高级检索+

模拟喀斯特异质性小生境下三叶鬼针草地上地下协同生长对策

陈金艺, 张静, 李素慧, 宋海燕, 王佳敏, 陶建平, 刘锦春

陈金艺, 张静, 李素慧, 宋海燕, 王佳敏, 陶建平, 刘锦春. 模拟喀斯特异质性小生境下三叶鬼针草地上地下协同生长对策[J]. 植物科学学报, 2020, 38(6): 762-772. DOI: 10.11913/PSJ.2095-0837.2020.60762
引用本文: 陈金艺, 张静, 李素慧, 宋海燕, 王佳敏, 陶建平, 刘锦春. 模拟喀斯特异质性小生境下三叶鬼针草地上地下协同生长对策[J]. 植物科学学报, 2020, 38(6): 762-772. DOI: 10.11913/PSJ.2095-0837.2020.60762
Chen Jin-Yi, Zhang Jing, Li Su-Hui, Song Hai-Yan, Wang Jia-Min, Tao Jian-Ping, Liu Jin-Chun. Synergistic aboveground-belowground growth of Bidens pilosa L. in heterogeneous karst habitats[J]. Plant Science Journal, 2020, 38(6): 762-772. DOI: 10.11913/PSJ.2095-0837.2020.60762
Citation: Chen Jin-Yi, Zhang Jing, Li Su-Hui, Song Hai-Yan, Wang Jia-Min, Tao Jian-Ping, Liu Jin-Chun. Synergistic aboveground-belowground growth of Bidens pilosa L. in heterogeneous karst habitats[J]. Plant Science Journal, 2020, 38(6): 762-772. DOI: 10.11913/PSJ.2095-0837.2020.60762
陈金艺, 张静, 李素慧, 宋海燕, 王佳敏, 陶建平, 刘锦春. 模拟喀斯特异质性小生境下三叶鬼针草地上地下协同生长对策[J]. 植物科学学报, 2020, 38(6): 762-772. CSTR: 32231.14.PSJ.2095-0837.2020.60762
引用本文: 陈金艺, 张静, 李素慧, 宋海燕, 王佳敏, 陶建平, 刘锦春. 模拟喀斯特异质性小生境下三叶鬼针草地上地下协同生长对策[J]. 植物科学学报, 2020, 38(6): 762-772. CSTR: 32231.14.PSJ.2095-0837.2020.60762
Chen Jin-Yi, Zhang Jing, Li Su-Hui, Song Hai-Yan, Wang Jia-Min, Tao Jian-Ping, Liu Jin-Chun. Synergistic aboveground-belowground growth of Bidens pilosa L. in heterogeneous karst habitats[J]. Plant Science Journal, 2020, 38(6): 762-772. CSTR: 32231.14.PSJ.2095-0837.2020.60762
Citation: Chen Jin-Yi, Zhang Jing, Li Su-Hui, Song Hai-Yan, Wang Jia-Min, Tao Jian-Ping, Liu Jin-Chun. Synergistic aboveground-belowground growth of Bidens pilosa L. in heterogeneous karst habitats[J]. Plant Science Journal, 2020, 38(6): 762-772. CSTR: 32231.14.PSJ.2095-0837.2020.60762

模拟喀斯特异质性小生境下三叶鬼针草地上地下协同生长对策

基金项目: 

中央高校基本科研业务费专项(XDJK2020B037);国家自然科学基金项目(31500399)。

详细信息
    作者简介:

    陈金艺(1994-),女,硕士研究生,研究方向为植物生态学(E-mail:chengjinyiyiyi123@163.com)。

    通讯作者:

    刘锦春,E-mail:jinchun@swu.edu.cn

  • 中图分类号: Q948.11

Synergistic aboveground-belowground growth of Bidens pilosa L. in heterogeneous karst habitats

Funds: 

This work was supported by grants from the Fundamental Research Funds for the Central Universities (XDJK2020B037) and National Natural Science Foundation of China (31500399).

  • 摘要: 模拟在喀斯特异质生境下,通过随机区组实验,研究三叶鬼针草(Bidens pilosa L.)在两种土壤生境(浅而宽、深而窄)和3种水分处理(对照、减水50%、减水70%)下植物的地上和地下生长关系及生物量分配格局。结果显示:(1)两种生境中三叶鬼针草的地上生长(株高、地径、叶面积、叶生物量)与地下根系生长(根长、根表面积、根体积、根生物量)均随着施水量的减少而降低;叶面积比率随着施水量的减少而增加;根质量比在浅而宽土壤生境中呈先增后减的趋势,而在深而窄土壤生境中呈增加趋势。(2)两种生境中三叶鬼针草的地上生物量与地下根系生物量、叶面积与根长、叶面积与各层根系生长均呈显著正相关关系。但在浅而宽土壤生境中,三叶鬼针草的地上生物量与各土层根系生物量均呈显著正相关,而在深而窄土壤生境中,地上生物量仅与中上土层根系生物量呈显著正相关。研究表明三叶鬼针草在不同生境中均具有较好的地上地下协同生长对策,在增强对地下资源获取的同时也增强了对地上资源的获取。在浅而宽土壤生境中,三叶鬼针草通过协调根系的横向拓展能力与植物叶片的生长来应对快速的干旱缺水;在深而窄土壤生境中,植株能较好地协调根系向下拓展能力与地上叶面积的生长,更好地利用土壤深层的水分资源。
    Abstract: Based on simulation of heterogeneous karst habitats, the aboveground and belowground growth relationship of Bidens pilosa L. and biomass distribution patterns under two soil habitats (SW: shallow and wide; DN: deep and narrow) and three water treatments (W100%: control; W50%: water reduction by 50%; W30%: water reduction by 70%) were investigated through a randomized block group experiment. Results showed that: (1) Aboveground growth (plant height, ground diameter, leaf area, leaf biomass) and root growth (root length, root surface area, root volume, root biomass) in both habitats decreased with the decrease in applied water; the leaf area ratio increased with the decrease in applied water; and the root-to-mass ratio increased at first and then decreased in the SW soil habitat, but increased in the DN soil habitat. (2) Aboveground biomass and root biomass, leaf area and root length, and leaf area and root growth in each layer of the two habitats showed significant positive correlations. In SW soil habitats, the aboveground biomass of B. pilosa showed a significant positive correlation with the root biomass in each soil layer, whereas in the DN soil habitat, the aboveground biomass was only significantly positively correlated with the middle and upper soil layer root biomass. Studies have shown that B. pilosa exhibited good synergistic aboveground and belowground growth strategies in different habitats. When enhancing the acquisition of belowground resources, B. pilosa also enhanced the acquisition of aboveground resources. In SW soil habitats, B. pilosa coped with rapid drought and water shortages by coordinating the lateral expansion ability of the root system and growth of plant leaves; in DN soil habitats, plants coordinated the downward expansion ability of the root system and expansion of the leaf area to better utilize deep water resources in the soil.
  • [1]

    Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E. Let the concept of trait be functional![J]. Oikos, 2007, 116(5):882-892.

    [2]

    Díaz S, Cabido M. Vive la différence:Plant functional diversity matters to ecosystem processes[J]. Trends Ecol Evol, 2001, 16(11):646-655.

    [3]

    Mooney KA, Rayko H, Andre K, Agrawal AA. Evolutionary trade-offs in plants mediate the strength of trophic cascades[J]. Science, 2010, 327(5973):1642-1644.

    [4]

    Fortunel C, Fine PVA, Baraloto C. Leaf, stem and root tissue strategies across 758 Neotropical tree species[J]. Funct Ecol, 2012, 26(5):1153-1161.

    [5] 陈莹婷, 许振柱. 植物叶经济谱的研究进展[J]. 植物生态学报, 2014, 38(10):1135-1153.

    Chen YT, Xu ZZ. Review on research of leaf economics spectrum[J]. Chinese Journal of Plant Ecology, 2014, 38(10):1135-1153.

    [6] 杨梦娇. 干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响[J]. 农业与技术, 2015, 35(14):13.

    Yang MJ. Effects of drought stress on root growth and leaf photosynthesis of wheat seedlings[J]. Agriculture and Technology, 2015, 35(14):13.

    [7] 闫小红, 何春兰, 周兵, 王宁, 尹增芳. 不同生育期入侵植物大狼把草的生物量分配格局及异速生长分析[J]. 生态与农村环境学报, 2017, 33(2):150-158.

    Yan XH, He CL, Zhou B, Wang N, Yin ZF. Biomass distribution and allometric analysis of Bidens frondosa relative to growth stage[J]. Journal of Ecology and Rural Environment, 2017, 33(2):150-158.

    [8] 杨才琼, 胡宝予, 吴海军, 秦雯婷, 张潇文, 刘卫国, 等. 黑豆种质苗期耐荫性评价及其根系对弱光胁迫的响应[J]. 中国生态农业学报, 2017, 25(6):893-902.

    Yang CQ, Hu BY, Wu HJ, Qin WT, Zhang XW, Liu WG, et al. Evaluation for shade tolerance of black soybean germplasms and their root structure response to shade stress at seedling stage[J]. Chinese Journal of Eco-Agriculture, 2017, 25(6):893-902.

    [9] 王一帆. 地上地下互作提高小麦间作玉米水分利用效率的机理[D]. 兰州:甘肃农业大学, 2018:136.
    [10] 梁坤伦, 张洪荣, 张丽静, 代万安, 李晓忠, 周志宇, 等. 紫穗槐表型可塑性及植株资源分配对高寒生境的响应[J]. 草业科学, 2012, 29(3):440-446.

    Liang KL, Zhang HR, Zhang LJ, Dai WA, Li XZ, Zhou ZY, et al. Response of phenotypic plasticity and plant resource allocation of Amorpha fruiticosa to alpine habitat[J]. Pratacultural Science, 2012, 29(3):440-446.

    [11] 吴求生, 龙健, 李娟, 廖洪凯, 刘灵飞, 吴劲楠, 肖雄. 茂兰喀斯特森林小生境类型对土壤微生物群落组成的影响[J]. 生态学报, 2019, 39(3):1009-1018.

    Wu QS, Long J, Li J, Liao HK, Liu LF, Wu JN, Xiao X. Effects of different microhabitat types on soil microbial community composition in the Maolan Karst Forest in Southwest China[J]. Acta Ecologica Sinica, 2019, 39(3):1009-1018.

    [12]

    Yang QY, Jiang ZC, Yuan DX, Ma ZL, Xie YQ. Temporal and spatial changes of karst rocky desertification in ecological reconstruction region of Southwest China[J]. Environ Earth Sci, 2014, 72:4483-4489.

    [13] 向运蓉, 张芳, 段静, 黄慧敏, 何丹妮, 刘源, 陶建平. 异质性水分环境中克隆整合对活血丹生物量分配及叶片结构特征的影响[J]. 植物研究, 2019, 39(2):200-207.

    Xiang YR, Zhang F, Duan J, Huang HM, He DN, Liu Y, Tao JP. Effects of clonal integration on biomass allocation and leaf structure of Glechoma longituba (Nakai) Kupr in different water availability[J]. Bulletin of Botanical Research, 2019, 39(2):200-207.

    [14] 邢德科, 吴沿友, 吴沿胜, 于睿, 黎明鸿, 姚香平. 疯麻树和枫杨幼苗对5种模拟喀斯特逆境的光合生理响应[J]. 中国岩溶, 2016, 35(6):649-656.

    Xing DK, Wu YY, Wu YS, Yu R, Li MH, Yao XP. Photosynthetic physiological response of Jatropha carcas and Pterocarya stenoptera seedlings to five simulated karst adversities[J]. Carsologica Sinica, 2016, 35(6):649-656.

    [15] 欧芷阳, 曹艳云, 谭长强, 郑威, 庞世龙, 申文辉. 干旱胁迫对喀斯特生境蚬木幼苗光合特性及抗性生理的影响[J]. 生态学杂志, 2018, 37(11):3270-3276.

    Ou ZY, Cao YY, Tan ZQ, Zheng W, Pang SL, Shen WH. Effects of drought on photosynthesis and resistance physiology of Excentrodendron hsienmu seedlings in karst habitat[J]. Chinese Journal of Ecology, 2018, 37(11):3270-3276.

    [16]

    Gu DX, Zhang ZF, Mallik A. Seasonal water use strategy of Cyclobalanopsis glauca in a karst area of southern China[J]. Environ Earth Sci, 2015, 74:1007-1014.

    [17] 张静, 李素慧, 宋海燕, 陈金艺, 王佳敏, 李若溪, 等. 模拟喀斯特不同土壤生境下黑麦草对水分胁迫的生长和光合生理响应[J]. 生态学报, 2020, 40(4):1240-1248.

    Zhang J, Li SH, Song HY, Chen JY, Wang JM, Li RX, et al. Growth and photosynthetic physiological responses of Lolium perenne L. to water stress in the simulated karst soil habitats[J]. Acta Ecologica Sinica, 2020, 40(4):1240-1248.

    [18]

    Zhang J, Wang J, Chen J, Song H, Li S, Zhao Y, et al. Soil moisture determines horizontal and vertical root extension in the perennial grass Lolium perenne L. growing in karst soil[J/OL]. Frontiers in Plant Science, doi: 10.3389/fpls.2019.00629.

    [19] 谢天, 侯鹰, 陈卫平, 王美娥, 吕斯丹, 李勖之. 城市化对土壤生态环境的影响研究进展[J]. 生态学报, 2019, 39(4):1154-1164.

    Xie T, Hou Y, Chen WP, Wang ME, Lv SD, Li XZ. Impact of urbanization on the soil ecological environment:a review[J]. Acta Ecologica Sinica, 2019, 39(4):1154-1164.

    [20] 刘玉国, 刘长成, 郭柯. 四种不同生活型植物幼苗对喀斯特生境干旱的生理生态适应性[J]. 植物生态学报, 2011, 35(10):1070-1082.

    Liu YG, Liu CC, Guo K. Ecophysiological adaptations to drought stress of seedlings of four plant species with different growth forms in karst habitats[J]. Chinese Journal of Plant Ecology, 2011, 35(10):1070-1082.

    [21] 郭柯, 刘长成, 董鸣. 我国西南喀斯特植物生态适应性与石漠化治理[J]. 植物生态学报, 2011, 35(10):991-999.

    Guo K, Liu CC, Dong M. Ecological adaptation of plants and control of rocky-desertification on karst region of Southwest China[J]. Chinese Journal of Plant, 2011, 35(10):991-999.

    [22] 于文颖, 纪瑞鹏, 冯锐, 赵先丽, 张玉书. 不同生育期玉米叶片光合特性及水分利用效率对水分胁迫的响应[J]. 生态学报, 2015, 35(9):2902-2909.

    Yu WY, Ji RP, Feng R, Zhao XL, Zhang YS. Response of water stress on photosynthetic characteristics and water use efficiency of maize leaves in different growth stage[J]. Acta Ecologica Sinica, 2015, 35(9):2902-2909.

    [23] 韦莉莉, 张小全, 侯振宏, 徐德应, 余雪标. 杉木苗木光合作用及其产物分配对水分胁迫的响应[J]. 植物生态学报, 2005, 29(3):394-402.

    Wei LL, Zhang XQ, Hou ZH, Xu DY, Yu XB. Effect of water stress on photosynthesis and carbon allocation in Cunninghamia lanceolata seedlings[J]. Chinese Journal of Plant, 2005, 29(3):394-402.

    [24]

    Blackman CJ, Brodribb TJ, Jordan GJ. Leaf hydraulic vulnerability influences species' bioclimatic limits in a diverse group of woody angiosperms[J]. Oecologia, 2011, 168(1):1-10.

    [25]

    Freschet GT, Swart EM, Cornelissen JHC. Integrated plant phenotypic responses to contrasting above-and below-ground resources:key roles of specific leaf area and root mass fraction[J]. New Phytol, 2015, 206(4):1247-1260.

    [26]

    Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Aust J Bot, 2003, 51(4):335-380.

    [27]

    Lavorel S, Grigulis K. How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services[J]. J Ecol, 2015, 100(1):128-140.

    [28] 李伟成, 田新立, 盛海燕, 刘姚姚, 张瑞. 干旱胁迫和复水对浙江楠光合与根系生长的影响[J]. 生态科学, 2019, 38(3):182-188.

    Li WC, Tian XL, Sheng HY, Liu YY, Zhang R. Effects of drought stress and re-watering on photosynthesis and root growth of Phoebe chekiangensis[J]. Ecological Science, 2019, 38(3):182-188.

    [29] 朱铁霞, 高阳, 高凯, 李志华. 干旱胁迫下菊芋各器官生物量及物质分配规律[J]. 生态学报, 2019, 39(21):8021-8026.

    Zhu TX, Gao Y, Gao K, Li ZH. Organ biomass and resource allocation in response to drought stress in Jerusalem artichoke[J]. Acta Ecologica Sinica, 2019, 39(21):8021-8026.

    [30] 崔婉莹, 刘思佳, 魏亚伟, 殷有, 周莉, 周旺明, 于大炮. 氮添加和水分胁迫对红松、水曲柳幼苗生物量分配的影响[J]. 应用生态学报, 2019, 30(5):1454-1462.

    Cui WY, Liu SJ, Wei YW, Yin Y, Zhou L, Zhou WM, Yu DP. Effects of nitrogen addition on biomass allocation of Pinus koraiensis and Fraxinus mandshurica seedlings under water stress[J]. Chinese Journal of Applied Ecology, 2019, 30(5):1454-1462.

    [31]

    Monshausen GB, Bibikova TN, Weisenseel MH, Gilroy S.Ca2+ regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots[J]. Plant Cell, 2009, 21(8):2341-2356.

  • 期刊类型引用(5)

    1. 江燕东,彭正东,徐琪,甘婉怡,黄柳菁. 喜旱莲子草叶片、细根功能性状对异质生境的响应. 植物研究. 2024(03): 410-419 . 百度学术
    2. 陈家兴,王姝,陈林丽,侯夏丽,杨庆祝,尹任娅. 干旱条件对鬼针草和醉鱼草种间相互作用及生长的影响. 植物研究. 2023(05): 720-728 . 百度学术
    3. 周友秀,杨桂梅,秦子博,杨钰华,江燕东,黄柳菁. 海岸草本植物细根、叶片功能性状及其与土壤因子的关系. 广西植物. 2023(11): 1975-1985 . 百度学术
    4. 关世凯,陶大燕,周锦业,闫海霞,宋倩,罗述名. 异质生境下大旗瓣凤仙花种群特征与生长状况. 南方农业学报. 2022(08): 2205-2214 . 百度学术
    5. 吴国华,夏春平,钟张胜,周众灵,林大余,兰智鑫,葛永金. 浙西南油茶林下猪屎豆生物量和元素含量分析. 福建林业科技. 2021(04): 13-16 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  535
  • HTML全文浏览量:  0
  • PDF下载量:  529
  • 被引次数: 11
出版历程
  • 收稿日期:  2020-03-15
  • 修回日期:  2020-04-23
  • 网络出版日期:  2022-10-31
  • 发布日期:  2020-12-27

目录

    /

    返回文章
    返回