高级检索+

西瓜含有JmjC结构域的组蛋白去甲基化酶家族的生物信息学分析

周皇经, 王翔伍, 吉逢逢, 张鹏辉, 郭清华, 郝云飞, 何世斌

周皇经, 王翔伍, 吉逢逢, 张鹏辉, 郭清华, 郝云飞, 何世斌. 西瓜含有JmjC结构域的组蛋白去甲基化酶家族的生物信息学分析[J]. 植物科学学报, 2020, 38(6): 802-811. DOI: 10.11913/PSJ.2095-0837.2020.60802
引用本文: 周皇经, 王翔伍, 吉逢逢, 张鹏辉, 郭清华, 郝云飞, 何世斌. 西瓜含有JmjC结构域的组蛋白去甲基化酶家族的生物信息学分析[J]. 植物科学学报, 2020, 38(6): 802-811. DOI: 10.11913/PSJ.2095-0837.2020.60802
Zhou Huang-Jing, Wang Xiang-Wu, Ji Feng-Feng, Zhang Peng-Hui, Guo Qing-Hua, Hao Yun-Fei, He Shi-Bin. Bioinformatics analysis of JmjC domain-containing histone demethylase family in watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai)[J]. Plant Science Journal, 2020, 38(6): 802-811. DOI: 10.11913/PSJ.2095-0837.2020.60802
Citation: Zhou Huang-Jing, Wang Xiang-Wu, Ji Feng-Feng, Zhang Peng-Hui, Guo Qing-Hua, Hao Yun-Fei, He Shi-Bin. Bioinformatics analysis of JmjC domain-containing histone demethylase family in watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai)[J]. Plant Science Journal, 2020, 38(6): 802-811. DOI: 10.11913/PSJ.2095-0837.2020.60802
周皇经, 王翔伍, 吉逢逢, 张鹏辉, 郭清华, 郝云飞, 何世斌. 西瓜含有JmjC结构域的组蛋白去甲基化酶家族的生物信息学分析[J]. 植物科学学报, 2020, 38(6): 802-811. CSTR: 32231.14.PSJ.2095-0837.2020.60802
引用本文: 周皇经, 王翔伍, 吉逢逢, 张鹏辉, 郭清华, 郝云飞, 何世斌. 西瓜含有JmjC结构域的组蛋白去甲基化酶家族的生物信息学分析[J]. 植物科学学报, 2020, 38(6): 802-811. CSTR: 32231.14.PSJ.2095-0837.2020.60802
Zhou Huang-Jing, Wang Xiang-Wu, Ji Feng-Feng, Zhang Peng-Hui, Guo Qing-Hua, Hao Yun-Fei, He Shi-Bin. Bioinformatics analysis of JmjC domain-containing histone demethylase family in watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai)[J]. Plant Science Journal, 2020, 38(6): 802-811. CSTR: 32231.14.PSJ.2095-0837.2020.60802
Citation: Zhou Huang-Jing, Wang Xiang-Wu, Ji Feng-Feng, Zhang Peng-Hui, Guo Qing-Hua, Hao Yun-Fei, He Shi-Bin. Bioinformatics analysis of JmjC domain-containing histone demethylase family in watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai)[J]. Plant Science Journal, 2020, 38(6): 802-811. CSTR: 32231.14.PSJ.2095-0837.2020.60802

西瓜含有JmjC结构域的组蛋白去甲基化酶家族的生物信息学分析

基金项目: 

国家自然科学基金项目(31401044)。

详细信息
    作者简介:

    周皇经(1998~),男,本科生,研究方向为植物表观遗传学(E-mail:2373006425@qq.com)。

    通讯作者:

    何世斌,E-mail:sbhe@henu.edu.cn

  • 中图分类号: Q943.2

Bioinformatics analysis of JmjC domain-containing histone demethylase family in watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai)

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China (31401044).

  • 摘要: 利用生物信息学方法,对西瓜(Citrullus lanatus(Thunb.)Matsum.&Nakai)JmjC基因家族的成员进行鉴定,对该基因家族的染色体定位、基因结构、蛋白结构域、选择压力和酶活位点进行分析,并对该基因家族与其它物种的系统进化及共线性关系进行研究。结果显示:西瓜全基因组含有17个JmjC候选基因,核苷酸序列长度为1209~5541 bp;这些基因均含有JmjC结构域,分别位于9条染色体上,归属8个亚族。系统进化、选择压力以及共线性分析结果表明,西瓜与黄瓜(Cucumis sativus L.)亲缘关系较近,JmjC家族基因数量相同,其中14个成员呈现一对一的共线性关系;而西瓜与拟南芥(Arabidopsis thaliana(L.)Heynh)亲缘关系较远,但西瓜和拟南芥同一亚族中JmjC基因间Ka/Ks的比值均小于1,推测西瓜各个亚族成员的编码蛋白功能与同一亚族的拟南芥成员功能极为相似。酶活位点分析结果表明西瓜JmjC基因家族中有10个成员具有潜在的组蛋白去甲基化酶活性。
    Abstract: Jumonji C (JmjC) domain-containing proteins are a class of histone demethylases responsible for removing histone methylation marks. They also play important roles in plant growth and development. Using bioinformatics, we identified the JmjC genes in Citrullus lanatus (Thunb.) Matsum. & Nakai, and analyzed their location, gene structure, protein domain, enzyme activity site, and selection pressure. In addition, the phylogenetic relationships and collinearity among C. lanatus, Cucumis sativus L., and Arabidopsis thaliana (L.) Heynh were also analyzed. A total of 17 JmjC genes were identified in C. lanatus, which ranged in size from 1209 to 5541 bp. These genes all contained the JmjC domain and were located on nine chromosomes and classified into eight subfamilies. Both C. lanatus and closely related species C. sativus shared the same number of JmjC genes, with 14 members showing a one-to-one collinear relationship, while C. lanatus and distant species A. thaliana showed lower collinearity. The Ka/Ks ratios of JmjC genes in the same subfamily were less than One between C. lanatus and A. thaliana, indicating that orthologous genes between the two species should have similar functions. In addition, according to enzyme activity site prediction, we speculated that 10 of them may confer histone demethylase activity.
  • [1]

    Pikaard CS, Mittelsten Scheid O. Epigenetic regulation in plants[J]. Cold Spring Harb Perspect Biol, 2014, 6(12):a019315.

    [2]

    Berr A, Shafiq S, Shen WH. Histone modifications in transcriptional activation during plant development[J]. Biochim Biophys Acta, 2011, 1809(10):567-576.

    [3]

    Zheng B, Chen X. Dynamics of histone H3 lysine 27 trimethylation in plant development[J]. Curr Opin Plant Biol, 2011, 14(2):123-129.

    [4]

    Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1[J]. Cell, 2004, 119(7):941-953.

    [5]

    Accari SL, Fisher PR. Emerging roles of JmjC domain-containing proteins[J]. Int Rev Cell Mol Biol, 2015, 319:165-220.

    [6]

    Wu J, Yamaguchi N, Ito T. Histone demethylases control root elongation in response to stress-signaling hormone abscisic acid[J]. Plant Signal Behav, 2019, 14(7):1604019.

    [7]

    Gan ES, Xu Y, Wong JY, Goh JG, Sun B, et al. Jumonji demethylases moderate precocious flowering at elevated temperature via regulation of FLC in Arabidopsis[J]. Nat Commun, 2014, 5:5098.

    [8]

    Liu P, Zhang S, Zhou B, Luo X, Zhou XF, et al. The Histone H3K4 demethylase JMJ16 represses leaf senescence in Arabidopsis[J]. Plant Cell, 2019, 31(2):430-443.

    [9]

    Huang S, Zhang A, Jin JB, Zhao B, Wang TJ, et al. Arabidopsis histone H3K4 demethylase JMJ17 functions in dehydration stress response[J]. New Phytol, 2019, 223(3):1372-1387.

    [10]

    Lu F, Li G, Cui X, Liu C, Wang XJ, et al. Comparative analysis of JmjC domain-containing proteins reveals the potential histone demethylases in Arabidopsis and rice[J]. J Integr Plant Biol, 2008, 50(7):886-896.

    [11]

    Qian Y, Chen C, Jiang L, Zhang J, Ren Q. Genome-wide identification, classification and expression analysis of the JmjC domain-containing histone demethylase gene family in maize[J]. BMC Genomics, 2019, 20(1):256-256.

    [12]

    Dong Y, Lu J, Liu J, Jalal A, Wang C. Genome-wide identification and functional analysis of JmjC domain-containing genes in flower development of Rosa chinensis[J]. Plant Mol Biol, 2020, 102(4-5):417-430.

    [13]

    Qian S, Wang Y, Ma H, Zhang L. Expansion and functional divergence of Jumonji C-containing histone demethy-lases:Significance of duplications in ancestral angiosperms and vertebrates[J]. Plant Physiol, 2015, 168(4):1321-1337.

    [14]

    Yang Z, Qiu Q, Chen W, Jia B, Chen X, et al. Structure of the Arabidopsis JMJ14-H3K4me3 complex provides insight into the substrate specificity of KDM5 subfamily histone demethylases[J]. Plant Cell, 2018, 30(1):167-177.

    [15]

    Subburaj S, Lee K, Jeon Y, Tu L, Son G, et al. Whole genome resequencing of watermelons to identify single nucleotide polymorphisms related to flesh color and lycopene content[J]. PLoS One, 2019, 14(10):e0223441.

    [16]

    Guo S, Zhao S, Sun H, Wang X, Wu S, et al. Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits[J]. Nat Genet, 2019, 51(11):1616-1623.

    [17]

    Wang Y, Tang H, Debarry JD, Tan X, Li J, et al. MCScanX:A toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Res, 2012, 40(7):e49.

    [18]

    Zheng S, Hu H, Ren H, Yang Z, Qiu Q, et al. The Arabidopsis H3K27me3 demethylase JUMONJI 13 is a tempe-rature and photoperiod dependent flowering repressor[J]. Nat Commun, 2019, 10(1):1303-1303.

    [19]

    Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis[J]. Nat Protoc, 2015, 10(6):845-858.

    [20]

    Guo S, Zhang J, Sun H, Salse J, Lucas WJ, et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions[J]. Nat Genet, 2013, 45(1):51-58.

    [21]

    Zhang Z, Li J, Zhao XQ, Wang J, Wong GK, et al. KaKs_Calculator:Calculating Ka and Ks through model selection and model averaging[J]. Genom Proteom Bioinf, 2006, 4(4):259-263.

    [22]

    Klose RJ, Kallin EM, Zhang Y. JmjC-domain-containing proteins and histone demethylation[J]. Nat Rev Genet, 2006, 7(9):715-727.

    [23]

    Cho JN, Ryu JY, Jeong YM, Park J, Song JJ, et al. Control of seed germination by light-induced histone arginine demethylation activity[J]. Dev Cell, 2012, 22(4):736-748.

    [24]

    Blanc RS, Richard S. Arginine methylation:the coming of age[J]. Mol Cell, 2017, 65(1):8-24.

    [25]

    Yan Y, Shen L, Chen Y, Bao S, Thong Z, et al. A MYB-domain protein EFM mediates flowering responses to environmental cues in Arabidopsis[J]. Dev Cell, 2014, 30(4):437-748.

    [26]

    Lu F, Cui X, Zhang S, Jenuwein T, Cao X. Arabidopsis REF6 is a histone H3 lysine 27 demethylase[J]. Nat Genet, 2011, 43(7):715-719.

    [27]

    Crevillén P, Yang H, Cui X, Greeff C, Trick M, et al. Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state[J]. Nature, 2014, 515(7528):587-590.

  • 期刊类型引用(7)

    1. 郭舒艳,靳含,温馨,张佳丽,朱琳,苏齐针,杨颖,边媛. 生态保护红线划定下的极小种群野生植物保护研究. 中国野生植物资源. 2024(12): 107-116+123 . 百度学术
    2. 孙中元,孙传涛,孙超,吕少杰,赵怡康. 烟台沿海防护林体系盐桦两年生苗造林试验初探. 山东林业科技. 2023(02): 50-54 . 百度学术
    3. 欧阳子龙,张磊,苏大宏,蒙奕奕,唐健民,贾湘璐,余惠英,龚理. 珍稀濒危植物迁地保护与园林应用——以南宁植物园为例. 广西科学院学报. 2023(04): 412-425 . 百度学术
    4. 安红婧,王发春,周毛措,周碧瑶,胡樱,贾慧萍,王慧春. 极小种群植物研究进展. 安徽农学通报. 2022(06): 38-40 . 百度学术
    5. 王爽,吕霞. 外源ABA对干旱胁迫及复水下弥勒苣苔生长的影响. 黑龙江农业科学. 2022(06): 67-71 . 百度学术
    6. 许玥,臧润国. 中国极小种群野生植物保护理论与实践研究进展. 生物多样性. 2022(10): 84-105 . 百度学术
    7. 黄继红,臧润国. 中国植物多样性保护现状与展望. 陆地生态系统与保护学报. 2021(01): 66-74 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  569
  • HTML全文浏览量:  0
  • PDF下载量:  651
  • 被引次数: 12
出版历程
  • 收稿日期:  2020-04-09
  • 修回日期:  2020-05-17
  • 网络出版日期:  2022-10-31
  • 发布日期:  2020-12-27

目录

    /

    返回文章
    返回