Study on chloroplast ultrastructure, photosynthetic pigments, and chlorophyll fluorescence characteristics of leaf color mutants in Dendrobium officinale Kimura et Migo
-
摘要: 以铁皮石斛(Dendrobium officinale Kimura et Migo)(‘TP35’)经自然突变的白绿杂色突变体(‘TP-MA’)和太空诱变的绿黄杂色突变体(‘TP-MG’)为材料,研究不同光照强度(0、50、100 μmol·m-2·s-1)处理后,植株叶片的叶绿体超微结构、光合色素含量以及叶绿素荧光动力学参数的变化规律,并阐明叶色突变体与正常植株光合特性的差异。结果显示,‘TP-MA’和‘TP-MG’的叶绿体形态均发生了一定程度的缺失,且叶绿体分布不均匀、无规则,基粒片层结构不完整且排列疏松,基本与其表型性状相一致。‘TP-MA’光合色素的含量和叶绿素荧光参数Fv/Fm、ΦPSⅡ及Fv'/Fm'等显著低于‘TP35’,但非光化学淬灭系数(NPQ和qP)则相对较高;‘TP-MG’的光合色素含量及叶绿素荧光参数均低于‘TP35’,但差异不显著,且对较强的光照(100 μmol·m-2·s-1)条件具有一定的适应性。研究结果表明不同光强处理后,铁皮石斛叶色突变体的叶绿体结构和光合生理指标均发生了不同程度的变化,且对植株的叶绿素含量及荧光参数产生一定影响,过低和过高的光照强度均不利于植株的正常生长。
-
关键词:
- 叶色突变体 /
- 超微结构 /
- 光合色素 /
- 叶绿素荧光动力学参数
Abstract: The naturally mutated white-green chimera mutant (‘TP-MA’) and space-mutated green-yellow chimera mutant ('TP-MG’) of Dendrobium officinale (‘TP35’) were used as research materials. We investigated changes in chloroplast ultrastructure, photosynthetic pigment content, and chlorophyll fluorescence kinetic parameters of leaves after treatment with different light intensities (0, 50, 100 μmol·m-2·s-1), and clarified the differences in photo-synthetic characteristics between leaf color mutants and normal plants. Results showed that the chloroplast morphology of ‘TP-MA’ and ‘TP-MG’ both had a certain degree of deletion. The chloroplasts were unevenly distributed and irregular, and the basal layer structure was incomplete and loosely arranged, which was basically consistent with phenotypic traits. The photosynthetic pigment content and chlorophyll fluorescence parameters Fv/Fm, ΦPSⅡ and Fv'/Fm' of ‘TP-MA’ were significantly lower than those of ‘TP35’, but the chlorophyll quenching coefficients (NPQ and qP) were relatively higher. The photosynthetic pigment content and chlorophyll fluorescence parameters of ‘TP-MG’ were lower than those of ‘TP35’, but the differences were not significant, and it exhibited a certain adaptability to strong illumination (100 μmol·m-2·s-1). Thus, results showed that under different light intensities, the chloroplast structure and photosynthetic physiological indices of the D. officinale mutants changed to varying degrees and had certain effects on the chlorophyll content and fluorescence parameters of the plants. Too low or too high light intensity was not conducive to the normal growth of the plants. -
-
[1] 曹璐, 于旭东, 蔡泽坪, 吴繁花, 罗佳佳, 等. 植物叶色白化的研究进展[J]. 分子植物育种, 2019, 17(16):5390-5397. Cao L, Yu XD, Cai ZP, Wu FH, Luo JJ, et al. Research progress of plant leaf albino[J]. Molecular Plant Bree-ding, 2019, 17(16):5390-5397.
[2] 董遵, 刘敬阳, 马红梅, 许才康, 孙华, 等. 甘蓝型油菜黄化(苗)突变体的叶绿素含量及超微结构[J]. 中国油料作物学报, 2000, 22(3):27-29. Dong Z, Liu JY, Ma HM, Xu CK, Sun H, et al. Chlorophyll contents and chloroplast ultrastructure of chlorophyll deficient mutant in B. napus[J]. Chinese Journal of Oil Crop Sciences, 2000, 22(3):27-29.
[3] 李素芳, 陈树尧, 成浩. 茶树阶段性返白现象的研究叶绿体超微结构的变化[J]. 茶叶科学, 1995, 15(1):23-26. Li SF, Chen SY, Cheng H. Study on the staged whitening of tea plants-changes of chloroplast ultrastructure[J]. Journal of Tea Science, 1995, 15(1):23-26.
[4] 吴殿星, 舒庆尧. 60Co-γ射线诱发水稻温度调控叶色白化突变基因表达突变系[J]. 中国农业科学, 1997, 30(3):95-96. Wu DX, Shu QY. 60Co gamma-ray induced temperature-regulatory leaf color albino mutated gene expression mutant line in rice(Oryza sativa L.)[J]. Scientia Agricultura Sinica, 1997, 30(3):95-96.
[5] 郭鸿亮. 玉簪(Hosta plantaginea Aschers)叶色变化相关蛋白质分析[D]. 哈尔滨:哈尔滨师范大学, 2011. [6] 马华升, 姚艳玲, 忻雅, 陈文岳, 童建新, 等. 大花惠兰组培苗中叶色突变体的获得与DNA鉴定[J]. 浙江农业学报, 2008, 20(3):149-153. Ma HS, Yao YL, Xin Y, Chen WY, Tong JX, et al. Gain and DNA identification of leaf color mutant derived from tissue culture of Cymbidium hyhridum[J]. Acta Agriculturae Zhejiangensis, 2008, 20(3):149-153.
[7] 蒋彧, 陶炼, 何俊蓉. 兰属春剑叶艺突变体叶片结构的研究[J]. 植物科学学报, 2018, 36(1):112-118. Jiang Y, Tao L, He JR. Structure of leaf variegation in Cymbidium tortisepalum Fukuy. var. longibracteatum[J]. Plant Science Journal, 2018, 36(1):112-118.
[8] 田韦韦, 王彩霞, 田敏, 欧阳彤, 张莹. 文心兰浅绿条纹突变体的生理生化及叶绿素荧光特性研究[J]. 西北植物学报, 2015, 35(10):2012-2017. Tian WW, Wang CX, Tian M, Ouyang T, Zhang Y. Physio-logical, biochemical and chlorophyll fluorescence cha-racters of light green stripe mutant in Oncidium[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(10):2012-2017.
[9] 沈伟其. 测定水稻叶片叶绿素含量的混合液提取法[J]. 植物生理学通讯, 1988, 26(3):62-64. Shen WQ. Extraction of mixed solution for determination of chlorophyll content in rice leaf blade[J]. Plant Physiology Communication, 1988, 26(3):62-64.
[10] Lichtenthaler HK. Chlorophylls and carotenoids:pigments of photosynthetic membranes[M]//Douce R, Packer L, eds. Methods in Enzymology. New York:Academic Press Inc, 1987.
[11] Genty B, Briantais JM, Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. BBA-Gen Subjects, 1989, 990:87-92.
[12] Roháček K, Barták M. Technique of the modulated chlorophyll fluorescence:basic concepts, useful parameters, and some applications[J]. Photosynthetica, 1999, 37:339-363.
[13] 赵会杰, 邹琦, 于振文. 叶绿素荧光分析技术及其在植物光合机理研究中的应用[J]. 河南农业大学学报, 2000, 34(3):248-251. Zhao HJ, Zou Q, Yu ZW. Chlorophyll fluorescence analysis technique and its application to photosynthesis of plant[J]. Journal of Henan Agricultural University, 2000, 34(3):248-251.
[14] Peterson RB, Havir EA. The multiphasic nature of nonphotochemical quenching:implications for assessment of photosynthetic electron transport based on chlorophyll fluorescence[J]. Photosynth Res, 2004, 82:95-107.
[15] Massacci A, Lannelli MA, Pietrini F, Loreto F. The effect of growth at low temperature on photosynthetic characte-ristics and mechanisms of photoprotection of maize leaves[J]. J Exp Bot, 1995, 46(282):119-127.
[16] Zhang T, Li JF, Ma F. Study on the photosynthetic cha-racteristics of a Pyropia haitanensis red mutant cultured under different light intensities[J]. J Appl Phycol, 2016, 28(2):1245-1253.
[17] 周祥胜. 一个水稻黄叶突变体的光合、遗传和农学特性研究[D]. 杭州:浙江大学, 2006. [18] 林钰琼, 刘松, 傅亚萍, 于永红, 胡国成, 等. T-DNA插入水稻突变体库的叶绿素和净光合速率变化[J]. 中国水稻科学, 2003, 17(4):80-83. Lin YQ, Liu S, Fu YP, Yu YH, Hu GC, et al. Chlorophyll contents and net photosynthetic rates of T-DNA inserted rice mutant population[J]. Chinese Rice Science, 2003, 17(4):80-83.
[19] 赖艳, 付秋实, 吕建春, 周梦迪, 何茂, 等. 一个新的薄皮甜瓜叶色突变体的生理特性及超微结构分析[J]. 四川农业大学学报, 2018, 36(3):372-379. Lai Y, Fu QS, Lü JC, Zhou MD, He M, et al. Analysis of physiological characteristics and chloroplast ultrastructure of a new leaf color mutant in melon[J]. Journal of Sichuan Agricultural University, 2018, 36(3):372-379.
[20] Zhao HB, Guo HJ, Zhao LS. Agronomic traits and photosynthetic characteristics of chlorophyll-deficient wheat mutant induced by spaceflight environment[J]. Acta Agronomica Sinica, 2011, 37(1):119-126.
[21] 张敏, 钱猛, 倪竞德, 黄利斌. 乌桕秋叶转色前后生理特性及超微结构的变化[J]. 东北林业大学学报, 2012, 40(1):20-24. Zhang M, Qian M, Ni JD, Huang LM. Changes in physiological index and chloroplast ultrastructure in fall foliage of Sapium sebiferum before and after leaf color change[J]. Journal of Northeast Forestry University, 2012, 40(1):20-24.
[22] 赵旺兔, 彭冶, 丁雨龙. 榉树叶片解剖构造和叶肉细胞超微结构的观察[J]. 植物资源与环境学报, 2003, 12(2):52-57. Zhao WT, Peng Z, Ding YL. Observation of anatomy structure of leaf and ultrastructure of mesophyll cell of Zelkova schneideriana[J]. Journal of Plant Resources and Environment, 2003, 12(2):52-57.
[23] 童哲. 光质和除草剂norflurazon对欧洲赤松子叶质体色素形成的影响[J]. 植物学报, 1985, 27(1):57-62. Tong Z. Effects of light quality and norflurazon on the formation of plastid pigments in cotyledons of Pinus sylvestris[J]. Journal of Integrative Plant Biology, 1985, 27(1):57-62.
[24] 杨小苗, 吴新亮, 刘玉凤, 李天来, 齐明芳. 一个番茄EMS叶色黄化突变体的叶绿素含量及光合作用[J]. 应用生态学报, 2018, 29(6):1983-1989. Yang XM, Wu XL, Liu YF, Li TL, Qi MF. Analysis of chlorophyll and photosynthesis of a tomato chlorophyll-deficient mutant induced by EMS[J]. Chinese Journal of Applied Ecology, 2018, 29(6):1983-1989.
[25] 王建华, 任士福, 史宝胜, 刘炳响, 周玉丽. 遮荫对连翘光合特性和叶绿素荧光参数的影响[J]. 生态学报, 2011, 31(7):1811-1817. Wang JH, Ren SF, Shi BS, Liu BX, Zhou YL. Effects of shades on the photosynthetic characteristics and chlorophyll fluorescence parameters of Forsythia suspensa[J]. Acta Ecologica Sinica, 2011, 31(7):1811-1817.
[26] Strasser RJ, Srivastava A, Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetic samples[M]//Yunus M, Pathre U, Mohanty P, eds. Probing Photosynthesis:Mechanism, Regulation and Adaptation. London:Taylor and Francis, 2000.
[27] 胡亮亮, 赵子瑶, 张海强, 陈菲帆, 张朝文, 等. 一个新的黄瓜叶色突变体的光合特性分析[J]. 西北农业学报, 2018, 27(11):1622-1628. Hu LL, Zhao ZY, Zhang HQ, Chen FF, Zhang CW, et al. Photosynthetic characteristics analysis of color mutant in cucumber[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2018, 27(11):1622-1628.
[28] Allakhverdiev SI. Systematic analysis of the relation of electron transport and ATP synthesis to the photodamage and repair of photosystemⅡ in Synechocystis[J]. Plant Physiol, 2005, 137:263-273.
[29] Ou LJ, Chen Z, Dai XJ, Deng LX, Qiu YL, et al. Photosynthetic characteristics of a new yellow-green mutant with high photosynthetic rate in rice (Oryza sativa L.)[J]. Photosynthetica, 2008, 46(3):395-399.
[30] Zhao Q, Tang QQ, Kuang TY. Photosynthetic characteristics of an albino mutant (zb/zb) in maize[J]. Acta Bot Sin, 1997, 39:1082-1084.
[31] Heuvelink E, Bakker MJ, Hogendonk L. Horticultural ligh-ting in the Netherlands:new development[J]. Acta Horticulture, 2006, 711:25-33.
[32] Gómez C, Mitchell CA. Supplemental lighting for greenhouse-grown tomatoes:Intracanopy Led Towers vs. overhead HPS lamps[J]. Acta Hortic, 2014, 1037(1037):855-862.
[33] Govindjee. Sixty-there years since Ksutsy:chlorophyll a fluorescence[J]. Aust J Plant Physiol, 1995, 22:131-160.
[34] Foyer C, Furbank R, Harbinson J, Horton P. The mechanisms contributing to photosynthetic control of electron transport by carbon assimlation in leaves[J]. Photosynth Res, 1990, 25(2):83-100.
[35] 苏文华, 张光飞. 铁皮石斛叶片光合作用的碳代谢途径[J]. 植物生态学报, 2003, 27(5):631-637. Su WH, Zhang GF. The photosynthesis pathways in lea-ves of Dendrobium officinale[J]. Journal of Plant Ecology, 2003, 27(5):631-637.
-
期刊类型引用(5)
1. 陈聪,李逸心,朱桂才. ‘黄金水蜡’不同叶色叶片的生理生化与超微结构研究. 青岛农业大学学报(自然科学版). 2024(01): 9-16+38 . 百度学术
2. 宋振兴,王淑安,王鹏,李素梅,杨如同,李亚. 紫薇突变体gl1和野生型叶片解剖结构及叶绿素荧光参数比较. 植物资源与环境学报. 2023(06): 87-89 . 百度学术
3. 孟畅,赵杨,杨菊,王秀荣,刘堡森,张幸福. 光质对皂荚幼苗生长发育、光合特性及相关生理指标的影响. 植物生理学报. 2022(10): 1961-1972 . 百度学术
4. 许基磊,汪兴中,范吉标. 盐胁迫诱导野大豆生理和光合作用的变化. 植物科学学报. 2022(06): 829-838 . 本站查看
5. 钟淮钦,林榕燕,吴建设,林兵,叶秀仙. 杂交兰‘紫妍氏’叶艺性状的生理生化与细胞结构分析. 西北植物学报. 2021(07): 1165-1174 . 百度学术
其他类型引用(17)
计量
- 文章访问数: 834
- HTML全文浏览量: 4
- PDF下载量: 561
- 被引次数: 22