高级检索+

胞外三磷酸腺苷通过一氧化氮调节镉诱导的氧化压力和细胞死亡

石珍珍, 达梦婷, 庞海龙, 贾凌云, 孙坤, 冯汉青

石珍珍, 达梦婷, 庞海龙, 贾凌云, 孙坤, 冯汉青. 胞外三磷酸腺苷通过一氧化氮调节镉诱导的氧化压力和细胞死亡[J]. 植物科学学报, 2020, 38(2): 269-277. DOI: 10.11913/PSJ.2095-0837.2020.20269
引用本文: 石珍珍, 达梦婷, 庞海龙, 贾凌云, 孙坤, 冯汉青. 胞外三磷酸腺苷通过一氧化氮调节镉诱导的氧化压力和细胞死亡[J]. 植物科学学报, 2020, 38(2): 269-277. DOI: 10.11913/PSJ.2095-0837.2020.20269
Shi Zhen-Zhen, Da Meng-Ting, Pang Hai-Long, Jia Ling-Yun, Sun Kun, Feng Han-Qing. Extracellular adenosine 5'-triphosphate mediates oxidative stress and cell death under cadmium stress by nitric oxide[J]. Plant Science Journal, 2020, 38(2): 269-277. DOI: 10.11913/PSJ.2095-0837.2020.20269
Citation: Shi Zhen-Zhen, Da Meng-Ting, Pang Hai-Long, Jia Ling-Yun, Sun Kun, Feng Han-Qing. Extracellular adenosine 5'-triphosphate mediates oxidative stress and cell death under cadmium stress by nitric oxide[J]. Plant Science Journal, 2020, 38(2): 269-277. DOI: 10.11913/PSJ.2095-0837.2020.20269

胞外三磷酸腺苷通过一氧化氮调节镉诱导的氧化压力和细胞死亡

基金项目: 

国家自然科学基金项目(31870246,31260059);甘肃省高等学校科研项目(2015A-007);甘肃省重点研发计划(18YF1NA051);甘肃省高校基本科研业务费;西北师范大学青年创新团队项目。

详细信息
    作者简介:

    石珍珍(1994-),女,硕士研究生,研究方向为植物生理生态学(E-mail:1097565854@qq.com)。

    通讯作者:

    冯汉青,E-mail:fenghanq@nwnu.edu.cn

  • 中图分类号: Q945.78

Extracellular adenosine 5'-triphosphate mediates oxidative stress and cell death under cadmium stress by nitric oxide

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31870246, 31260059), University Scientific Research Project of Gansu Province (2015A-007), Key Research and Development Project of Gansu Province (18YF1NA051), Fundamental Research Funds for the Gansu Universities of Gansu Provincial Department of Finance, and Youth Innovation Team of Northwest Normal University.

  • 摘要: 采用液体悬浮培养方法,研究胞外三磷酸腺苷(ATP)通过一氧化碳(NO)调节镉诱导对烟草(Nicotiana tabacum L.)悬浮细胞氧化压力和死亡水平的影响。结果显示,镉离子(Cd2+)可以以剂量依赖的模式引起烟草悬浮细胞氧化压力和死亡水平的上升,而施加外源ATP可有效缓解Cd2+诱导的氧化压力和细胞死亡。进一步研究发现,和外源ATP的缓解作用相似,NO的供体硝普钠(SNP)同样可以缓解Cd2+诱导的氧化压力和细胞死亡水平的上升;且NO合成抑制剂(L-NAME)可部分解除外源ATP的缓解作用。研究结果表明外源ATP可通过NO调节镉诱导的氧化压力和细胞死亡。
    Abstract: Cadmium (Cd) is one of the most bio-toxic heavy metals. Extracellular adenosine 5'-triphosphate (ex ATP) is an important signaling molecule involved in regulating physio-logical processes in cells. This study showed that Cd ions (Cd2+) increased oxidative stress and death level of Nicotiana tabacum L. suspension cells in a concentration-dependent manner. Conversely, application of exogenous ATP effectively alleviated the increase in Cd2+-induced oxidative stress and cell death. Furthermore, similar to the above-mentioned mitigation effects of exogenous ATP, SNP (a nitric oxide donor) also alleviated the increase in Cd2+-induced oxidative stress and cell death levels. Moreover, NO synthesis inhibitor (L-NAME) partially relieved the alleviating effects of exogenous ATP. These results indicate that ex ATP regulates Cd-induced oxidative stress and cell death by NO.
  • [1] 丁竹红, 尹大强, 胡忻, 吴熙, 陈良燕. 矿区附近农田土壤中重金属和矿质元素浸提研究[J]. 农业环境科学学报, 2008, 27(5):1774-1778.

    Ding ZH, Yin DQ, Hu X, Wu X, Chen LY. Extraction of heavy metals and mineral elements in agricultural soils around mine area using biodegradable and non-biodegradable chelators[J]. Journal of Agro-Environment Science, 2008, 27(5):1774-1778.

    [2] 常艳丽. 含镉废水处理技术研究进展[J]. 净水技术, 2013, 32(3):1-4.

    Chang YL. Advances in research of technological processes of cadmium-containing wastewater treatment[J]. Water Purification Technology, 2013, 32(3):1-4.

    [3]

    Kalinovic JV, Serbula SM, Radojevic AA, Milosavljevic JS, Kalinovic TS, Steharnik MM. Assessment of As, Cd, Cu, Fe, Pb, and Zn concentrations in soil and parts of Rosa spp. sampled in extremely polluted environment[J]. Environ Monit Assess, 2018, 191(1):15.

    [4] 刘海军, 陈源泉, 隋鹏, 高旺盛, 姜莉, 等. 马唐与玉米间作对镉的富集效果研究初探[J]. 中国农学通报, 2009, 25(15):206-210.

    Liu HJ, Chen YQ, Sui P, Gao WS, Jiang L, et al. The uptake and accumulation effect of Cd in the intercropping system between with maize and crabgrass[J]. Chinese Agricultural Science Bulletin, 2009, 25(15):206-210.

    [5] 茹淑华, 苏德纯, 王激清. 土壤镉污染特征及污染土壤的植物修复技术机理[J]. 中国生态农业学报, 2006, 14(4):29-33.

    Ru SH, Su DC, Wang JQ. Characteristics of Cd pollution in soil and the mechanisms of phytoremediation for soil contamination[J]. China Journal of Eco-Agriculture, 2006, 14(4):29-33.

    [6]

    Joe L, Chendil D. A review of molecular events of cad-mium-induced carcinogenesis[J]. J Environ Pathol Toxicol Oncol, 2014, 33(3):183-194.

    [7] 尚忠林. eATP——植物细胞外的信使分子[J]. 植物生理学通讯, 2007, 43(4):623-629.

    Shang ZL. eATP-an extracellular signal molecule in plants[J]. Plant Physiology Communications, 2007, 43(4):623-629.

    [8] 汪震东. eATP在拟南芥抗逆过程中的作用[D]. 石家庄:河北师范大学, 2009.
    [9]

    Khakh BS, Burnstock G. The double life of ATP[J]. Sci Am, 2009, 301(6):84-92.

    [10]

    Chivasa S, Ndimba BK, Simon WJ, Lindsey K, Slabas AR. Extracellular ATP functions as an endogenous external metabolite regulating plant cell viability[J]. Plant Cell, 2005, 17(11):3019-3034.

    [11]

    Chivasa S, Murphy AM, Hamilton JM, Lindsey K, Carr JP, Slabas AR. Extracellular ATP is a regulator of pathogen defence in plants[J]. Plant J, 2009, 60(11):436-448.

    [12]

    Foresi NP, Laxalt AM, Tonón CV, Casalongué CA, Lamattina L. Extracellular ATP induces nitric oxide production in tomato cell suspensions[J]. Plant Physiol, 2007, 145(3):589-592.

    [13]

    Dichmann S, Idzko M, Zimpfer U, Hofmann C, Ferrari D, et al. Adenosine triphosphate-induced oxygen radical production and CD11b up-regulation:Ca2+ mobilization and actin reorganization in human eosinophils[J]. Blood, 2000, 95(3):973-978.

    [14]

    Demidchik V, Shang Z, Shin R, Thompson E, Rubio L, et al. Plant extracellular ATP signalling by plasma membrane NADPH oxidase and Ca2+ channels[J]. Plant J, 2009, 58(6):903-913.

    [15]

    Song CJ, Steinebrunner I, Wang X, Stout SC, Roux SJ. Extracellular ATP induces the accumulation of superoxide via NADPH oxidases in Arabidopsis[J]. Plant Physiol, 2006, 140(4):1222-1232.

    [16]

    Choi J, Tanaka K, Cao Y, Qi Y, Qiu J, et al. Identification of a plant receptor for extracellular ATP[J]. Science, 2014, 343(6168):290-294.

    [17]

    Bräuchler C, Ngoc LH. Aspidistra renatae (Ruscaceae), a new species from central Vietnam[J]. Blumea, 2005, 50(3):527-529.

    [18]

    Palmer RMJ, Ferrige AG, Moncada SA. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor[J]. Nature, 1987, 327(6122):524-526.

    [19]

    Schmidt HHHW, Walter U. NO at work[J]. Cell, 1994, 78(6):919-925.

    [20]

    Besson-Bard A, Pugin A, Wendehenne D. New insights into nitric oxide signaling in plants[J]. Annu Rev Plant Biol, 2008, 59(1):21-39.

    [21]

    Fröhlich A, Durner J. The hunt for plant nitric oxide synthase (NOS):is one really needed?[J]. Plant Sci, 2011, 181(4):401-404.

    [22]

    Corpas FJ, Barroso JB, Carreras A, Valderrama R, Palma JM, et al. Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development[J]. Planta, 2006, 224(2):246-254.

    [23] 刘建新, 王金成, 王瑞娟, 贾海燕. 一氧化氮对裸燕麦耐盐性的增强效应[J]. 生态学杂志, 2015, 34(4):991-996.

    Liu JX, Wang JC, Wang RJ, Jia HY. Enhanced effects of exogenous nitric oxide on salt tolerance of Avena nuda L. seedlings[J]. Chinese Journal of Ecology, 2015, 34(4):991-996.

    [24]

    Francisco C, Juan B. Functions of nitric oxide (NO) in roots during development and under adverse stress conditions[J]. Plants, 2015, 4(2):240-252.

    [25]

    Correa-Aragunde N, Graziano M, Lamattina L. Nitric oxide plays a central role in determining lateral root deve-lopment in tomato[J]. Planta, 2004, 218(6):900-905.

    [26]

    Sanz L, Albertos P, Mateos I, Sánchez-Vicente I, Lechón T, et al. Nitric oxide (NO) and phytohormones crosstalk during early plant development[J]. J Exp Bot, 2015, 66(10):2857-2868.

    [27]

    Ulker P, Özen N, Abdullayeva G, Köksoy S, Yara N, Basrali F. Extracellular ATP activates eNOS and increases intracellular NO generation in red blood cells[J]. Clin Hemorheol Microcirc, 2018, 68(1):89-101.

    [28]

    Poliandri AH, Machiavelli LI, Quinteros AF, Cabilla JP, Duvilanski BH. Nitric oxide protects the mitochondria of anterior pituitary cells and prevents cadmium-induced cell death by reducing oxidative stress[J]. Free Radic Biol Med, 2006, 40(4):679-688.

    [29]

    Singh HP, Batish DR, Kaur G, Arora K, Kohli RK. Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots[J]. Environ Exp Bot, 2008, 63(1-3):158-167.

    [30]

    Murashige T, Skoog F. A revised medium for rapid growth and bioassay with tobacco tissue culture[J]. Physiol Plantarum, 2010, 15(3):473-497.

    [31]

    Nagata T, Okada K, Takebe I, Matsui C. Delivery of tobacco mosaic virus RNA into plant protoplasts mediated by reverse-phase evaporation vesicles (Liposomes)[J]. Mol Gen Genet, 1981, 184(2):161-165.

    [32]

    Kawai M, Uchimiya H. Coleoptile senescence in rice (Oryza sativa L.)[J]. Ann Bot-London, 2000, 86(2):405-414.

    [33]

    Yang SW, Kim SK, Kim WT. Perturbation of NgTRF1 expression induces apoptosis-like cell death in tobacco BY-2 cells and implicates NgTRF1 in the control of telomere length and stability[J]. Plant Cell, 2004, 16(12):3370-3385.

    [34]

    Smeets K, Opdenakker K, Remans T, van Sanden S, van Belleghem F, et al. Oxidative stress-related responses at transcriptional and enzymatic levels after exposure to Cd or Cu in a multipollution context[J]. J Plant Physiol, 2009, 166(18):1982-1992.

    [35]

    Luo H, Li H, Zhang X, Fu J. Antioxidant responses and gene expression in perennial ryegrass (Lolium perenne L.) under cadmium stress[J]. Ecotoxicology, 2011, 20(4):770-778.

    [36]

    Dat J, Vandenabeele S, Vranová E, van Montagu M, Inzé D, van Breusegem F. Dual action of the active oxygen species during plant stress responses[J]. Cell Mol Life Sci, 2000, 57(5):779-795.

    [37]

    Gechev TS, Hille J. Hydrogen peroxide as a signal controlling plant programmed cell death[J]. J Cell Biol, 2005, 168(1):17-20.

    [38]

    Gechev TS, van Breusegem F, Stone JM, Denev I, Laloi C. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death[J]. Bioessays, 2006, 28(11):1091-1101.

    [39]

    Van Breusegem F, Dat JF. Reactive oxygen species in plant cell death[J]. Plant Physiol, 2006, 141(2):384-390.

    [40]

    Marcec MJ, Gilroy S, Poovaiah BW, Tanaka K. Mutual interplay of Ca2+ and ROS signaling in plant immune response[J]. Plant Sci, 2019, 283:343-354.

    [41]

    Chivasa S, Ndimba BK, Simon WJ, Lindsey K, Slabas AR. Extracellular ATP functions as an endogenous external metabolite regulating plant cell viability[J]. Plant Cell, 2005, 17(11):3019-3034.

    [42]

    Chivasa S, Murphy AM, Hamilton JM, Lindsey K, Carr JP, Slabas AR. Extracellular ATP is a regulator of pathogen defence in plants[J]. Plant J, 2009, 60(11):436-448.

    [43]

    Chivasa S, Simon W, Murphy AM, Lindsey K, Carr JP, Slabas AR. The effects of extracellular adenosine 5'-triphosphate on the tobacco proteome[J]. Proteomics, 2010, 10(2):235-244.

    [44]

    Sun J, Zhang CL, Deng SR, Lu CF, Shen X, et al. An ATP signalling pathway in plant cells:extracellular ATP triggers programmed cell death in Populus euphratica[J]. Plant Cell Environ, 2012a, 35(5):893-916.

    [45]

    Ramachandran SR, Kumar S, Tanaka K. Quantification of extracellular ATP in plant suspension cell cultures[J]. Methods Mol Biol, 2019, 1991:43-54.

    [46]

    Sun J, Zhang C, Zhang X, Deng S, Zhao R, et al. Extracellular ATP signaling and homeostasis in plant cells[J]. Plant Signal Behav, 2012, 7(5):566-569.

    [47] 冯汉青, 白晶月, 管冬冬, 贾凌云, 孙坤. 细胞外ATP通过刺激NADPH氧化酶缓解水杨酸诱导的细胞死亡[J]. 植物生理学报, 2014, 50(11):1639-1644.

    Feng HQ, Bai JY, Guan DD, Jia LY, Sun K. Extracellular ATP alleviates the salicylic acid-induced cell death by stimulating NADPH oxidase[J]. Plant Physiology Journal, 2014, 50(11):1639-1644.

  • 期刊类型引用(5)

    1. 崔庆,吴春燕,宋述尧,王雪科,王状,姜雨欣,刘希元,张晓明. 外源NO缓解黄瓜幼苗低温伤害的效果. 江苏农业科学. 2022(06): 116-119 . 百度学术
    2. 刘钊,雷阳,王生武,吴越莉,张旭. 外源NO对铅胁迫下萝卜种子萌发及幼苗生理特性的影响. 安徽农业科学. 2021(08): 57-60+65 . 百度学术
    3. 雷阳,刘钊,王生武,白扬,魏晔. 外源NO对铝胁迫下萝卜种子萌发及幼苗生理特性的影响. 种子. 2021(08): 100-105 . 百度学术
    4. 杨玉花,白志元,张瑞军,卫保国. 外源NO对镉胁迫下大豆幼苗生理特性的影响. 山西农业科学. 2020(09): 1406-1410 . 百度学术
    5. 雷阳,刘钊,王生武,吴越莉,张旭. 外源NO对镉胁迫下萝卜种子萌发及幼苗生理特性的影响. 山西农业科学. 2020(11): 1746-1750 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  626
  • HTML全文浏览量:  0
  • PDF下载量:  488
  • 被引次数: 7
出版历程
  • 收稿日期:  2019-07-30
  • 修回日期:  2019-09-27
  • 网络出版日期:  2022-10-31
  • 发布日期:  2020-04-27

目录

    /

    返回文章
    返回