Application analysis of predictors for plant protein subcellular localization based on proteome data of Camellia sinensis (L.) O. Ktze.
-
摘要: 以500个茶(Camellia sinensis(L.)O.Ktze.)叶片的蛋白质作为数据集,比较TargetP、WoLF PSORT、LocTree和Plant-mPLoc 4种软件预测亚细胞定位的可信度和灵敏度。结果显示,4种软件预测可信度均高于80%,依次排序为TargetP > LocTree > WoLF PSORT > Plant-mPLoc。其中,LocTree对细胞质蛋白和分泌蛋白检测灵敏度最高,但对叶绿体蛋白灵敏度最低;Plant-mPLoc检测核蛋白最灵敏,但对细胞质蛋白最不敏感;TargetP检测叶绿体蛋白最灵敏,但仅能区分3个亚细胞器官;WoLF PSORT对分泌蛋白检测灵敏度最低,但对其他蛋白均较灵敏。基于上述结果,该研究针对4种软件提出了合理的使用建议。Abstract: Several predictors of subcellular localization have been developed, with high-throughput and rapid prediction of protein subcellular localization successfully achieved. However, these predictors also have some disadvantages. Here, using 500 proteins identified from the proteome of Camellia sinensis (L.) O. Ktze. as a dataset, the reliability and sensitivity of subcellular localization predictors were compared, including with TargetP, WoLF PSORT, LocTree, and Plant-mPLoc. Results demonstrated that the prediction reliability of the four predictors exceeded 80%, in the order TargetP > LocTree > WoLF PSORT > Plant-mPLoc. Moreover, among the four predictors, LocTree showed the highest sensitivity for cytoplasmic and secretory proteins, but lowest for chloroplast proteins; Plant-mPLoc was most sensitive to nucleoproteins and most insensitive to cytoplasmic proteins; TargetP was most sensitive to chloroplast proteins, but could only distinguish three subcellular organelles; and WoLF PSORT showed high insensitivity to secretory proteins but high recognition of non-secretory proteins. Based on the aforementioned results, we discuss potential uses of the four predictors, which will provide a reference for high-efficiency prediction of protein subcellular localization.
-
Keywords:
- Camellia sinensis /
- Protein /
- Subcellular localization /
- Prediction
-
-
[1] 张松, 黄波, 夏学峰, 孙子荣. 蛋白质亚细胞定位的生物信息学研究[J]. 生物化学与生物物理进展, 2007, 34(6):573-579. Zhang S, Huang B, Xia XF, Sun ZY. Bioinformatics research in subcellular localization of protein[J]. Progress in Biochemistry and Biophysics, 2007, 34(6):573-579.
[2] 王颜, 那杰. 植物细胞中叶绿体蛋白质的亚细胞定位方法[J]. 植物研究, 2020, 9(3):268-273. Wang Y, Na J. Progress on methods of subcellular localization of chloroplast protein in plant cells[J]. Botanical Research, 2020, 9(3):268-273.
[3] 李立奇, 万瑛. 蛋白质的亚细胞定位预测研究进展[J]. 免疫学杂志, 2009, 25(5):602-604. Li LQ, Wang Y. Advancement of predicting protein subcellular localization sites[J]. Immunological Journal, 2009, 25(5):602-604.
[4] Xiong E, Zheng CY, Wu XL, Wang W. Protein subcellular location:the gap between prediction and experimentation[J]. Plant Mol Biol Rep, 2016, 34:52-61.
[5] Tanz SK, Castleden I, Hooper CM, Vacher M, Small I, et al. SUBA3:a database for integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis[J]. Nucleic Acids Res, 2013, 41:1185-1191.
[6] 邢浩然, 刘丽娟,刘国振. 植物蛋白质的亚细胞定位研究进展[J]. 华北农学报, 2006, 21(S):1-6. Xing HR, Liu LJ, Liu GZ. Advancement of protein subcellular localization in plants[J]. Acta Agricultire Boreali-Sinica, 2006, 21(S):1-6.
[7] Mehrabad EM, Hassanzadeh R, Eslahchi C. PMLPR:A novel method for predicting subcellular localization based on recommender systems[J]. Sci Rep, 2018, 8:12006.
[8] Emanuelsson O, Nielsen H, von Heijne G. ChloroP. A neural network-based method for predicting chloroplast transit peptides and their cleavage sites[J]. Protein Sci, 1999, 8:978-984.
[9] Hawkins J, Davis L, Boden M. Predicting nuclear localization[J]. J Proteome Res, 2007, 6:1402-1409.
[10] Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences[J]. Eur J Biochem, 1996, 241:779-786.
[11] Schein AI, Kissinger JC, Ungar LH. Chloroplast transit peptide prediction:a peek inside the black box[J]. Nucleic Acids Res, 2001, 29:82.
[12] Neuberger G, Maurer-Stroh S, Eisenhaber B, Hartig A, Eisenhaber F. Prediction of peroxisomal targeting signal 1 containing proteins from amino acid sequence[J]. J Mol Biol, 2003, 328:581-592.
[13] Mitschke J, Fuss J, Blum T, Hoglund A, Reski R, et al. Prediction of dual protein targeting to plant organelles[J]. New Phytol, 2009, 183:224-235.
[14] Tamura T, Akutsu T. Subcellular location prediction of proteins using support vector machines with alignment of block sequences utilizing amino acid composition[J]. BMC Bioinformatics, 2007, 8:466.
[15] Guda C, Guda P, Fahy E, Subramaniam S. MITOPRED:a web server for the prediction of mitochondrial proteins[J]. Nucleic Acids Res, 2004, 32:372-374.
[16] Hua S, Sun Z. Support vector machine approach for protein subcellular localization prediction[J]. Bioinformatics, 2001,17:721-728.
[17] Pierleoni A, Martelli PL, Fariselli P, Casadio R. BaCelLo:a balanced subcellular localization predictor[J]. Bioinformatics, 2006, 22:408-416.
[18] Hawkins J, Boden M. Detecting and sorting targeting peptides with neural networks and support vector machines[J]. J Bioinf Comput Biol, 2006, 4:1-18.
[19] Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S. Extensive feature detection of N-terminal protein sorting signals[J]. Bioinformatics, 2002, 18:298-305.
[20] Petsalaki EI, Bagos PG, Litou ZI, Hamodrakas SJ. PredSL:a tool for the N-terminal sequence-based prediction of protein subcellular localization[J]. Genom Proteom Bioinf, 2006, 4:48-55.
[21] Matsuda S, Ver JP, Saigo H, Ueda N, Toh H, Akutsu T. A novel representation of protein sequences for prediction of subcellular location using support vector machines[J]. Protein Sci, 2005, 14:2804-2813.
[22] Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence[J]. J Mol Biol, 2000, 300(4):1005-1016.
[23] Small I, Peeters N, Legeai F, Lurin C. Predotar:a tool for rapidly screening proteomes for N-terminal targeting sequences[J]. Proteomics, 2004, 4(6):1581-1590.
[24] Niu B, Jin YH, Feng KY, Lu WC, Cai YD, Li GZ. Using AdaBoost for the prediction of subcellular location of prokaryotic and eukaryotic proteins[J]. Mol Divers, 2008, 12:41-45.
[25] Brady S, Shatkay H. EpiLoc:a (working) text-based system for predicting protein subcellular location[J]. Pac Symp Biocomput, 2008, 13:604-615.
[26] Briesemeister S, Rahnenfuhrer J, Kohlbacher O. YLoc-an interpretable web server for predicting subcellular localization[J]. Nucleic Acids Res, 2010, 38:497-502.
[27] Blum T, Briesemeister S, Kohlbacher O. MultiLoc2:integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction[J]. BMC Bioinformatics, 2009,10:274.
[28] Horton P, Park KJ, Obayashi T, Fujita N, Harada H, et al. WoLF PSRT:protein localization predictor[J]. Nucleic Acids Res, 2007, 35:585-587.
[29] Goldberg T, Hecht M, Hamp T, Karl T, Yachdav G, et al. LocTree3 prediction of localization[J]. Nucleic Acids Res, 2014, 42:W350-W355.
[30] Chou KC, Shen HB. Plant-mPLoc:a top-down strategy to augment the power for predicting plant protein subcellular localization[J]. PLoS One, 2010, 5:e11335.
[31] Yu CS, Chen YC, Lu CH, Hwang JK:prediction of protein subcellular localization[J]. Proteins, 2006, 64:643-651.
[32] Armenteros JJA, Sønderby CK, Sønderby SK, Nielsen H, Winther O. DeepLoc:prediction of protein subcellular localization using deep learning[J]. Bioinformatics, 2017, 33(21):3387-3395.
[33] Liu YL, Cao D, Ma LL, Jin XF, Yang PF, et al. TMT-based quantitative proteomics analysis reveals the response of Camellia sinensis to fluoride[J]. J proteomics, 2016, 176:71-81.
[34] San Clemente H, Jamet E. WallProtDB, a database resource for plant cell wall proteomics[J]. Plant Methods, 2015, 11(1):2.
[35] Day A, Fénart S, Neutelings G, Hawkins S, Rolando C, et al. Identification of cell wall proteins in the flax (Linum usitatissimum) stem[J]. Proteomics, 2013, 13(5):812-825.
[36] 林珲, 朱海生, 温庆放, 黄丽放. 花椰菜BobACT基因的克隆及其作为内参基因的研究[J]. 植物遗传资源学报, 2019, 20(3):781-789. Lin H, Zhu HS, Wen QF, Huang LF. Molecular cloning of actin gene and study on this gene as reference gene in cauliflower (Brassica oleracea L. var. botrytis L.)[J]. Journal of Plant Genetic Resources, 2019, 20(3):781-789.
[37] Sundaravelpandian K, Gang-Ping X, Rae AL, Donna G, Bonnett GD, et al. Overexpression of TaCML20, a calmodulin-like gene, enhances water soluble carbohydrate accumulation and yield in wheat[J]. Physiol Plantarum, 2018, 165(4):790-799.
[38] Ming R, Vanburen R, Liu Y, Yang M, Han Y. Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.)[J]. Genome Bio, 2013, 14(5):R41.
[39] Nielsen H, Engelbrecht J, von Heijne SBG. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites[J]. Protein Eng, 1997, 10:1-6.
[40] Agrawal GK, Jwa NS, Lebrun MH, Job D, Rakwal R. Plant secretome:unlocking secrets of the secreted proteins[J]. Proteomics, 2010, 10(4):1-29.
[41] Foster LJ, de Hoog C, Zhang YL, Zhang Y, Xie XH, et al. A mammalian organelle map by protein correlation profiling[J]. Cell, 2006, 125(1):187-199.
[42] Liu YL, Li M, Han C, Wu FX, Tu BK, et al. Comparative proteomic analysis of rice shoots exposed to arsenate[J]. J Integr Plant Biol, 2013, 55(9999):1-14.
-
期刊类型引用(3)
1. 白建瑞. 蛋白质组学在生物植物逆境适应中的作用研究. 现代农业研究. 2025(02): 47-49 . 百度学术
2. 张月,岳晓琦,张付祥,杨成坤,唐丽雯,丁峰,胡福初,周开兵,马武强. 外源CPPU抑制‘妃子笑’荔枝果实着色过程的基因表达分析. 分子植物育种. 2024(21): 7004-7022 . 百度学术
3. 赵丽蓉,李雯,王利民,齐燕妮,李闻娟,谢亚萍,党照,赵玮,张建平. 亚麻PLA1基因家族的鉴定及表达分析. 作物学报. 2023(11): 2949-2965 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 736
- HTML全文浏览量: 17
- PDF下载量: 764
- 被引次数: 6