Effects of canopy structure and topography on seedling species diversity in an evergreen and deciduous broad-leaved mixed forest
-
摘要: 森林结构和地形是森林生态系统最明显的特点,也是影响林下幼苗存活和物种多样性的关键因子。该研究采用半球面摄影方法提取八大公山生长监测样地(共1.2 hm2)林冠结构参数,通过调查地表层木本植物幼苗的组成和多度,获取常见植物幼苗叶片功能性状,结合详细的地形信息,利用空间同步自回归模型探究林冠结构变量及地形因子对幼苗物种多样性及功能多样性的影响。结果表明:(1)八大公山亚热带山地常绿落叶阔叶林林冠结构复杂度较高,最大林冠高的平均值达到19.94 m,叶面积指数、平均叶倾角和林冠覆盖度分别为2.94、30.88°和0.87;(2)林冠结构变量和地形因子能够解释32.6%~48.4%的林下幼苗物种多样性指数变异和28.5%~70.2%的功能多样性变异,但地形因子对幼苗物种多样性的影响很小;(3)预测在亚热带常绿落叶阔叶林高海拔的山坡上,有较低的叶面积指数和平均叶倾角群落有较高的幼苗物种多样性;而在低海拔山脊上,较低的叶面积指数和平均叶倾角群落林下幼苗层有较高的功能多样性。此结果对科研人员和林业工作者开展野外森林更新情况评估和样方调查将有所帮助。Abstract: Forest canopy structure and topography are the most obvious characteristics of forest ecosystems and directly affect forest regeneration, seedling survival, and diversity. To reveal the mechanisms of canopy structure, topography, and spatial variables on understory species diversity and functional diversity, we performed semi-spherical photography and extracted indices of canopy structure in 1.2 hm2 seedling monitoring plot in the 25 hm2 Badagongshan forest plot, then investigated species composition and abundance of seedling communities in each 20 m×20 m quadrat in the seedling monitoring plot. We also sampled leaves of common species close to the reserve and measured leaf functional traits. We applied the spatial simultaneous autoregressive error model (SARs) to test the effects of canopy structure, topography, and spatial factors on seedling species diversity and functional diversity. Results showed that: (1) canopy structure of adult tree communities in the 1.2 hm2 plot was relatively complex and the mean maximum canopy height, mean leaf area index (LAI), mean leaf angle (MLA), and Gndcover were 19.94 m, 2.94, 30.88°, and 0.87, respectively; (2) Canopy structure and topographical variables explained 32.6% - 48.4% and 28.5% - 70.2% of variation in the species and functional diversity indices, respectively, but not all topographical variables were entered in the best-fitting model of species diversity indices; (3) Seedling species diversity was higher in habitats with a high altitude and slope and where canopy structure had a lower LAI and MLA, whereas, seedling functional diversity was higher in habitats with a low altitude and slope and where canopy structure had a lower LAI and MLA. These results provide suggestions and guidance for forest regeneration evaluation and vegetation inventory.
-
-
[1] Swenson NG. The role of evolutionary processes in producing biodiversity patterns, and the interrelationships between taxonomic, functional and phylogenetic biodiversity[J]. Am J Bot, 2011, 98(3):472-480.
[2] Marks CO, Muller-Landau HC, Tilman D, Bardgett R. Tree diversity, tree height and environmental harshness in eas-tern and western north America[J]. Ecol Lett, 2016, 19(7):743-751.
[3] Jennings SB, Brown ND, Sheil D. Assessing forest canopies and understorey illumination:canopy closure, canopy cover and other measures[J] Forestry, 1999, 72(1):59-74.
[4] Hopkin M. Biodiversity and climate form focus of forest canopy plan[J]. Nature, 2005, 436(7050):452.
[5] Franklin JF, Van Pelt R. Spatial aspects of structural complexity in old-growth forests[J]. J Forest, 2004, 102(3):22-28.
[6] 刘泽彬, 王彦辉, 刘宇, 田奥, 王亚蕊, 左海军. 宁夏六盘山半湿润区华北落叶松林冠层叶面积指数的时空变化及坡面尺度效应[J]. 植物生态学报, 2017, 41(7):749-760. Liu ZB, Wang YH, Liu Y, Tian A, Wang YR, Zuo HJ. Spatiotemporal variation and scale effect of canopy leaf area index of larch plantation on a slope of the semi-humid Liupan Mountains, Ningxia, China[J]. Chinese Journal of Plant Ecology, 2017, 41(7):749-760.
[7] Norman JM, Campbell GS. Canopy structure[M]//Pearcy RW, Ehleringer JR, eds. Plant Physiological Eco-logy. Dordrecht:Springer, 1989:301-325.
[8] Hubbel SP, Foster RB, Obrien ST, Harms KE, Condit R, Wechsler B, et al. Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest[J]. Science, 1999, 283(5401):554-557.
[9] Clinton BD. Light, temperature, and soil moisture responses to elevation, evergreen understory, and small canopy gaps in the southern Appalachians[J]. Forest Ecol Manage, 2003, 186(1-3):243-255.
[10] 袁铁象, 张合平, 欧芷阳, 谭一波. 地形对桂西南喀斯特山地森林地表植物多样性及分布格局的影响[J]. 应用生态学报, 2014, 25(10):2803-2810. Yuan TX, Zhang HP, Ou ZY, Tan YB. Effects of topography on the diversity and distribution pattern of ground plants in karst montane forests in southwest Guangxi, China[J]. Chinese Journal of Applied Ecology, 2014, 25(10):2803-2810.
[11] Tanaka K, Hashimoto S. Plant canopy effects on soil thermal and hydrological properties and soil respiration[J]. Ecol Model, 2006, 196(1):32-44.
[12] 李德志, 臧润国. 森林冠层结构与功能及其时空变化研究进展[J]. 世界林业研究, 2004, 17(3):12-16. Li YD, Zang RG. The research advances on the structure and function of forest canopy, as well as their temporal and spatial changes[J]. World Forestry Research, 2004, 17(3):12-16.
[13] 卢训令, 丁圣彦, 游莉, 张恒月. 伏牛山自然保护区森林冠层结构对林下植被特征的影响[J]. 生态学报, 2013, 33(15):4715-4723. Lu XL,Ding SY,You L,Zhang HY.Effects of forest canopy structure on understory vegetation characteristics of Funiu Mountain Nature Reserve[J]. Acta Ecologica Sinica, 2013, 33(15):4715-4723.
[14] 姚俊宇, 伍炫蓓, 孙千惠, 吴霞, 姚小兰, 郝建锋, 齐锦秋. 林窗大小对川西马尾松人工林林下物种多样性和生物量的影响[J]. 应用与环境生物学报, 2018, 24(2):214-220. Yao JY, Wu XB, Sun QH, Wu X, Yao XL, Hao JF, Qi JQ. Effects of canopy gap size on understory species diversity and biomass in a Pinus massoniana plantation in western Sichuan[J]. Chinese Journal of Applied & Environmental Biology, 2018, 24(2):214-220.
[15] Terborgh J, Nunez NH, Feeley K, Beck H. Gaps present a trade-off between dispersal and establishment that nourishes species diversity[J]. Ecology, 2020. DOI: 10.1002/ecy.2996.
[16] Getzin S, Wiegand T, Wiegand K, He F. Heterogeneity influences spatial patterns and demographics in forest stands[J]. J Ecol, 2008, 96(4):807-820.
[17] Suzuki M. Effects of the topographic niche differentiation on the coexistence of major and minor species in a species-rich temperate forest[J]. Ecol Res, 2011, 26(2):317-326.
[18] Brokaw N, Busing RT. Niche versus chance and tree diversity in forest gaps[J]. Trends Ecol Evol, 2000, 15(5):183-188.
[19] 刘何铭, 杨庆松, 方晓峰, 马遵平, 沈国春, 张志国, 等. 亚热带常绿阔叶林林窗物种丰富度的影响因素[J].生物多样性, 2015, 23(2):149-156. Liu HM, Yang QS, Fang XF, Ma ZP, Shen GC, Zhang ZG, et al. Influences on gap species richness in a subtropical evergreen broad-leaved forest[J]. Biodiversity Science, 2015, 23(2):149-156.
[20] 隋丹丹, 王悦, 练琚愉, 张健, 胡健波, 欧阳学军, 等. 鼎湖山南亚热带常绿阔叶林林窗分布格局及其成因[J]. 生物多样性, 2017, 25(4):382-392. Sui DD, Wang Y, Lian JY, Zhang J, Hu JB, Ouyang XJ, et al. Gap distribution patterns in the south subtropical evergreen broad-leaved forest of Dinghushan[J]. Biodiversity Science, 2017, 25(4):382-392.
[21] Comita LS, Engelbrecht BM, Seasonal and spatial variation in water availability drive habitat associations in a tro-pical forest[J]. Ecology, 2009, 90(10):2755-2765.
[22] Lu JM, Johnson DJ, Qiao XJ, Lu ZJ, Wang QG, Jiang MX. Density dependence and habitat preference shape seedling survival in a subtropical forest in central China[J]. J Plant Ecol, 2015, 8(6):568-577.
[23] Liu H, Shen G, Ma Z, Yang Q, Xia J, Fang X, Wang X. Conspecific leaf litter-mediated effect of conspecific adult neighborhood on early-stage seedling survival in a subtropical forest[J]. Sci Rep, 2016, 6:37830.
[24] 徐文秀, 路俊盟, 卢志军, 刘梦婷, 刘检明, 江明喜. 八大公山常绿落叶阔叶混交林影响幼苗存活的主要因子分析[J]. 植物科学学报, 2017, 35(5):659-666. Xu WX, Lu JM, Lu ZJ, Liu MT, Liu JM, Jiang MX. Analysis of main factors affecting seedling survival in Ba-dagongshan evergreen and deciduous broad-leaved mixed forest[J]. Plant Science Journal, 2017, 35(5):659-666.
[25] 巩合德, 杨国平, 张一平, 刘玉洪, 郑征, 甘建民. 哀牢山4类植物群落叶面积指数比较[J]. 东北林业大学学报, 2007, 35(3):34-36. Gong HD, Yang GP, Zhang YP, Liu YH, Zheng Z, Gan JM. Comparison of leaf area index of four types of plant communities in Ailao Mountain[J]. Journal of Northeast Forestry University, 2007, 35(3):34-36.
[26] 卢志军, 鲍大川, 郭屹立, 路俊萌, 王庆刚, 何东, 等. 八大公山中亚热带山地常绿落叶阔叶混交林物种组成与结构[J]. 植物科学学报, 2013, 31(4):336-344. Lu ZJ, Bao DC, Guo YL, Lu JM, Wang QG, He D, et al. Community composition and structure of Badagongshan (BDGS) forest dynamic plot in a mid-subtropical mountain evergreen and deciduous broad-leaved mixed forest, central China[J]. Plant Science Journal, 2013, 31(4):336-344.
[27] Condit R. Tropical Forest Census Plots:Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots[M]. Dordrecht:Springer Science & Business Media, 1998.
[28] Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Aust J Bot, 2003, 51(4):335-380.
[29] Rich PM. Wood J, Vierglais DA, Burek K, Webb N. Guide to HemiView:Software for analysis of the hemispherical photography[M]. Cambridge(UK):Manual, Delta-T Devices, 1999.
[30] Xu YZ, Franklin SB, Wang QG, Shi Z, Luo YQ, Lu ZJ, et al. Topographic and biotic factors determine forest biomass spatial distribution in a subtropical mountain moist forest[J]. Forest Ecol Manag, 2015, 357(11):95-103.
[31] Mason NW, Mouillot D, Lee WG, Wilson JB. Functional richness, functional evenness and functional divergence:the primary components of functional diversity[J]. Oikos, 2005, 111(1):112-118.
[32] Rao CR. Diversity and dissimilarity coefficients:a unified approach[J]. Theor Popul Biol, 1982, 21(1):24-43.
[33] Dutilleul P, Clifford P, Richardson S, Hemon D. Modifying the t test for assessing the correlation between two spatial processes[J]. Biometrics, 1993, 49(1):305-314.
[34] Kissling WD, Carl G. Spatial autocorrelation and the selection of simultaneous autoregressive models[J]. Global Ecol Biogeogr, 2008, 17(1):59-71.
[35] R Core Team. R:a language and environment for statistical computing[CP/OL]. Vienna, Austria:R Foundation for Statistical Computing, 2018.https://www.r-project.org/.
[36] Oksanen J, Kindt R, Legendre P, O'Hara B, Stevens MHH, Oksanen MJ, et al. The vegan package:Community ecology package (v2.5-6)[CP/OL]. 2007. https://github.com/vegandevs/vegan.
[37] Laliberté E, Legendre P. A distance-based framework for measuring functional diversity from multiple traits[J]. Ecology, 2010, 91:299-305.
[38] Osorio F, Vallejos R, Cuevas F. SpatialPack:Package for analysis of spatial data. R package(v0.2)[CP/OL]. 2012. http://spatialpack.mat.utfsm.cl.
[39] Bivand R, Altman M, Anselin L, Assunção R, Berke O, et al. SPDEP:Spatial dependence:weighting schemes, statistics and models:R package(v1.1-5)[CP/OL]. 2011. https://github.com/r-spatial/spdep/.
[40] 杨建宇. 古田山常绿阔叶林冠层结构及其光环境特征[D]. 齐齐哈尔:齐齐哈尔大学, 2015. [41] 邢九州. 林内光环境的精确测量方法及时空异质性[D]. 上海:华东师范大学, 2015. [42] 周晓果, 温远光, 朱宏光, 王磊, 李晓琼. 大明山常绿阔叶林冠层垂直结构与林下植物更新[J]. 应用生态学报, 2017, 28(2):367-374. Zhou XG, Wen YG, Zhu HG, Wang L, Li XQ. Canopy vertical structure and understory plant regeneration of an evergreen broadleaved forest in Damingshan, Guangxi, China[J]. Chinese Journal of Applied Ecology, 2017, 28(2):367-374.
[43] Qiao XJ, Li QX, Jiang QH, Lu JM, Franklin SB, Tang ZY, et al. Beta diversity determinants in badagongshan, a subtropical forest in central China[J]. Sci Rep, 2015, 5(1):17043.
[44] Wang QG, Xu YZ, Lu ZJ, Bao DC, Guo YL, Lu JM, et al. Disentangling the effects of topography and space on the distributions of dominant species in a subtropical forest[J]. Chinese Sci Bull, 2014, 59(35):5113-5122.
-
期刊类型引用(7)
1. 周海琪,严朝东,潘丽婵,刘颂颂,胡桢健. 东莞城市绿地群落林下草本植物多样性及其对乔木冠层结构等环境因子的响应. 林业与环境科学. 2025(01): 126-134 . 百度学术
2. 陈燕旋,黄小波,郎学东,唐荣,张锐,李聪,李俊松,李有寿,王校海,苏建荣,李帅锋. 西双版纳热带雨林不同生长型木本植物功能多样性. 林业科学研究. 2024(03): 37-48 . 百度学术
3. 童跃伟,屈利利,符庆响,陈雨蓓,项小燕,朱卫东,齐光,代力民. 大别山南坡森林植物群落物种多样性及其与海拔因子的关系. 生态学报. 2024(12): 5307-5317 . 百度学术
4. 王耀仪,王宏翔,王永强,曾文豪,叶绍明. 雅长保护区老龄林不同林层功能性状多样性及其影响因素分析. 南京林业大学学报(自然科学版). 2024(05): 28-38 . 百度学术
5. 王会平,韩新生,许浩,王登魁,王力红,张伟正,杨彦军,张世杰,杨伟,贾生舜. 林分结构对森林生态功能影响的研究综述. 宁夏农林科技. 2024(11): 79-83 . 百度学术
6. 黄旭波,秦玉川,王丽玲,王衍彬,方茹,杨少宗,童晓青,刘本同. 浙江省鼠茅植物群落物种多样性研究. 浙江林业科技. 2023(01): 45-52 . 百度学术
7. 米湘成,王绪高,沈国春,刘徐兵,宋晓阳,乔秀娟,冯刚,杨洁,毛子昆,徐学红,马克平. 中国森林生物多样性监测网络:二十年群落构建机制探索的回顾与展望. 生物多样性. 2022(10): 211-233 . 百度学术
其他类型引用(7)
计量
- 文章访问数: 591
- HTML全文浏览量: 0
- PDF下载量: 1039
- 被引次数: 14