang LH, Zhang GS, Enhe B, Liang XR. Genetic diversity of Sabina vulgaris populations at different succession stages[J]. Chinese Journal of Applied Ecology, 2006, 17(11):2006-2010.

    [4] 杜湜, 郝蕾, 王颖, 张国盛, 乌兰娜日, 吴伟, 等. 基于叶绿体DNA片段序列的臭柏种群遗传结构分析[J]. 分子植物育种, 2018, 16(1):317-322.

    Du S, Hao L, Wang Y, Zhang GS, Wulannari, Wu W, et al. Genetic structure analysis of Juniperus sabina L. population based on chloroplast DNA fragment sequence[J]. Molecular Plant Breeding, 2018, 16(1):317-322.

    [5]

    Geng QF, Qing H, Ling ZR, Jeelani N, Yang J, Yoshikawa K, et al. Characterization of polymorphic microsatellite markers for a coniferous shrub, Juniperus sabina (Cupressaceae)[J]. Plant Spec Biol, 2016, 32:252-255.

    [6] 牛宪立, 姬可平, 吴群, 吕国庆. rDNA ITS区序列分子标记技术在植物学研究中的应用[J]. 生物信息学, 2009, 7(4):268-271.

    Niu XL, Ji KP, Wu Q, Ji GQ. rDNA ITS sequence molecular marker technology in the study of botany[J]. China Journal of Bioinformatics, 2009, 7(4):268-271.

    [7]

    Baldwin BG, Sanderson MJ, Porter JM, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ. The its region of nuclear ribosomal DNA:a valuable source of evidence on angiosperm phylogeny[J]. Ann Mo Bot Grad, 1995, 82(2):247-277.

    [8] 王浩, 黄智林, 陈涛, 张静, 王燕, 陈清. 基于ITS序列的中国樱桃、欧洲甜樱桃和毛樱桃种内遗传多样性及种间关系分析[J]. 园艺学报, 2018, 45(1):126-138.

    Wang H, Huang ZL, Chen T, Zhang J, Wang Y, Chen Q. Genetic diversity and relationship analysis among Cerasus pseudocerasus, C. avium, and C. tomentosa based on internal transcribed spacer (ITS) sequences[J]. Acta Horticulturae Sinica, 2018, 45(1):126-138.

    [9] 王谈笑, 郑伟, 陈菁, 王炜, 徐晓丹. 基于ITS序列分析钩苞大丁草九个居群的亲缘关系[J]. 广西植物, 2017, 37(3):329-334.

    Wang TX, Zheng W, Chen J, Wang W, Xu XD. Genetic relationship analysis of Gerbera delavayi from nine populations based on ITS sequences[J]. Guihaia, 2018, 37(3):329-334.

    [10] 李学营, 彭建营, 白瑞霞. 基于核rDNA的ITS序列在种子植物系统发育研究中的应用[J]. 西北植物学报, 2005, 25(4):829-834.

    Li XY, Peng JY, Bai RX. Use of ITS sequences based on nuclear rDNA for phylogenetic research of seed plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(4):829-834.

    [11]

    Guo YP, Zhang R, Chen C, Zhou DW, Liu JQ. Allopatric divergence and regional range expansion of Juniperus sabina in China[J]. J Syst Evol, 2010, 48(3):153-160.

    [12]

    Little DP, Schwarzbach AE, Hsieh ACF. The circumscription and phylogenetic relationships of Callitropsis and the newly described genus Xanthocyparis (Cupressaceae)[J]. Am J Bot, 2004, 91(11):1872-1881.

    [13]

    Hall TA. BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT[J]. Nucleic Acs Sym Ser, 1999, 41:95-98.

    [14]

    Librado P, Rozas J. DnaSP v5:a software for comprehensive analysis of DNA polymorphism data[J]. Bioinforma-tics, 2009, 25(11):1451-1452.

    [15]

    Pons O, Petit RJ. Measuring and testing genetic differen-tiation with ordered versus unordered alleles[J]. Gene-tics, 1996, 144(3):1237-1245.

    [16]

    Excoffier L, Lischer HEL. Arlequin suite ver 3.5:a new series of programs to perform population genetics analyses under Linux and Windows[J]. Mol Ecol Resour, 2010, 10(3):564-567.

    [17]

    Excoffier L. Analysis of molecular variance inferred from metric distances among DNA haplotypes:application to human mitochondrial DNA restriction data[J]. Genetics, 1992, 131(2):479-491.

    [18]

    Bandelt HJ, Forster P, Röhl A. Median-joining net-works for inferring intraspecific phylogenies[J]. Mol Biol Evol, 1999, 16(1):37-48.

    [19]

    Swafford DL, Swofford DL, Swofford D. PAUP:Phylogenetic Analysis Using Parsimony (and other methods) 4.0 beta[M]. Sunderland, MA:Sinauer Associates, 2002.

    [20]

    Posada D, Buckley TR. Model selection and model averaging in phylogenetics:advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests[J]. Syst Biol, 2004, 53(5):793-808.

    [21]

    Drummond AJ, Suchard MA, Xie D, Rambaut A. Baye-sian phylogenetics with BEAUti and the BEAST 1.7[J]. Syst Biol, 2012, 29(8):1969-1973.

    [22]

    Axelrod DI. The Early Miocene Buffalo Canyon Flora of Western Nevada[M]. California:University of California, Geological Sciences, 1991, 135:1-76.

    [23]

    Rambaut A. FigTree v1.4. Molecular Evolution, Phylogenetics and Epidemiology[M]. Edinburgh, UK:University of Edinburgh, Institute of Evolutionary Biology, 2012.

    [24]

    Mantel N. The detection of disease clustering and a gene-ralized regression approach[J]. Appl Microbiol Biot, 2002, 59(2):377-381.

    [25]

    Abbott RJ. Molecular analysis of plant migration and refugia in the Arctic[J]. Science, 2000, 289(5483):1343-1346.

    [26]

    Miao Y, Herrmann M, Wu F, Yan XL, Yang SL. What controlled Mid-Late Miocene long-term aridification in Central Asia?-Global cooling or Tibetan Plateau uplift:a review[J]. Earth-Sci Rev, 2012, 112(3-4):155-172.

    [27]

    Zhang ML, Sanderson SC, Sun YX, Byalt VV, Hao XL. Tertiary montane origin of the central Asian flora, evidence inferred from cpDNA sequences of Atraphaxis (Polygonaceae)[J]. J Integr Plant Biol, 2014, 56(12):1125-1135.

    [28]

    Meng HH, Gao XY, Huang JF, Meng H, Gao X, Huang J, Zhang M. Plant phylogeography in arid Northwest China:Retrospectives and perspectives[J]. J Syst Evol, 2015, 53(1):33-46.

    [29]

    Petit RJ, Csaikl UM, Bordács S, Burg K, Coart E, Cottrell J, et al. Chloroplast DNA variation in European white oaks phylogeography and patterns of diversity based on data from over 2600 populations[J]. Forest Ecol Manag, 2002, 156:5-26.

    [30]

    Fu YX, Li WH. Coalescing into 21st century:an overview and prospects of Caolescent Theory[J]. Theroet Papul Biol, 1999, 56:1-10.

    [31]

    Tokuoka M, Yu Z, Wang LH. A few observations on the distribution of Sabina vulgaris at Mt. Qi Lian and Mt. He Lan in China[J]. J Jap Soc Reveget Tech, 1996, 21(4):223-228.

    [32]

    Meng LH, Yang R, Abbott RJ, Miehe G, Hu TH, Liu JQ. Mitochondrial and chloroplast phylogeography of Picea crassifolia Kom. (Pinaceae) in the Qinghai-Tibetan Pla-teau and adjacent highlands[J]. Mol Ecol, 2007, 16(19):4128-4137.

    [33]

    Terrab A, Schönswetter P, Talavera S, Vela E, Stuessy TF. Range-wide phylogeography of Juniperus thurifera L., a presumptive keystone species of western Mediterranean vegetation during cold stages of the Pleistocene[J]. Mol Phylogenet Evol, 2008, 48(1):94-102.

    [34]

    Juan A, Fay MF, Pastor J, Juan R, Fernández I, Crespo MB. Genetic structure and phylogeography in Juniperus oxycedrus subsp. macrocarpa around the Mediterranean and Atlantic coasts of the Iberian Peninsula, based on AFLP and plastid markers[J]. Eur J Forest Res, 2012, 131(3):845-856.

    [35] 王若楠, 白吉庆, 王玛丽, 阎晓昊, 董鹏斌, 王宁. 中国特有森林树种华山松的群体进化历史研究[J]. 西北植物学报, 2019, 39(1):47-51.

    Wang RN, Bai JQ, Wang ML, Yan XH, Dong PB, Wang N. Evolutionary history of an endemic confer tree Pinus armandii in China[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(1):42-51.

    [36] 王林和, 张国盛, 隋明杰, 刘美珍. 毛乌素沙地臭柏不定根发生特性的研究[J]. 林业科学, 2002, 38(5):156-159.

    Wang LH, Zhang GS, Sui MJ, Liu MZ. Study on sprouting of adventitious roots of Sabina vulgaris in Mu Us sandy land[J]. Scientia Silvae Sinicae, 2002, 38(5):156-159.

    [37] 王永胜, 党宏忠, 王林和, 张国盛, 李清雪. 中国天然臭柏生长特征地理差异的初步分析[J]. 干旱区资源与环境, 2014, 28(11):98-102.

    Wang YS, Dang HZ, Wang LH, Zhang GS, Li QX. Preli-minary analysis on the geographical differences of growth characteristics of Juniperus sabina Ant. in China[J]. Journal of Arid Land Resources and Environment, 2014, 28(11):98-102.

    [38]

    Markwith SH, Parker KC. Conservation of Hymenocallis coronaria genetic diversity in the presence of disturbance and a disjunct distribution[J]. Conserv Genet, 2007, 8(4):949-963.

    [39]

    Moriguchi Y, Kang KS, Lee KY, Lee SW, Kim YY. Genetic variation of Picea jezoensis populations in South Korea revealed by chloroplast, mitochondrial and nuclear DNA markers[J]. J Plant Res, 2009, 122(2):153-160.

  • 期刊类型引用(2)

    1. 穆怀志,王清玉,张玥,吕松瞳,靳旭红,张骁,夏富才. 基于叶片和果实性状的糠椴天然居群表型变异及多样性分析. 植物研究. 2023(06): 826-834 . 百度学术
    2. 王爱君,路东晔,张国盛,黄海广,王颖,呼斯楞,敖民. 基于MaxEnt模拟欧亚大陆气候变化下叉子圆柏的潜在分布. 林业科学. 2021(08): 43-55 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  672
  • HTML全文浏览量:  0
  • PDF下载量:  1472
  • 被引次数: 4
出版历程
  • 收稿日期:  2019-07-16
  • 修回日期:  2019-08-26
  • 网络出版日期:  2022-10-31
  • 发布日期:  2020-04-27

目录

    /

    返回文章
    返回