高级检索+

阴地蕨属药用植物matK基因编码区全序列测定及编码产物研究

熊哲铭, 余明珠, 杨星星, 胡超逸, 徐波, 胡志刚, 张翀, 森林, 彭圆

熊哲铭, 余明珠, 杨星星, 胡超逸, 徐波, 胡志刚, 张翀, 森林, 彭圆. 阴地蕨属药用植物matK基因编码区全序列测定及编码产物研究[J]. 植物科学学报, 2020, 38(2): 233-240. DOI: 10.11913/PSJ.2095-0837.2020.20233
引用本文: 熊哲铭, 余明珠, 杨星星, 胡超逸, 徐波, 胡志刚, 张翀, 森林, 彭圆. 阴地蕨属药用植物matK基因编码区全序列测定及编码产物研究[J]. 植物科学学报, 2020, 38(2): 233-240. DOI: 10.11913/PSJ.2095-0837.2020.20233
Xiong Zhe-Ming, Yu Ming-Zhu, Yang Xing-Xing, Hu Chao-Yi, Xu Bo, Hu Zhi-Gang, Zhang Chong, Sen Lin, Peng Yuan. Study on full-length coding sequence of matK gene and its coding protein from medicinal Botrychium[J]. Plant Science Journal, 2020, 38(2): 233-240. DOI: 10.11913/PSJ.2095-0837.2020.20233
Citation: Xiong Zhe-Ming, Yu Ming-Zhu, Yang Xing-Xing, Hu Chao-Yi, Xu Bo, Hu Zhi-Gang, Zhang Chong, Sen Lin, Peng Yuan. Study on full-length coding sequence of matK gene and its coding protein from medicinal Botrychium[J]. Plant Science Journal, 2020, 38(2): 233-240. DOI: 10.11913/PSJ.2095-0837.2020.20233

阴地蕨属药用植物matK基因编码区全序列测定及编码产物研究

基金项目: 

国家自然科学基金项目(81574037,31500260);湖北中医药大学“青苗计划”项目(2016ZZX015)。

详细信息
    作者简介:

    熊哲铭(1995-),男,硕士研究生,研究方向为中药资源及品质(E-mail:xiongzheming_hbtcm@126.com)。

    通讯作者:

    森林,E-mail:senlin_hbtcm@126.com

    彭圆,E-mail:happypyy05@126.com

  • 中图分类号: Q943.2

Study on full-length coding sequence of matK gene and its coding protein from medicinal Botrychium

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (81574037, 31500260) and Youth Talent Project of Hubei University of Chinese Medicine (2016ZZX015).

  • 摘要: 以阴地蕨属(Botrychium)5种药用植物的matK基因为对象,分析matK基因编码区全序列和其编码产物MATK蛋白的氨基酸序列特征,并比较他们在用于阴地蕨属药用植物系统发育关系研究中的差异。结果显示,阴地蕨属5种植物matK基因全长为1500~1503 bp,共有153个变异位点,其编码产物均为不稳定的亲水性蛋白,无跨膜结构,二级结构以α-螺旋和无规则卷曲为主。系统发育分析结果表明,基于matK基因序列的系统发育分析更适合于阴地蕨属种间亲缘关系的鉴定,说明matK基因在阴地蕨属植物的鉴定中具有一定的应用价值。
    Abstract: The matK gene plays an important role as the only group Ⅱ intros maturase in the chloroplast. We carried out bioinformatics analysis of the matK gene from five species of Botrychium. We then discussed the differences in matK gene sequences and MATK protein amino acid sequences in phylogenetic development of Botrychium. Results showed that the full length of the matK gene of the five species ranged from 1500-1503 bp, with 153 variation sites. The encoding products were all unstable hydrophilic proteins without a transmembrane structure, and the secondary structures were mainly alpha helices and random coils. Phylogenetic results showed that the phylogenetic tree constructed from the matK gene sequence was suitable for the identification of species of Botrychium. This study enriches current molecular information on matK in Botrychium and establishes the application value of matK in the identification of Botrychium.
  • [1] 秦仁昌. 中国植物志:第2卷[M]. 北京:科学出版社, 1959.
    [2] 魏蒙. 两种现代分析技术在生药研究领域中的应用[D]. 武汉:湖北中医药大学, 2017.
    [3] 国家中药管理局中华本草编委会. 中华本草:第2卷[M]. 上海:上海科学技术出版社, 1999.
    [4]

    Huang P, Xin WX, Zheng XW, Luo F, Li QL, Lü GY. Screening of Sceptridium ternatum for antitussive and antiasthmatic activity and associated mechanisms[J]. J Int Med Res, 2017, 45(6):1985-2000.

    [5]

    Warashina T, Umehara K, Miyase T. Flavonoid glycosides from Botrychium ternatum[J]. Chem Pharm Bull, 2012, 60(12):1561-1573.

    [6]

    Zhao XY, Li JY, Liu YQ, Wu DT, Cai PF, Pan YJ. Structural characterization and immunomodulatory activity of a water soluble polysaccharide isolated from Botrychium ternatum[J]. Carbohyd Polym, 2017, 171:136-142.

    [7]

    Vogel J, Hübschmann T, Börner T, Hess WR. Splicing and intron-internal RNA editing of trnK-matK transcripts in barley plastids:support for MatK as an essential splice factor[J]. J Mol Biol, 1997, 270(2):179-187.

    [8]

    Hausner G, Olson R, Simon D, Johnson I, Sanders ER, et al. Origin and evolution of the chloroplast trnK (matK) intron:a model for evolution of groupⅡ intron RNA structures[J]. Mol Biol Evol, 2006, 23(2):380-391.

    [9]

    Johnson LA, Soltis DE. Phylogenetic inference in Saxifragaceae sensu Stricto and Gilia (Polemoniaceae) using matK sequences[J]. Ann Mo Bot Gard, 1995, 82(2):149-175.

    [10]

    Li FW, Kuo LY, Rothfels CJ, Ebihara A, Chiou WL, et al. rbcL and matK earn two thumbs up as the core DNA barcode for ferns[J]. PLoS One, 2011, 6(10):e26597.

    [11]

    Müller KF, Borsch T, Hilu KW. Phylogenetic utility of rapidly evolving DNA at high taxonomical levels:contrasting matK, trnT-F, and rbcL in basal angiosperms[J]. Mol Phylogenet Evol, 2006, 41(1):99-117.

    [12]

    Kuo LY, Li FW, Chiou WL, Wang CN. First insights into fern matK phylogeny[J]. Mol Phylogenet Evol, 2011, 59(3):556-566.

    [13]

    Hirao T, Watanabe A, Kurita M, Kondo T, Takata K. A frameshift mutation of the chloroplast matK coding region is associated with chlorophyll deficiency in the Cryptomeria japonica virescent mutant Wogon-Sugi[J]. Curr Genet, 2009, 55(3):311-321.

    [14]

    Barthet MM, Moukarzel K, Smith KN, Patel J, Hilu KW. Alternative translation initiation codons for the plastid maturase MatK:unraveling the pseudogene misconception in the Orchidaceae[J]. BMC Evol Biol, 2015, 15(1):210.

    [15]

    Qu YJ, Legen J, Arndt J, Henkel S, Hoppe G, et al. Ectopic transplastomic expression of a synthetic matK gene leads to cotyledon-specific leaf variegation[J]. Front Plant Sci, 2018, 9:1453.

    [16] 熊哲铭, 高一波, 任慧莹, 徐波, 吴思婉, 等. 40种蕨类植物matK基因的系统分类及分子进化研究[J]. 植物科学学报, 2020, 38(1):10-22.

    Xiong ZM, Gao YB, Ren HY, Xu B, Wu SW, et al. Analysis on the phylogenetic classification and molecular evolution of gene matK in 40 fern species[J]. Plant Science Journal, 2020, 38(1):10-22.

    [17]

    Adiyaman R, McGuffin LJ. Methods for the refinement of protein structure 3D models[J]. Int J Mol Sci, 2019, 20(9):2301.

    [18] 齐小琼, 葛亚飞, 李大卫. 水蕨血红蛋白基因的分子克隆和序列分析[J]. 广西植物, 2016, 36(2):216-223.

    Qi XQ, Ge YF, Li DW. Molecular clone and sequence analysis of hemoglobin gene in Ceratopteris thalictroides[J]. Guihaia, 2016, 36(2):216-223.

    [19] 刘利娟, 刘裕峰, 杨帅, 刘应高. 川西云杉几丁质酶基因PlCHI的克隆、表达与生物信息学分析[J]. 植物科学学报, 2019, 37(4):503-512.

    Liu LJ, Liu YF, Yang S, Liu YG. Cloning, expression, and bioinformatics analysis of the chitinase gene PlCHI in Picea likiangensis var. balfouriana[J]. Plant Science Journal, 2019, 37(4):503-512.

    [20] 陈静, 李纯, 肖逸凡, 孙春玉, 王艳芳, 等. 人参质体ATP/ADP转运蛋白基因 PgAATP1的克隆及表达分析[J]. 中草药, 2019, 50(18):4411-4418.

    Chen J, Li C, Xiao YF, Sun CY, Wang YF, et al. Cloning and expression analysis of ATP/ADP transporter protein gene PgAATP1 in Panax ginseng[J]. Chinese Traditional and Herbal Drugs, 2019, 50(18):4411-4418.

    [21] 李艳, 江玉梅, 鲁顺保, 彭九生, 朱笃. 突托腊梅ISSR引物反应条件的优化与筛选[J]. 植物科学学报, 2008, 26(3):245-250.

    Li Y, Jiang YM, Lu SB, Peng JS, Zhu D. Optimization of experiment conditions and primer screening with ISSR markers for Chimonanthus grammatus[J]. Plant Science Journal, 2008, 26(3):245-250.

    [22]

    Kumar S, Stecher G, Tamura K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7):1870-1874.

    [23]

    Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2:more models, new heuristics and parallel computing[J]. Nat Methods, 2012, 9(8):772.

    [24]

    Santorum JM, Darriba D, Taboada GL, Posada D. jmo-deltest.org:selection of nucleotide substitution models on the cloud[J]. Bioinformatics, 2014, 30(9):1310-1311.

    [25]

    PPG I. A community-derived classification for extant lycophytes and ferns[J]. J Syst Evol, 2016, 54(6):563-603.

  • 期刊类型引用(2)

    1. 曾宇灵,朱明玉,李伟,刘义飞,张景景,雷笛,森林. 阴地蕨属药用植物光合作用关键酶RuBisCO的核质协同进化研究. 世界科学技术-中医药现代化. 2025(01): 84-97 . 百度学术
    2. 袁莉霞,王芙蓉,刘姝,孙妍,楼天灵. 乌药matK基因的生物信息学及多样性分析. 湖北农业科学. 2022(06): 157-160 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  713
  • HTML全文浏览量:  1
  • PDF下载量:  659
  • 被引次数: 3
出版历程
  • 收稿日期:  2019-11-03
  • 修回日期:  2019-11-20
  • 网络出版日期:  2022-10-31
  • 发布日期:  2020-04-27

目录

    /

    返回文章
    返回