Research progress on NAC transcription factor family in Oryza sativa L.
-
摘要: NAC转录因子家族是一类重要的转录调控因子,在植物中普遍存在。在水稻(Oryza sativa L.)生命历程中,NAC家族参与其细胞生长、组织发育、器官衰老等过程,且在应对外界环境刺激的响应过程中起重要作用。本研究介绍了水稻NAC转录因子家族的结构特点,并综述了水稻NAC转录因子家族参与调控植物生长发育的过程,以及在低温、高盐、病原菌等逆境胁迫中的作用与功能,并对水稻NAC家族今后的研究方向进行了展望。Abstract: The NAC transcription factor family is an important class of transcriptional regulatory factors and is found ubiquitously in plants. In rice (Oryza sativa L.), the NAC gene family is involved in cell growth, tissue development, organ aging, and adventitious stress responses, and plays an important role in responding to external environmental stimuli. In this paper, we introduce the structural characteristics of the O. sativa NAC transcription factor family and its involvement in regulating plant growth and development. We also discuss the involvement of NAC genes in defensive responses to cold, salt, and pathogenic bacterial stress. Future research directions are analyzed and considered. Overall, this paper provides theoretical guidance and reference for relevant future study.
-
Keywords:
- Oryza sativa /
- NAC transcription factor /
- Stress resistance /
- Gene expression
-
-
[1] Hussey SG, Saïdi MN, Hefer CA, Myburg AA, Grima-Pettenati J. Structural, evolutionary and functional analysis of the NAC domain protein family in Eucalyptus[J]. New Phytol, 2015, 206(4):1337-1350.
[2] 唐宽刚, 任美艳, 张文君, 庞新跃, 薛敏, 等. 沙冬青 AmNAC6 基因的克隆与功能初步分析[J]. 植物科学学报, 2018, 36(5):705-712. Tang KG, Ren MY, Zhang WJ, Pang XY, Xue M, et al. Cloning and preliminary functional analysis of AmNAC6 from Ammopiptanthus mongolicus[J]. Plant Science Journal, 2018, 36(5):705-712.
[3] Chung PJ, Jung H, Yang DC, Kim JK. Genome-wide analyses of direct target genes for four rice NAC-domain transcription factors involved in drought tolerance[J]. BMC Genomics, 2018, 19(1):40.
[4] Puranik S, Sahu PP, Srivastava PS, Prasad M. NAC:regu-lation and role in stress tolerance[J]. Trends Plant, 2012, 17(6):369-381.
[5] Nuruzzaman M, Sharoni AM, Kikuchi S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants[J]. Front Microbiol, 2013, 4:248.
[6] Zhang J, Li L, Huang LP, Zhang MM, Chen ZY, et al. Maize NAC-domain retained splice variants act as dominant negatives to interfere with the full-length NAC counterparts[J]. Plant Sci, 2019, 289:110256.
[7] Jensen MK, Kjaersgaard T, Nielsen MM, Galberg P, Petersen K, et al. The Arabidopsis thaliana NAC transcription factor family:structure-function relationships and determinants of ANAC019 stress signalling[J]. Bio J, 2010, 426(2):183-196.
[8] Ernst HA, Olsen AN, Skriver K, Larsen S, Leggio LL. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors[J]. Embo Rep, 2014, 5(3):297-303.
[9] Zhang Y, Yun Z, Gong L, Qu H, Duan X, et al. Comparison of miRNA evolution and function in plants and animals[J]. Microrna, 2018, 7(1):4-10.
[10] Lee MH, Jeon HS, Kim HG, Park OK. An Arabidopsis NAC transcription factor NAC4 promotes pathogen-induced cell death under negative regulation by microRNA164[J].New Phytol, 2017, 214(1):343-360.
[11] Guo HS, Xie Q, Fei JF, Chua NH. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development[J]. Plant Cell, 2005, 17(5):1376-1386.
[12] Lee MH, Jeon HS, Kim HG, Park OK. An Arabidopsis NAC transcription factor NAC4 promtes pathogen-induced cell death under negative regulation by microRNA164[J]. 2017, New Phytol, 214(1):343-360.
[13] Li YF, Zheng Y, Addo-Quaye C, Zhang L, Saini A, et al. Transcriptome-wide identification of microRNA targets in rice[J]. Plant J, 2010, 62(5):742-759.
[14] Fang Y, Xie K, Xiong L. Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice[J]. J Exp Bot, 2014, 65(8):2119-2135.
[15] Xu X, Bai H, Liu C, Chen E, Chen Q, et al. Genome-wide analysis of microRNAs and their target genes related to leaf senescence of rice[J]. PLoS One, 2014, 9(12):e114313.
[16] Xie Q, Guo HS, Dallman G, Fang S, Weissman AM, et al. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals[J]. Nature, 2002, 419(6903):167-170.
[17] Kleinow T, Himbert S, Krenz B, Jeske H, Koncz C. NAC domain transcription factor ATAF1 interacts with SNF1-related kinases and silencing of its subfamily causes severe developmental defects in Arabidopsis[J]. Plant Sci, 2009, 177(4):360-370.
[18] Kaneda T, Taga Y, Takai R, Iwano M, Matsui H, et al. The transcription factor OsNAC4 is a key positive regulator of plant hypersensitive cell death[J]. EMBO J, 2009, 28(7):926-936.
[19] Kikuchi K, Ueguehi-Tanaka M, Yoshida KT, Nagato Y, Matsusoka M, et al. Molecular analysis of the NAC gene family in rice[J]. Mol Gen Genet, 2000, 262(6):1047-1051.
[20] Ooka H. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Res, 2003, 10(6):239-247.
[21] Fang YJ, You J, Xie K, Xie WB, Xiong LZ. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice[J]. Mol Genet Genomics, 2008, 280:547-563.
[22] Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, et al. Genome-wide analysis of NAC transcription factor family in rice[J]. Gene, 2010, 465(1-2):30-44.
[23] 段俊枝, 李莹, 赵明忠, 魏小春, 任银铃. NAC转录因子在水稻抗逆基因工程中的应用进展[J]. 中国稻米, 2017, 23(6):37-42. Duan JZ, Li Y, Zhao MZ, Wei XC, Ren YL. Progress on application of NAC transcripton factors in rice stress tole-rance genetic engineering[J]. China Rice, 2017, 23(6):37-42.
[24] 孙利军. 水稻ONAC家族基因重叠表达特性及其在抗病逆境中的功能研究[D]. 杭州:浙江大学, 2012. [25] Wang Z, Dane F. NAC(NAM/ATAF/CUC) transcription factors in different stresses and their signaling pathway[J]. Acta Physiol Plantararum, 2013, 35:1397-1408.
[26] Huang DB, Wang SG, Zhang BC, Shang-Guan KK, Shi YY, et al. A gibberellin-mediated Della-NAC signaling cascade regulates cellulose synthesis in rice[J]. Plant Cell, 2015, 27(6):1681-1696.
[27] Chen X, Lu SC, Wang YF, Zhang X, Lü B, et al. OsNAC2 encoding a NAC transcription factor that affects plant height through mediating the gibberellic acid pathway in rice[J]. Plant J, 2015, 82(2):302-314.
[28] Mao CJ, Lu SC, Lü B, Zhang B, Shen JB, et al.A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis[J]. Plant Physiol, 2017, 174(3):1747-1763.
[29] Shen JB, Lü B, Luo LQ, He JM, Mao CJ, et al. The NAC-type transcription factor OsNAC2 regulates ABA-depen-dent genes and abiotic stress tolerance in rice[J]. Sci Rep, 2017, 7:40641.
[30] Zhou Y, Huang WF, Liu L, Chen TY, Zhou F, et al. Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence[J]. BMC Plant Biol, 2013, 13(1):132.
[31] El Mannai Y, Akabane K, Hiratsu K, Satoh-nagasawa N, Wabiko H. The NAC transcription factor gene OsY37(ONAC011) promotes leaf senescence and accelerates heading time in rice[J]. Int J Mol Sci, 2017, 18(10):2165.
[32] Ye Y, Wu K, Chen J, Liu Q, Wu Y, et al. OsSND2, a NAC family transcription factor, is involved in secondary cell wall biosynthesis through regulating MYBs expression in rice[J]. Rice, 2018, 11(1):36.
[33] Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, et al. Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis[J]. Planta, 2009, 229(5):1065-1075.
[34] Sakuraba Y, Piao W, Lim JH, Han SH, Kim YS, et al. Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle[J]. Plant Cell Physiol, 2015, 56(12):2325-2339.
[35] Wang B, Zhong ZH, Zhang HH, Wang X, Liu BL, et al. Targeted mutagenesis of NAC transcription factor gene, OsNAC041, leading to salt sensitivity in rice[J]. Rice Sci, 2019, 26(2):98-108.
[36] Fang YJ, Liao KF, Du H, Xu Y, Song HZ, et al. A stress-responsive NAC transcripton factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice[J]. J Exp Bot, 2015, 66(21):6803-6817.
[37] Gao F, Xiong AS, Peng RH, Jin XF, Zhu B, et al. OsNAC52, a rice NAC transcription factor, potentially responds to ABA and confers drought tolerance in transge-nic plants[J]. Plant cell Tissue Organ Cult, 2010, 100(3):255-262.
[38] Hu HH, Dai MQ, Yao JL, Xiao BZ, Xiong LH. Over-expressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proc Natl Acad Sci USA, 2006, 103(35):12987-12992.
[39] Liu GZ, Li XL, Jin SX, Liu XY, Zhu LF, et al. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton[J]. PLoS One, 2014, 9(7):e86895.
[40] Redillas C, Jeong JS, Kim YS, Jung H, Bang SW, et al. The overexpression of OsNAC9alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions[J]. Plant Biotechnol J, 2012, 10(7):792-805.
[41] You J, Zong W, Du H, Hu HH, Xiong LZ. A special member of the rice SRO family, OsSRO1c, mediates responses to multiple abiotic stresses through interaction with various transcription factors[J]. Plant Mol Biol, 2014, 84(6):693-705.
[42] You J, Zong W, Hu HH, Li XH, Xiao JH, et al. A STRESS-RESPONSIVE NAC1-regulated protein phosphatase gene rice protein phosphatase18 modulates drought and oxidative stress tolerance through abscisic acid-independent reactive oxygen species scavenging in rice[J]. Plant Physiol, 2014, 166(4):2100-2114.
[43] Zheng XN, Zhen B, Lu GJ, Han B. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance[J]. Biochem Biophys Res Commun, 2009, 379(4):985-989.
[44] Jeong JS, Kim YS, Baek KH, Jung H, Ha SH,et al. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions[J]. Plant Physiol, 2010, 153(1):185-197.
[45] Hong Y, Zhang H, Huang L, Li D, Song F. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice[J]. Front Plant Sci, 2016, 7:4.
[46] Hu HH, You J, Fang YJ, Zhu XY, Qi ZY, et al. Erratum to:characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice[J]. Plant Mol Biol, 2010, 72:567-568.
[47] Rachmat A, Nugroho S, Sukma D, Aswidinnoor H. Overexpression of OsNAC6 transcription factor from Indonesia rice cultivar enhances drought and salt tolerance[J]. Emir J Food Agr, 2014, 26(6):519-527.
[48] Chung PJ, Kim YS, Jeong JS, Park SH, Nahm BH,et al. The histone deacetylase OsHDAC1 epigenetically regulates the OsNAC6 gene that control seedling root growth in rice[J]. Plant J, 2009, 59(5):764-776.
[49] Lee DK, Chung PJ, Jeong JS, Jang G, Bang SW, et al. The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance[J]. Plant Biotechnol J, 2017,15(6):754-764.
[50] Jeong JS, Kim YS, Redillas MC, Jang G, Jung H, et al. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field[J]. Plant Biotechnol J, 2013, 11(1):101-114.
[51] Chen X, Wang YF, Lü B, Li J, Luo LQ, et al. The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway[J]. Plant Cell Physiol, 2014, 55(3):604-619.
[52] Fang Y, Xie K, Xiong L. Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice[J]. J Exp Bot, 2014, 65(8):2119-2135.
[53] De Abreu Neto JB, Hurtado-Perez MC, Wimmer MA, Frei M. Genetic factors underlying boron toxicity tolerance in rice:genome-wide association study and transcriptomic analysis[J]. J Exp Bot, 2016, 68(3):687-700.
[54] Huang L, Hong YB, Zhang HJ, Li DY, Song FM. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance[J]. BMC Plant Biol, 2016, 16(1):203.
[55] Nakashima K, Tran LP, Nguyen DV, Fujita M, Maruyama K, et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice[J]. Plant J, 2007, 51(4):617-630.
[56] Lin RM, Zhao WS, Meng XB, Wang M, Peng YL. Rice gene OsNAC19 encodes a novel NAC-domain transcription factor and responds to infection by Magnaporthe grisea[J]. Plant Sci, 2007, 172(1):120-130.
[57] Sun LJ, Zhang HJ, Li DY, Huang L, Hong YB, et al. Functions of rice NAC transcriptional factors, ONAC122 and ONAC131, in defense responses against Magnaporthe grisea[J]. Plant Mol Biol, 2013, 81(1-2):41-56.
[58] Yokotani N, Tsuchida-Mayama T, Ichikawa H, Mitsuda N, Ohme-Tak-agi M, et al. OsNAC111, a blast disease-response transcription factor in rice, positively regulates the expression of defense-related genes[J]. Mol Plant-Microbe Interact, 2014, 27(10):1027-1034.
[59] Wang ZY, Xia YQ, Lin SY, Wang YR, Guo BH, et al. Osa-miR164a targets OsNAC60 and negatively regulates rice immunity against the blast fungus Magnaporthe oryzae[J]. Plant J, 2018, 95(4):584-597.
[60] Yoshii M, Yamazaki M, Rakwal R, Kishi-kaboshi M, Miyao A, et al. The NAC transcription factor RIM1 of rice is a new regulator of jasmonate signaling[J]. Plant J, 2010, 61(5):804-815.
-
期刊类型引用(15)
1. 杜品廷,吴国江,王振国,李岩,周伟,周亚星. 高粱CPP基因家族鉴定及表达分析. 生物技术通报. 2025(01): 132-142 . 百度学术
2. 张兆冉,王利娜,朱博艺,李朝炜. NAC转录因子:参与植物诸多生命过程的调控因子. 安徽农业科学. 2024(15): 22-29 . 百度学术
3. 彭波,邱静,彭静,张志国,刘岩,黄雅琴,汪全秀,赵金会,周伟,孙艳芳. NAC转录因子在水稻遗传改良中的研究进展. 信阳师范学院学报(自然科学版). 2024(04): 540-550 . 百度学术
4. 王爱军,舒新月,蒋钰琪,郑爱萍,李平,殷得所. 水稻与纹枯病菌互作的分子机制研究进展. 植物保护学报. 2023(01): 11-21 . 百度学术
5. 李荣田,黄丽莹,张婷,时柳,刘长华. 转SNAC1基因耐盐碱早粳稻品种培育. 黑龙江大学自然科学学报. 2023(01): 47-56 . 百度学术
6. 崔鹏,胡尔西旦·吐尔逊,邹丽媛,葛风伟. 基于扭果花旗杆转录组的NAC家族生物信息学分析. 新疆师范大学学报(自然科学版). 2023(01): 51-59 . 百度学术
7. 卓茂根,王惠聪. NAC转录因子在果实成熟中的调控作用. 果树学报. 2023(07): 1455-1470 . 百度学术
8. 冯翠珍,郭亚萍,郑巨云,郑凯,陈全家,陈琴,曲延英. 转HaNAC基因棉花的分子鉴定及遗传稳定性分析. 江苏农业科学. 2023(15): 29-35 . 百度学术
9. 辛旭霞,郑香然,王海岗,陈凌,Santra Dipak K,王瑞云,乔治军. 糜子PmNAC1的克隆及生物信息学分析. 山西农业科学. 2023(10): 1162-1169 . 百度学术
10. 黄星,徐欢欢,黎开奖,何新华,夏黎明,陆婷婷,梁容真,罗聪. 芒果MiNAC7基因的表达模式及在开花和非生物逆境胁迫应答中的功能分析. 热带作物学报. 2023(11): 2256-2264 . 百度学术
11. 曹梦雨,桑世飞,王亚男,周静,王君怡,张文玲,姬生栋. 水稻全基因组磷脂酶家族蛋白筛选及其生物信息学分析. 河南师范大学学报(自然科学版). 2022(03): 143-149 . 百度学术
12. 柴吉钏,王康,杨民杰,董婉琪,曹士锋,陈伟,杨震峰,施丽愉. 枇杷EjNAC82的克隆及其对类胡萝卜素合成基因EjPSY、EjBCH的转录激活分析. 核农学报. 2022(06): 1115-1126 . 百度学术
13. 冯小艳,王俊刚,王文治,沈林波,赵婷婷,冯翠莲,张树珍. 甘蔗线条花叶病毒RNA沉默抑制子的寄主互作蛋白鉴定. 热带作物学报. 2022(06): 1231-1239 . 百度学术
14. 杨楠,孙瑞青,孙宇,夏煜琪,刘志鑫,高庆远,蒲金基,党志国,张贺. 杧果CPP转录因子家族基因的鉴定及表达分析. 植物遗传资源学报. 2021(05): 1452-1462 . 百度学术
15. 曹瑞兰,李知青,欧阳雯婷,胡冬南,周增亮,苏文娟,陈霞,刘娟. 油茶NAC基因鉴定及对干旱胁迫响应分析. 江西农业大学学报. 2021(06): 1357-1370 . 百度学术
其他类型引用(20)
计量
- 文章访问数: 1762
- HTML全文浏览量: 74
- PDF下载量: 2146
- 被引次数: 35