Fine-scale genetic structure of Medicago ruthenica Trautv.
-
摘要: 以花苜蓿(Medicago ruthenica Trautv.)为材料,在内蒙古克什克腾旗建立两个25 m×50 m的样方(山谷YF1和山坡YF2),采集该范围内的所有个体,利用8对SSR分子标记对其遗传变异特性进行分析。结果显示,克什克腾旗花苜蓿居群遗传多样性较高。两个居群个体的空间自相关分析结果表明,9 m内的个体间为非随机邻近交配,且在同距离范围内,山谷居群的个体间遗传相似性更低,推测此区域可能是历史和地理因素塑造了花苜蓿丰富的遗传多样性,两个小尺度空间格局的个体间基因流模式主要受地形影响。Abstract: We established two quadrats (25 m×50 m) in a valley (YF1) and on a hillside (YF2) in Keshiketeng Banner, Inner Mongolia. We sampled all Medicago ruthenica Trautv. individuals in the quadrats by fine-scale methods and characterized their genetic variation using eight pairs of simple sequence repeat (SSR) primers. We found that M. ruthenica had a high level of genetic diversity. Based on spatial autocorrelation, the individuals showed non-random adjacent mating at an interval of 9 m. At the same interval, we found lower genetic similarity in the YF1 population than in the YF2 population. Thus, we inferred that the rich genetic diversity of M. ruthenica might be shaped by historical and geographic factors in this area, with topography impacting gene flow patterns between the two fine-scale populations.
-
-
[1] 中国科学院中国植物志编辑委员会. 中国植物志:第42卷, 第2分册[M]. 北京:科学出版社,1998. [2] Campbell TA, Bao G, Xia ZL. Completion of the agrono-mic evaluations of Medicago ruthenica ((L.) Ledebour) germplasm collected in Inner Mongolia[J]. Genet Resour Crop Ev, 1999, 46(5):477-484.
[3] 魏双霞. 3个抗寒苜蓿新品系在甘南高寒地区的适应性及生产性能评价[D]. 兰州:甘肃农业大学,2016. [4] Shu YJ, Li W, Zhao JY, Liu Y, Guo CH. Transcriptome sequencing and expression profiling of genes involved in the response to abiotic stress in Medicago ruthenica [J]. Genet Mol Bio, 2018, 41(3):638-648.
[5] Campbell TA, Bao G, Xia ZL. Agronomic evaluation of Medicago ruthenica collected in Inner Mongolia[J]. Crop Sci, 1997, 37:599-604.
[6] 徐丽君, 徐大伟, 逄焕成, 辛晓平, 金东艳, 等. 中国苜蓿属植物适宜性区划[J].草业科学, 2017, 34(11):2347-2358. Xu LJ, Xu DW, Pang HC, Xin XP, Jin DY, et al. Chinese alfalfa habitat suitability regionalization[J]. Prataculturae Science, 2017, 34(11):2347-2358.
[7] 于洁, 闫利军, 冀晓婷, 穆怀斌, 米福贵, 李鸿雁. 苜蓿和扁蓿豆萌发期耐盐指标筛选及耐盐性综合评价[J]. 植物遗传资源学报, 2017, 18(3):449-460. Yu J, Yan LJ, Ji XT, Mu HB, Mi FG, Li HY. Evaluation of salt tolerance and screening for salt tolerant accessions of Medicago sativa and Medicago ruthenica at germination stage[J]. Journal of Plant Genetic Resources, 2017, 34(11):2347-2358. [8] 李鸿雁. 扁蓿豆种质资源遗传多样性的研究[D]. 呼和浩特:内蒙古农业大学, 2008. [9] Wu XP, Liu DM, Gulzar K, Shen YF, Wang HQ. Population genetic structure and demographic history of Medicago ruthenica (Fabaceae) on the Qinghai-Tibetan Plateau based on nuclear ITS and chloroplast markers[J]. Biochem Syst Ecol, 2016, 69:204-212.
[10] 刘洁, 胡蝶, 楚海家, 闫娟, 李建强. 花苜蓿抗旱耐盐EST-SSR标记筛选[J]. 植物科学学报, 2013, 31(5):493-499. Liu J, Hu D, Chu HJ, Yan J, Li JQ. Screening of drought-and salinity-responsive EST-SSR markers in Medicago ruthenica Trautv.[J]. Plant Science Journal, 2013, 31(5):493-499.
[11] 潘涛涛, 鱼小军, 肖红, 柴锦隆, 王艳, 等. 12份扁蓿豆种质苗期耐盐性综合评价[J]. 草业科学, 2018, 35(11):2650-2663. Pan TT, Yu XJ, Xiao H, Chai JL, Wang Y, et al. Comprehensive evaluation of salt tolerance in 12 germplasm resources of Medicago ruthenica at seedling stage[J]. Pra-taculturae Science, 2018, 35(11):2650-2663.
[12] Chu HJ, Yan J, Hu Y, Wang HC, Li JQ. Cross-species amplification of 92 microsatellites of Medicago truncatula[J]. Mol Ecol R, 2010, 10(1):150-155.
[13] 武自念, 侯向阳, 任卫波, 杜建材, 赵青山, 王照兰. 气候变化背景下我国扁蓿豆潜在适生区预测[J]. 草地学报, 2018, 26(4):898-906. Wu ZN, Hou XY, Ren WB, Du JC, Zhao QS, Wang ZL. Prediction of the potential distribution of Medicago ruthenica in China under climate change[J]. Acta Agrestia Sinica, 2018, 26(4):898-906.
[14] 胡蝶. 苜蓿属的分子系统学研究-兼论花苜蓿的谱系地理学问题[D]. 北京:中国科学院大学, 2010. [15] 李志勇. 扁蓿豆种质资源遗传多样性机理的研究[D]. 北京:中国农业科学院, 2011. [16] Bohonak AJ. IBD (Isolation by Distance):a program for analyses of isolation by distance[J]. J Hered, 2002, 93:153-154.
[17] Bonnin I, Ronfort J, Wozniak F, Olivier I. Spatial effects and rare outcrossing events in Medicago truncatula (Fabaceae)[J]. Mol Ecol, 2001, 10(6):1371-1384.
[18] Vekemans X, Hardy OJ. New insights from fine-scale spatial genetic structure analyses in plant populations[J]. Mol Ecol, 2004, 13(4):921-935.
[19] Bittencourt JVM, Sebbenn AM. Patterns of pollen and seed dispersal in a small, fragmented population of the wind-pollinated tree Araucaria angustifolia in southern Brazil[J]. Heredity, 2007, 99(6):580-591.
[20] Epperson BK, Alvarez B, Elena R. Limited seed dispersal and genetic structure in life stages of Cecropia obtusifolia[J]. Evolution, 1997, 51(1):275-282.
[21] Kalisz S, Nason JD, Hanzawa FM, Tonsor SJ. Spatial population genetic structure in Trillium grandiflorum:the roles of dispersal, mating, history, and selection[J]. Evolution, 2001, 55(8):1560-1568.
[22] Jacquemyn H, Brys R, Vandepitte K, Honnay O, Roldan-ruiz I. Fine-scale genetic structure of life history stages in the food-deceptive orchid Orchis purpurea[J]. Mol Ecol R, 2006, 15(10):2801-2808.
[23] Sato T, Isagi Y, Sakio H, Osumi K, Goto S. Effect of gene flow on spatial genetic structure in the riparian canopy tree Cercidiphyllum japonicum revealed by microsatellite analysis[J]. Heredity, 2006, 96(1):79-84.
[24] Ennos RA. Estimating the relative rates of pollen and seed migration among plant populations[J]. Heredity, 1994, 72:250-259.
[25] Bohonak AJ. Dispersal, gene flow, and population structure[J]. Q Rev Bio, 1999, 74:21-45.
[26] Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J]. Phytochem Bull, 1987, 19:11-15.
[27] Yao XH, Ye QG, Kang M, Zhou JF, Xu YQ, et al. Cha-racterization of micriosatellite markers in the endangered Sinojackia xylocarpa (Styracaceae) and cross-species amplification in closely related taxa[J]. Mol Ecol N, 2006, 6:133-136.
[28] Diwan N, Bouton JH, Kochert G, Cregan PB. Mapping of simple sequence repeat (SSR) DNA markers in diploid and tetraploid alfalfa[J]. Theor Appl Genet, 2000, 101(1):165-172.
[29] Julier B, Flajoulot S, Barre P, Cardinet G, Santoni S, et al. Construction of two genetic linkage maps in cultiva-ted tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers[J]. BMC Plant Biol, 2003, 3(1):9.
[30] Sanguinetti C, Dias-Neto E, Simpson AJG. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels[J]. Biotechniques, 1994, 17(5):914-921.
[31] Goudet J. FSTAT, A program to estimate and test gene diversities and fixation indices, version 2.9.3[EB/OL].[2020-08-26].http://www.unil.ch/izea/softwares/ffstat.html.
[32] Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure[J]. Evolution, 1984, 38:1358-1370.
[33] Hardy OJ, Vekeemans X. SPAGeDi:a versatile computer program to analyse spatial genetic structure at the individure or population levels[J]. Mol Ecol Res, 2002, 2:618-620.
[34] Loiselle BA, Sork VL, Nason J, Graham C. Spatial gene-tic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae)[J]. Am J Bot, 1995, 82:1420-1425.
[35] McCauley DE. The relative contributions of seed and pollen movement to the local genetic structure of Silene alba[J]. J Hered, 1997, 88:257-263.
[36] Fenster CB, Vekemans X, Hardy OJ. Quantufying gene flow from spatial genetic structure data in a metapopulation of Chamaecrista fasciculate (Leguminosae)[J]. Evolution, 2003, 57(5):995-1007.
[37] Wilbert TR, Smith-Woollett DA, Westphal MF, Whitelaw A, Ralls K, Maldonado JE. Distribution, fine-scale subdivision, and population size of San Joaquin kit foxes in the Ciervo-Panoche Natural Area, California[J]. Con Genet, 2019, 20(3):405-417.
[38] Leedale AE, Sharp SP, Simeoni M, Robinson EJH, Hatchwell BJH. Fine-scale genetic structure and helping decisions in a cooperatively breeding bird[J]. Mol Ecol, 2018, 27(7):1714-1726.
[39] Yan J, Chu HJ, Wang HC, Li JQ, Sang T. Population genetic structure of two Medicago species shaped by distinct life form, mating system and seed dispersal[J]. Ann Bot, 2009, 103(6):825-834.
[40] Nybom H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants[J]. Mol Ecol, 2004, 13(5):1143-1155.
[41] 任晓辉. 克什克腾青山冰臼群自然保护区第四纪冰川地貌识别[J]. 赤峰学院学报(自然科学版), 2005, 21(2):9. Ren XH. Identification of Quaternary glacial landforms in Keshiketeng Qingshan Bingjiu Group Nature Reserve[J]. Journal of Chifeng University(Natural Science Edition), 2005, 21(2):9.
[42] 吕洪波, 任晓辉, 杨超. 赤峰等地第四纪大陆冰川的地貌证据[J]. 地质评论, 2006, 56(3):379-385. Lü HB, Ren XH, Yang C. Geomorphological evidence of Quaternary continental glaciers in Chifeng and other places[J]. Geological Review, 2006, 56(3):379-385.
[43] 蒋严妃. 利用SSR分子标记分析棱果沙棘杂交带的遗传结构和基因流[D]. 兰州:西北师范大学, 2014. [44] 侯钰荣, 安沙舟, 刘冬, 王卫, 徐彩芹. 地理居群和地形对伊犁绢蒿遗传多样性的影响[J]. 草业科学, 2011, 28(1):94-99. Hou YR, An SZ, Liu D, Wang W, Xu CQ. The influence of geographical population and topography on the genetic diversity of Artemisia yili[J]. Pratacultural Science, 2011, 28(1):94-99.
[45] 沈泽昊, 张新时. 基于植物分布地形格局的植物功能型划分研究[J]. 植物学报,2000, 42(11):1190-1196. Shen ZH, Zhang XS. A study on the classification of the plant functional types based on the topographical pattern of plant distribution[J]. Chinese Bulletin of Botany, 2000, 42(11):1190-1196.
[46] 闫娟. 中国野生天蓝苜蓿与花苜蓿居群遗传多样性研究[D]. 北京:中国科学院大学,2010. [47] Wright S. Isolation by distance under diverse systems of mating[J]. Genetics, 1946, 31:39-50.
-
期刊类型引用(0)
其他类型引用(5)
计量
- 文章访问数: 462
- HTML全文浏览量: 0
- PDF下载量: 477
- 被引次数: 5