Modeling potential distribution of an endangered genus (Sinojackia) endemic to China
-
摘要: 秤锤树属(Sinojackia)是中国特有属,包括7个物种,各物种的种群及个体数量均较少,预测其潜在适宜分布区及其主要影响因素对制定保护措施至关重要。该研究在全面收集秤锤树属植物分布位点数据的基础上,结合气候、土壤和植被数据,运用物种分布模型(MaxEnt)和ArcGIS,预测该属植物当前的分布范围以及未来(2050s和2070s)潜在分布区的变化,分析影响该属植物分布的主要环境变量。预测结果显示:(1)当前秤锤树属高适宜地区主要在我国的亚热带地区,分布在长江中下游平原,包括湖南、浙江的大部分地区,河南、安徽和江苏南部地区以及湖北和江西两省交界处,四川、贵州零星分布着高适宜度位点;纬度范围为25.42°~31.84°N。(2)当前秤锤树属的高适宜性(0.665)生境面积仅为4.07×104 km2,占国土面积的4.23%,分布区极为狭窄。未来(2050s和2070s)的高适宜分布地区将大幅度缩减,其中在2070s的RCP8.5排放情景下减少最多。(3)随着温度的上升,秤锤树属植物有向高纬度迁移的趋势。研究结果可为濒危植物的就地保护提供科学依据,同时也可为其迁地保护位点的选择提供参考。Abstract: Sinojackia, a genus endemic to China, includes seven species with a small number of populations. To develop effective conservation measures, it is important to understand the potential distribution of endangered endemic plant species and the underlying environmental factors. Here, we collected extensive occurrence data of Sinojackia, and then extracted climate, soil, and vegetation data from several datasets. We utilized the species distribution model (MaxEnt) and ArcGIS to predict the current and future potential distributions (2050s and 2070s) of the genus, as well as changes in potential distribution areas in the future. We also analyzed the major environmental variables that affected the distribution of the genus. Results show that: (1) The current high suitability distribution areas are mainly located within the subtropical regions of China. Specifically, the Middle-Lower Yangtze River Plain, including most parts of Hunan, Zhejiang, the southern areas of Henan, Anhui, and Jiangsu, the areas around the Hubei and Jiangxi boundary, and some sporadic regions in Sichuan and Guizhou. The latitude spans 25.42° to 31.84°N. (2) In addition, the current high suitability distribution area (0.665) is extremely narrow, totaling 4.07×104 km2, accounting for 4.23% of the total area of China. Furthermore, suitable distribution will decline in the future (2050s and 2070s). Of note, the area under a RCP8.5 emissions scenario in the 2070s will be substantially reduced. (3) With the increase in temperature in the future, the genus will migrate to higher altitudes. Our results are critical for the establishment of nature reserves for in-situ conservation and for the selection of sites for ex-situ conservation.
-
Keywords:
- Sinojackia /
- MaxEnt /
- ArcGIS /
- Climate change /
- Migration
-
-
[1] Hu HH. Sinojackia, a new genus of Styracaceae from southeastern China[J]. J Arnold Arbor, 1928, 9(2/3):130-131.
[2] Hu HH. Notulae systematicae ad floram sinensem[J]. J Arnold Arbor, 1930, 11(1):48-50.
[3] Merrill ED. Miscellanea sinensia[J]. Sunyatsenia, 1937(3):246-262.
[4] 罗利群. 四川秤锤树属一新种[J]. 中山大学学报(自然科学版), 1992, 31(4):78-79. Luo LQ. A new species of Sinojackia from Sichuan[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1992, 31(4):78-79.
[5] Chen T, Li GY. A new species of Sinojackia Hu (Styracaceae) from Zhejiang, east China[J]. Novon, 1997, 7(4):350.
[6] Chen T, Cao TR. A new species of Sinojackia Hu (Styracaceae) from Hunan, south central China[J]. Edinburgh Journal of Botany, 1998, 55(2):235-238.
[7] Yao XH, Ye QG, Ge JW, et al. A new species of Sinojackia (Styracaceae) from Hubei, central China[J]. Novon, 2007, 17(1):138-140.
[8] 吴容芬, 黄淑美. 中国植物志:第60卷:第2分册[M]. 北京:科学出版社, 1987:143-147. [9] Hwang SM, Grimes J. Styracaceae[M]//Wu ZY, Raven PH, Hong DY, eds. Flora of China. Beijing:Science Press, St. Louis:Missouri Botanical Garden Press, 1996, Vol. 15:253-271.
[10] 祁承经. 湖南安息香科一新种[J]. 植物分类学报, 1981, 19(4):526-528. Qi CJ. A new species of Styracaceae from Hunan[J]. Acta Phytotaxonomica Sinica, 1981, 19(4):526-528.
[11] Yao X, Ye Q, Fritsch PW. Phylogeny of Sinojackia (Styracaceae) based on DNA sequence and microsatellite data:implications for taxonomy and conservation[J]. Ann Bot, 2008, 101(5):651-659.
[12] 姚小洪, 叶其刚, 康明, 黄宏文. 秤锤树属与长果安息香属植物的地理分布及其濒危现状[J]. 生物多样性, 2005, 13(4):339-346. Yao XH, Ye QG, Kang M, Huang HW. Geographic distribution and current status of the endangered genera Sinojackia and Changiostyrax[J]. Biodiversity Science, 2005, 13(4):339-346.
[13] 陈涛, 张宏达. 亚洲安息香科植物地理分布研究[J]. 中山大学学报(自然科学版), 1996(1):97-103. Chen T, Chang HT. The geographical distribution of Styracaceae in Asia[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1996(1):97-103.
[14] 王世彤, 吴浩, 刘梦婷, 张佳鑫,刘检明,孟红杰,等. 极小种群野生植物黄梅秤锤树群落结构与动态[J]. 生物多样性, 2018, 26(7):749-759. Wang ST, Wu H, Liu MT, Zhang JX, Liu JM, Meng HJ, et al. Community structure and dynamics of a remnant forest dominated by a plant species with extremely small population (Sinojackia huangmeiensis) in central China[J]. Biodiversity Science, 2018, 26(7):749-759.
[15] 高锦伟. 江西秤锤树花果主要形态变异及其遗传多样性分析[D]. 广州:广州大学, 2016. [16] 张金菊, 叶其刚, 姚小洪, 张胜菊,黄宏文. 片断化生境中濒危植物黄梅秤锤树的开花生物学、繁育系统与生殖成功的因素[J]. 植物生态学报, 2008(4):743-750. Zhang JJ, Ye QG, Yao XH, Zhang SJ, Huang HW. Preliminary studies on the floral biology, breeding system and reproductive success of Sinojackia huangmeiensis, an endangered plant in a fragmented habitat in Hubei Province, China[J]. Journal of Plant Ecology, 2008(4):743-750.
[17] 刘梦婷, 魏新增, 江明喜. 濒危植物黄梅秤锤树野生与迁地保护种群的果实性状比较[J]. 植物科学学报, 2018, 36(3):354-361. Liu MT, Wei XZ, Jiang MX. Comparison of fruit traits between wild and ex situ populations of Sinojackia huangmeiensis[J]. Plant Science Journal, 2018, 36(3):354-361.
[18] Wei XZ, Liu MT, Wang ST, Jiang MX. Seed morphological traits and seed element concentrations of an endangered tree species displayed contrasting responses to waterlogging induced by extreme precipitation[J]. Flora, 2018, 246-247:19-25.
[19] Wang HC, Meng AP, Chu HJ, Li XW, Li JQ. Floral ontogeny of Sinojackia xylocarpa (Styracaceae), with special reference to the development of the androecium[J]. Nord J Bot, 2010, 28(3):371-375.
[20] Yao X, Zhang J, Ye Q, Huang H. Fine-scale spatial genetic structure and gene flow in a small, fragmented population of Sinojackia rehderiana (Styracaceae), an endangered tree species endemic to China[J]. Plant Biol, 2011, 13(2):401-410.
[21] Zhang JJ, Ye QG, Gao PX, Yao XH. Genetic footprints of habitat fragmentation in the extant populations of Sinojackia (Styracaceae):implications for conservation[J]. Bot J Linn Soc, 2012, 170(2):232-242.
[22] 阮咏梅, 张金菊, 姚小洪, 叶其刚. 黄梅秤锤树孤立居群的遗传多样性及其小尺度空间遗传结构[J]. 生物多样性, 2012, 20(4):460-469. Ruan YM, Zhang JJ, Yao XH, Ye QG. Genetic diversity and fine-scale spatial genetic structure of different lifehistory stages in a small, isolated population of Sinojackia huangmeiensis (Styracaceae)[J]. Biodiversity Science, 2012, 20(4):460-469.
[23] Ye QG, Yao XH, Zhang SJ, Kang M, Huang HW. Potential risk of hybridization in ex situ collections of two endangered species of Sinojackia Hu (Styracaceae)[J]. J Integr Plant Biol, 2006, 48(7):867-872.
[24] 环境保护部, 中国科学院. 中国生物多样性红色名录:高等植物卷[DB/OL]. (2013-09-02). http://www.iplant.cn/rep/protlist/4. [25] 国家林业局, 国家发改委. 全国极小种群野生植物拯救保护工程规划(2011-2015年)[EB/OL]. (2012-04-18). http://www.forestry.gov.cn/. [26] Graham CH, Ferrier S, Huettman F. New developments in museum-based informatics and applications in biodiversity analysis[J]. Trends Ecol Evol, 2004, 19(9):497-503.
[27] Corlett RT, Westcott DA. Will plant movements keep up with climate change?[J]. Trends Ecol Evol, 2013, 28(8):482-488.
[28] Huntley B, Collingham YC, Singarayer JS. Explaining patterns of avian diversity and endemicity:climate and biomes of southern Africa over the last 140000 years[J]. J Biogeogr, 2016, 43(5):874-886.
[29] Van der Putten WH, Macel M, Visser ME. Predicting species distribution and abundance responses to climate change:why it is essential to include biotic interactions across trophic levels[J]. Philos Trans R Soc, B, 2010, 365(1549):2025-2034.
[30] Yu JH, Wang CJ, Wan JZ, Han SJ, Wang QG, Nie SM. A model-based method to evaluate the ability of nature reserves to protect endangered tree species in the context of climate change[J]. For Ecol Manag, 2014, 327:48-54.
[31] Adhikari D, Barik SK, Upadhaya K. Habitat distribution modelling for reintroduction of Ilex khasiana Purk., a critically endangered tree species of northeastern India[J]. Ecol Eng, 2012, 40:37-43.
[32] Tojibaev K, Beshko N, Volis S. Translocation of Otostegia bucharica, a highly threatened narrowly distributed relict shrub[J]. Plant Divers, 2019, 41(2):105-108.
[33] Tulowiecki SJ. Modeling the historical distribution of American chestnut (Castanea dentata) for potential restoration in western New York State, US[J]. For Ecol Manag, 2020, 462:118003.
[34] 苏小菱, 马丹丹, 李根有, 刘西. 浙江省珍稀濒危植物细果秤锤树的种群数量监测报告[J]. 浙江林学院学报, 2009, 26(1):142-144. Su XL, Ma DD, Li GY, Li X. Population quantity surveillance of the rare and endangered plant in Zhejiang Province:Sinojackia microcarpa[J]. Journal of Zhejiang Forestry University, 2009, 26(1):142-144.
[35] 徐惠明. 濒危植物狭果秤锤树的生态学初步研究[D]. 广州:广州大学, 2017. [36] 杨国栋, 张开文, 陈水飞, 伊贤贵. 南京重点保护野生植物资源调查初报[J]. 南京林业大学学报(自然科学版), 2014, 38(S1):62-64. Yang GD, Zhang KW, Chen SF, Yi XG. A preliminary survey of the key wild plant resources protection of Nanjing city of Jiangsu Province[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2014, 38(S1):62-64.
[37] Hernandez PA, Graham CH, Master LL. The effect of sample size and species characteristics on performance of different species distribution modeling methods[J]. Ecography, 2006, 29(5):773-785.
[38] 田芝平, 姜大膀. 不同分辨率CCSM4对东亚和中国气候模拟能力分析[J]. 大气科学, 2013, 37(1):171-186. Tian ZP, Jiang DB. Evaluation of the performance of low-to high-resolution CCSM4 over East Asia and China[J]. Chinese Journal of Atmospheric Sciences, 2013, 37(1):171-186.
[39] 朱莹莹, 徐晓婷. 气候变化对我国特有濒危物种水杉野生种群分布的影响[J]. 生态学杂志, 2019, 38(6):1629-1636. Zhu YY, Xu XT. Effects of climate change on the distribution of wild population of Metasequoia glyptostroboides, an endangered and endemic species in China[J]. Chinese Journal of Ecology, 2019, 38(6):1629-1636.
[40] 孔维尧, 李欣海, 邹红菲. 最大熵模型在物种分布预测中的优化[J]. 应用生态学报, 2019, 30(6):2116-2128. Kong WY, Li XH, Zhou HF. Optimizing MaxEnt model in the prediction of species distribution[J]. Chinese Journal of Applied Ecology, 30(6):2116-2128.
[41] Anderson RP, Gonzalez JI. Species-specific tuning increases robustness to sampling bias in models of species distributions:an implementation with MaxEnt[J]. Ecol Modell, 2011, 222(15):2796-2811.
[42] 崔相艳, 王文娟, 杨小强, 李述,秦声远,戎俊. 基于生态位模型预测野生油茶的潜在分布[J]. 生物多样性, 2016, 24(10):1117-1128. Cui XY, Wang WJ, Yang XQ, Li S, Qin SY, Rong J. Potential distribution of wild Camellia oleifera based on ecological niche modeling[J]. Biodiversity Science, 2016, 24(10):1117-1128.
[43] 王运生, 谢丙炎, 万方浩, 肖启明,戴良英. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007, 15(4):365-372. Wang YS, Xie BY, Wan FH, Xiao QM, Dai LY. Application of ROC curve analysis in evaluating the performance of alien species' potential distribution models[J]. Biodiversity Science, 2007, 15(4):365-372.
[44] 邵慧, 田佳倩, 郭柯, 孙建新. 样本容量和物种特征对BIOCLIM模型模拟物种分布准确度的影响:以12个中国特有落叶栎树种为例[J]. 植物生态学报, 2009, 33(5):870-877. Shao H, Tian JQ, Guo K, Sun JX. Effects of sample size and species traits on performance of BIOCLIM in predicting geographical distribution of tree species:A case study with 12 deciduous Quercus species indigenous to China[J]. Chinese Journal of Plant Ecology, 2009, 33(5):870-877.
[45] Pearson RG, Raxworthy CJ, Nakamura M. Predicting species distributions from small numbers of occurrence records:a test case using cryptic geckos in Madagascar[J]. J Biogeogr, 2007, 34(1):102-117.
[46] Qiao H, Peterson AT, Ji L. Using data from related species to overcome spatial sampling bias and associated limitations in ecological niche modelling[J]. Methods Ecol Evol, 2017, 8(12):1804-1812.
[47] Liu F, McShea WJ, Li D. Correlating habitat suitability with landscape connectivity:A case study of Sichuan golden monkey in China[J]. Ecol Model, 2017, 353:37-46.
[48] Carranza ML, Saura S, Loy A. Connectivity providers for semi-aquatic vertebrates:the case of the endangered otter in Italy[J]. Landscape Ecol, 2012, 27(2):281-290.
[49] 朱耿平, 刘国卿,卜文俊, 高玉葆. 生态位模型的基本原理及其在生物多样性保护中的应用[J]. 生物多样性, 2013, 21(1):90-98. Zhu GP, Liu GQ, B WJ, Gao YB. Ecological niche mode-ling and its applications in biodiversity conservation[J]. Biodiversity Science, 2013, 21(1):90-98.
-
期刊类型引用(10)
1. 吴庭天,雷金睿,陈宗铸,陈小花,李苑菱. 水菜花种群潜在生境选择与空间格局预测. 热带亚热带植物学报. 2024(01): 55-65 . 百度学术
2. 魏新增,蒲云海,史红文,肖之强,江明喜. 湖北省国家重点保护野生植物分布与研究进展. 广西植物. 2024(11): 2000-2009 . 百度学术
3. 左一帆,何宇凡,王璐,洒威,尚千涵,梁健,王乐,李忠虎. 东亚地区羊肚菌属物种响应气候变化的地理分布格局变迁. 应用生态学报. 2023(03): 777-786 . 百度学术
4. 郭雯雯,王文婷. 气候变化下青藏高原全缘叶绿绒蒿的潜在分布变迁. 西北植物学报. 2023(04): 708-716 . 百度学术
5. 于达勇,樊智丰,马长乐. 不同碳排放模式下云南榧树适生区分布研究. 西北林学院学报. 2023(03): 40-46 . 百度学术
6. 景云云,许仲林. 雪岭云杉的生境适宜性评价及其重要影响因子. 湖北农业科学. 2023(06): 11-17 . 百度学术
7. 徐绍清,马丹丹,张芬耀,徐路遥,李修鹏,陈征海. 浙江省安息香科新记录种——秤锤树. 浙江林业科技. 2022(03): 61-64 . 百度学术
8. 施茂寅,陈银霞,陈齐通,李欢,谢宜飞,邱相东,张桧. 珍稀保护植物江西杜鹃分布区模拟分析. 南方林业科学. 2022(06): 31-34+49 . 百度学术
9. 张华,赵浩翔,徐存刚. 气候变化背景下孑遗植物桫椤在中国的潜在地理分布. 生态学杂志. 2021(04): 968-979 . 百度学术
10. 孔景,杨国栋,季芯悦,王鹏程,伊贤贵,俞元春. 南京老山天然秤锤树种群动态和空间分布格局. 中国野生植物资源. 2021(10): 100-108 . 百度学术
其他类型引用(8)
计量
- 文章访问数: 702
- HTML全文浏览量: 3
- PDF下载量: 534
- 被引次数: 18