Community assembly of riparian vegetation in the middle and lower reaches of the Yangtze River
-
摘要: 沿长江中下游(宜昌-铜陵段)13座城市共37个位点,分别于丰水期和枯水期对岸带的湿生植物进行调查,从物种和系统发育2个维度研究群落的构建机制,并结合环境和空间因子探讨其驱动因素。结果显示:(1)丰水期湿生植物群落的α多样性高于枯水期,且丰水期α多样性主要与水分条件呈正相关,而枯水期则主要与温度和土壤总氮含量有关。(2)丰水期的系统发育结构指数呈聚集趋势,暗示生境过滤起着主导作用,而枯水期的NRI(net relatedness index)和NTI(nearest taxon index)呈不同趋势,暗示存在近期的群落分化。(3)群落的α多样性在物种层面和系统发育层面存在显著关联性,其多样性水平可在一定程度上互为表征。(4)长江中下游沿岸湿生植物群落的构建机制在不同时期存在差异,丰水期的群落构建是环境筛选和扩散限制共同作用的结果,且以环境筛选作用占主导,而枯水期的群落构建仅在物种层面受一定程度环境筛选作用的影响。(5)大生境的温度变化、微生境的土壤水分和养分条件是影响长江中下游岸带湿生植物群落差异的主要驱动因素。该研究结果可为长江中下游岸带湿地生态系统的管理和保护提供科学支持。Abstract: In this study, hygrophyte communities at 37 sites in 13 cities along the middle and lower reaches of the Yangtze River (Yichang-Tongling section) were investigated during the wet and dry seasons. Both species composition and phylogenetic structure were examined at each site in the wet and dry seasons. We also revealed the drivers of community assembly combining environmental and spatial factors. Results showed that: (1) α-diversity in the wet season was higher than that in the dry season. There was a positive correlation between hydrological conditions and α-diversity in the wet season, while α-diversity in the dry season was mainly correlated with temperature and soil total nitrogen (TN). (2) The phylogenetic structure in the wet season showed an aggregation, implying that environmental filtering played a dominant role in community assembly; in the dry season, a different pattern was observed between the net relatedness index (NRI) and nearest taxon index (NTI), suggesting the evolution at recent (terminal) phylogenetic nodes. (3) There was a significant relationship between the α-diversity of species and phylogeny, indicating that these two dimensions can represent each other to a certain extent. (4) The composition mechanism of riparian vegetation in the middle and lower reaches of the Yangtze River differed between the wet and dry seasons. Species and phylogenetic structure were both influenced by environmental filtering and dispersal limitation in the wet season, with environmental filtering playing a dominant role in this process. In the dry season, community composition was only somewhat influenced by environmental filtering at the species level. (5) The key drivers of community assembly in our study were temperature at the large scale and aquatic and nutrient conditions of the soil at the small scale. This study should contribute to the management and protection of riparian vegetation in the middle and lower reaches of the Yangtze River.
-
Keywords:
- Riparian vegetation /
- Community assembly /
- Species diversity /
- Phylogeny /
- Environmental filtering
-
-
[1] 牛克昌, 刘怿宁, 沈泽昊, 何方良, 方精云. 群落构建的中性理论和生态位理论[J]. 生物多样性, 2009, 17(6):579-593. Niu KC, Liu YN, Shen ZH, He FL, Fang JY. Community assembly:the relative importance of neutral theory and niche theory[J]. Biodiversity Science, 2009, 17(6):579-593.
[2] Prach K, Walker LR. Four opportunities for studies of ecological succession[J]. Trends Ecol Evol, 2011, 26(3):119-123.
[3] Rosindell J, Hubbell SP, Etienne RS. The unified neutral theory of biodiversity and biogeography at age ten[J]. Trends Ecol Evol, 2011, 26(7):340-348.
[4] Clements FE. Plant Succession:an analysis of the deve-lopment of vegetation[M]. Washington:Carnegie Institution of Washington, 1916:20.
[5] Gleason HA. The individualistic concept of the plant association[J]. Bull Torrey Botan Club, 1926, 53(1):7-26.
[6] 柴永福, 岳明. 植物群落构建机制研究进展[J]. 生态学报, 2016, 36(15):4557-4572. Chai YF, Yue M. Research advances in plant community assembly mechanisms[J]. Acta Ecologica Sinica, 2016, 36(15):4557-4572.
[7] Gravel D, Canham CD, Beaudet M, Messier C. Reconciling niche and neutrality:the continuum hypothesis[J]. Ecol Lett, 2006, 9(4):399-409.
[8] 李新辉,刘延虹,刘晔,许玥,杨阳,沈泽昊. 地理距离及环境差异对云南元江干热河谷植物群落beta多样性的影响[J]. 生物多样性, 2016, 24(4):399-406. Li XH, Liu YH, Liu Y, Xu Y, Yang Y, Shen ZH. Impacts of geographical distances and environmental differences on the beta diversity of plant communities in the dry-hot valley of the Yuanjiang River[J]. Biodiversity Science, 2016, 24(4):399-406.
[9] 赵鸣飞,王国义,邢开雄,王宇航,薛峰,康慕谊,罗开. 秦岭西部森林群落相似性递减格局及其影响因素[J]. 生物多样性, 2017, 25(1):3-10. Zhao MF, Wang GY, Xing KX, Wang YH, Xue F, Kang MY, Luo K. Patterns and determinants of species similarity decay of forest communities in the western Qinling Mountains[J]. Biodiversity Science, 2017, 25(1):3-10.
[10] 刘灿然, 马克平. 生物群落多样性的测度方法Ⅴ[STXFZ]. 生物群落物种数目的估计方法[J]. 生态学报, 1997, 17(6):601-610. Liu CR, Ma KP. Measurement of biotic community diversityⅤ[STXFZ]. Methods for estimating the number of species in a community[J]. Acta Ecologica Sinica, 1997, 17(6):601-610.
[11] Götzenberger L, de Bello F, Bråthen KA, Dacison J, Dubuis A, Guisan A, et al. Ecological assembly rules in plant communities-approaches, patterns and prospects[J]. Biol Rev Camb Philos Soc, 2012, 87(1):111-127.
[12] Petchey OL, Gaston KJ. Functional diversity (FD), species richness and community composition[J]. Ecol Lett, 2002, 5(3):402-411.
[13] 李保,张昀哲,唐敏炯. 长江口近十年水质时空演变趋势分析[J]. 人民长江, 2018, 49(18):33-37. Li B, Zhang YZ, Tang MJ. Analysis on spatial-temporal evolution trend of water quality of Yangtze River Estuary in recent ten years[J]. Yangtze River, 2018, 49(18):33-37.
[14] 生态环境部. 中华人民共和国国家环境保护标准(HJ 962-2018):土壤pH值的测定:电位法[S]. 北京:中国环境出版社, 2018. [15] 鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社, 2000. [16] 生态环境部. 中华人民共和国国家环境保护标准(HJ 636-2012):水质总氮的测定:碱性过硫酸钾消解紫外分光光度法[S]. 北京:中国环境出版社, 2012. [17] 国家环境保护局. 中华人民共和国国家标准(GB 11893-89):水质总磷的测定:钼酸铵分光光度法[S/OL]. (1989-12-25). http://39.104.123.17:5533/upload/2009/4/200941575075593.pdf. [18] 赵安玖,胡庭兴,陈小红. 西南山地阔叶混交林群落空间结构的多尺度特征[J]. 生物多样性, 2009, 17(1):43-50. Zhao AJ, Hu TX, Chen XH. Multiple-scale spatial analysis of community structure in a mountainous mixed evergreen-deciduous broad-leaved forest, southwest China[J]. Biodiversity Science, 2009, 17(1):43-50.
[19] 马克平. 生物群落多样性的测度方法:Ⅰ[STXFZ].α多样性的测度方法(上)[J]. 生物多样性, 1994, 2(3):162-168. [20] 马克平,黄建辉,于顺利,陈灵芝. 北京东灵山地区植物群落多样性的研究:Ⅱ[STXFZ].丰富度、均匀度和物种多样性指数[J]. 生态学报, 1995, 15(3):268-277. Ma KP, Huang JH Yu SL, Chen LZ. Plant community diversity in Dongling mountain, Beijing, China:Ⅱ[STXFZ]. species richness, evenness and species diversities[J]. Acta Ecologica Sinica, 1995, 15(3):268-277.
[21] 马克平,刘灿然,刘玉明. 生物群落多样性的测度方法:Ⅱ[STXFZ].β多样性的测度方法[J]. 生物多样性, 1995, 3(1):38-43. Ma KP, Liu CR, Liu YM. Measurement method of biodiversity:Ⅱ[STXFZ].β diversity measurement method[J]. Biodiversity Science, 1995, 3(1):38-43.
[22] Webb CO, Donoghue MJ. Phylomatic:tree assembly for applied phylogenetics[J]. Mol Ecol Notes, 2005, 5(1):181-183.
[23] Faith DP. Conservation evaluation and phylogenetic diversity[J]. Biol Conserv, 1992, 61(1):1-10.
[24] 车盈,金光泽. 物种多样性和系统发育多样性对阔叶红松林生产力的影响[J]. 应用生态学报, 2019, 30(7):2241-2248. Che Y, Jin GZ. Effects of species diversity and phylogenetic diversity on productivity of a mixed broadleaved-Korean pine forest[J]. Chinese Journal of Applied Ecology, 2019, 30(7):2241-2248.
[25] Kluge J, Kessler M. Phylogenetic diversity, trait diversity and niches:species assembly of ferns along a tropical elevational gradient[J]. J Biogeogr, 2011, 38(2):394-405.
[26] Butterfield BJ, Cavieres LA, Callaway RM, Cook BJ, Kikvidze Z, Lortie CJ, et al. Alpine cushion plants inhibit the loss of phylogenetic diversity in severe environments[J]. Ecol Lett, 2013, 16(4):478-486.
[27] 冯刚,张金龙,裴男才,饶米德,米湘成,任海保,马克平. 系统发育β多样性指数的比较:以古田山样地为例[J]. 科学通报, 2011, 56(34):2857-2864. Feng G, Zhang JL, Pei NC, Rao MD, Mi XC, Ren HB, Ma KP. Comparison of phylobetadiversity indices based on community data from Gutianshan forest plot[J]. Chinese Science Bulletin, 2011, 56(34):2857-2864.
[28] 饶米德,冯刚,张金龙,米湘成,陈建华. 生境过滤和扩散限制作用对古田山森林物种和系统发育β多样性的影响[J]. 科学通报, 2013, 58(13):1204-1212. Rao MD, Feng G, Zhang JL, Mi XC, Chen JH. Effects of environmental filtering and dispersal limitation on species and phylogenetic beta diversity in Gutianshan National Nature Reserve[J]. Chinese Science Bulletin, 2013, 58(13):1204-1212.
[29] Osawa T, Mitsuhashi H, Ushimaru A. Plant species' coe-xistence relationships may shift according to life history traits and seasons[J]. Plant Ecol, 2014, 215(6):597-612.
[30] Webb CO, Ackerly DD, Mcpeek MA, Donoghue MJ. Phylogenies and community ecology[J]. Ann Review Ecol Syst, 2003, 33:475-505.
[31] Hong Q. Climatic correlates of phylogenetic relatedness of woody angiosperms in forest communities along a tropical elevational gradient in south America[J]. J Plant Ecol, 2018, 11(3):394-400.
[32] Geedicke I, Schultz M, Rudolph B, Oldeland J. Phylogenetic clustering found in lichen but not in plant communities in European heathlands[J]. Community Ecol, 2016, 17(2):216-224.
[33] Cadotte MW, Cardinale BJ, Oakley TH. Evolutionary history and the effect of biodiversity on plant productivity[J]. Proc Nat Acad Sci, 2008, 105(44):17012-17017.
[34] Winter M, Devictor V, Schweiger O. Phylogenetic diversity and nature conservation:where are we?[J]. Trends Ecol Evol, 2013, 28(4):199-204.
[35] Yang H, Mingyu WU, Liu WX, Zhang NL, Wan SQ. Community structure and composition in response to climate change in a temperate steppe[J]. Glob Chang Biol, 2011, 17(1):452-465.
[36] Cleland EE, Collins SL, Dickson TL, Farrer EC, Gross KL, Gherardi LA, et al. Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation[J]. Ecology, 2013, 94(8), 1687-1696.
[37] Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, et al. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning:evidence from Inner Mongolia Grasslands[J]. Glob Chang Biol, 2010, 16(1):358-372.
[38] Diamond JM. Assembly of species communities[M]//Cody ML, Diamond JM, eds. Ecology and Evolution of Communities. Cambridge:Press of Harvard University, 1975:342-444.
[39] Hubbell SP. Neutral theory in community ecology and the hypothesis of functional equivalence[J]. Func Ecol, 2005, 19(1):166-172.
[40] Nekola JC, White PS. The distance decay of similarity in biogeography and ecology[J]. J Biogeogr, 1999, 26(4):867-878.
[41] 张淼淼,秦浩,王烨,张峰. 汾河中上游湿地植被β多样性[J]. 生态学报, 2016, 36(11):3292-3299. Zhang MM, Qing H, Wang Y, Zhang F. Beta diversity of wetland vegetation in the middle and upper reaches of the Fenhe River watershed[J]. Acta Ecologica Sinica, 2016, 36(11):3292-3299.
[42] Tang ZY, Fang JY, Chi XL, Yang YH, Ma WH, Mohhanot A, et al. Geography, environment, and spatial turnover of species in China's grasslands[J]. Ecography, 2012, 35(12):1103-1109.
[43] 何池全, 赵魁义, 余国营. 湿地克隆植物的繁殖对策与生态适应性[J]. 生态学杂志, 1999, 18(6):38-46. He CQ, Zhao KY, Yu GY. Advance in the ecological adaptability of the clonal plant in wetlands[J]. Chinese Journal of Ecology, 1999, 18(6):38-46.
[44] 姚鑫, 杨桂山, 万荣荣, 王晓龙. 水位变化对河流、湖泊湿地植被的影响[J]. 湖泊科学, 2014, 26(6):813-821. Yao X, Yang GS, Wan RR, Wang XL. Impact of water level change on wetland vegetation of rivers and lakes[J]. Journal of Lake Sciences, 2014, 26(6):813-821.
[45] 韩乃鹏. 水淹胁迫对乐安河河岸带植物群落的分布、生理和生长状况的影响[D]:南昌:江西师范大学, 2017:28-30. -
期刊类型引用(5)
1. 江燕东,彭正东,徐琪,甘婉怡,黄柳菁. 喜旱莲子草叶片、细根功能性状对异质生境的响应. 植物研究. 2024(03): 410-419 . 百度学术
2. 陈家兴,王姝,陈林丽,侯夏丽,杨庆祝,尹任娅. 干旱条件对鬼针草和醉鱼草种间相互作用及生长的影响. 植物研究. 2023(05): 720-728 . 百度学术
3. 周友秀,杨桂梅,秦子博,杨钰华,江燕东,黄柳菁. 海岸草本植物细根、叶片功能性状及其与土壤因子的关系. 广西植物. 2023(11): 1975-1985 . 百度学术
4. 关世凯,陶大燕,周锦业,闫海霞,宋倩,罗述名. 异质生境下大旗瓣凤仙花种群特征与生长状况. 南方农业学报. 2022(08): 2205-2214 . 百度学术
5. 吴国华,夏春平,钟张胜,周众灵,林大余,兰智鑫,葛永金. 浙西南油茶林下猪屎豆生物量和元素含量分析. 福建林业科技. 2021(04): 13-16 . 百度学术
其他类型引用(6)
计量
- 文章访问数: 655
- HTML全文浏览量: 8
- PDF下载量: 609
- 被引次数: 11