Molecular mechanism of Ustilago maydis pathogenicity
-
摘要: 玉米黑粉菌(Ustilago maydis)可在其宿主植物玉米(Zea mays L.)地上部的所有器官诱导肿瘤发生。玉米黑粉菌成功定殖宿主并诱导形成肿瘤取决于与宿主植物多方位、多层次的相互作用以及该过程中发生的复杂的细胞和分子事件。本文综述了玉米黑粉菌与玉米互作研究的最新进展,介绍了玉米黑粉菌通过分泌效应子入侵、定殖玉米植株以及植株在分子水平上对入侵的响应;阐述了活体营养建立过程中,玉米黑粉菌与玉米通过效应子、激素、糖代谢酶和转运蛋白的差异调节,协调受感染宿主组织重新编程发育成膨大的植物肿瘤的关键因素,并对今后的研究方向进行了展望。Abstract: Ustilago maydis can induce tumor development on all aerial organs of Zea mays L. The successful colonization of maize and tumor formation by U. maydis depends on multi-directional and multi-level interactions with the host plant and complex cell and molecular events to ensure compatibility. This review covers recent advances in the field of pathogen-host warfare, focusing on how U. maydis effectors facilitate pathogen entry into the host interior, suppress plant immune perception, and alter host physiology for pathogen benefit, as well as on the molecular processes of maize for sensing and responding to pathogen attack. In addition, key insights into the establishment of U. maydis and its host-plant interactions are described, whereby U. maydis may cause the formation of plant tumors by reprogramming plant metabolism of infected tissues and by differential expression of genes encoding effectors, hormones, sugar metabolizing enzymes, and transporters of both host and pathogen origin. Moreover, further research fields are suggested in this paper.
-
Keywords:
- Ustilago maydis /
- Pathopoiesia /
- Interaction mechanisms /
- Plant tumor
-
-
[1] De Lange ES, Balmer D, Mauch-Mani B, Turlings TC. Insect and pathogen attack and resistance in maize and its wild ancestors, the teosintes[J]. New Phytol, 2014, 204(2):329-341.
[2] Redkar A, Matei A, Doehlemann G. Insights into host cell modulation and induction of new cells by the corn smut Ustilago maydis[J]. Front Plant Sci, 2017, 8:899.
[3] Matei A, Doehlemann G. Cell biology of corn smut disease:Ustilago maydis as a model for biotrophic inte-ractions[J]. Curr Opin Microbiol, 2016, 34:60-66.
[4] Han X, Kahmann R. Manipulation of phytohormone pathways by effectors of filamentous plant pathogens[J]. Front Plant Sci, 2019, 10:822.
[5] Cui H, Tsuda K, Parker JE. Effector-triggered immunity:from pathogen perception to robust defense[J]. Annu Rev Plant Biol, 2015, 66:487-511.
[6] Kämper J, Kahmann R, Bölker M, Ma LJ, Brefort T, et al. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis[J]. Nature, 2006, 444(7115):97-101.
[7] Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V, et al. Metabolic priming by a secreted fungal effector[J]. Nature, 2011, 478(7369):395-398.
[8] Zuo W, Ökmen B, Depotter JR, Ebert MK, Redkar A, et al. Molecular interactions between smut fungi and their host plants[J]. Annu Rev Phytopathol, 2019, 57:411-430.
[9] Schuster M, Schweizer G, Kahmann R. Comparative analyses of secreted proteins in plant pathogenic smut fungi and related basidiomycetes[J]. Fungal Genet Biol, 2018, 112:21-30.
[10] Brefort T, Doehlemann G, Mendoza-Mendoza A, Reissmann S, Djamei A, et al. Ustilago maydis as a pathogen[J]. Annu Rev Phytopathol, 2009, 47:423-445.
[11] Schilling L, Matei A, Redkar A, Walbot V, Doehlemann G, et al. Virulence of the maize smut Ustilago maydis is shaped by organ-specific effectors[J]. Mol Plant Pathol, 2014, 15(8):780-789.
[12] Stirnberg A, Djamei A. Characterization of ApB73, a virulence factor important for colonization of Zea mays by the smut Ustilago maydis[J]. Mol Plant Pathol, 2016, 17(9):1467-1479.
[13] Brefort T, Tanaka S, Neidig N, Doehlemann G, Vincon V, et al. Characterization of the largest effector gene cluster of Ustilago maydis[J]. PLoS Pathog, 2014, 10(7):e1003866.
[14] Schirawski J, Mannhaupt G, Münch K, Brefort T, Schip-per K, et al. Pathogenicity determinants in smut fungi revealed by genome comparison[J]. Science, 2010, 330(6010):1546-1548.
[15] Lanver D, Tollot M, Schweizer G, Presti LL, Reissmann S, et al. Ustilago maydis effectors and their impact on virulence[J]. Nat Rev Microbiol, 2017, 15(7):409-421.
[16] Doehlemann G, Van Der Linde K, Aßmann D, Schwammbach D, Hof A, et al. Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells[J]. PLoS Pathog, 2009, 8(5):e1002684.
[17] Hemetsberger C, Herrberger C, Zechmann B, Hillmer M, Doehlemann G. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity[J]. PLoS Pathog, 2012, 8(5):e1002684.
[18] Doehlemann G, Reissmann S, Aßmann D, Fleckenstein M, Kahmann R. Two linked genes encoding a secreted effector and a membrane protein are essential for Ustilago maydis-induced tumour formation[J]. Mol Microbiol, 2011, 81(3):751-766.
[19] Mueller AN, Ziemann S, Treitschke S, Aßmann D, Doehlemann G. Compatibility in the Ustilago maydis:maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2[J]. PLoS Pathog, 2013, 9(2):e1003177.
[20] Villamil JCM, Mueller AN, Demir F, Meyer U, Ökmen B, et al. A fungal substrate mimicking molecule suppresses plant immunity via an inter-kingdom conserved motif[J]. Nat Commun, 2019, 10(1):1-15.
[21] Han X, Altegoer F, Steinchen W, Binnebesel L, Schuhmacher J, et al. A kiwellin disarms the metabolic activity of a secreted fungal virulence factor[J]. Nature, 2019, 565(7741):650-653.
[22] Ma LS, Wang L, Trippel C, Mendoza-Mendoza A, Ullmann S, et al. The Ustilago maydis repetitive effector Rsp3 blocks the antifungal activity of mannose-binding maize proteins[J]. Nat Commun, 2018, 9(1):1-15.
[23] Tanaka S, Brefort T, Neidig N, Djamei A, Kahnt J, et al. A secreted Ustilago maydis effector promotes virulence by targeting anthocyanin biosynthesis in maize[J]. Elife, 2014, 3:e01355.
[24] Tanaka S, Schweizer G, Rössel N, Fukada F, Thines M, et al. Neofunctionalization of the secreted Tin2 effector in the fungal pathogen Ustilago maydis[J]. Nat Microbiol, 2019, 4(2):251-257.
[25] Redkar A, Hoser R, Schilling L, Zechmann B, Krzymowska M, et al. A secreted effector protein of Ustilago maydis guides maize leaf cells to form tumors[J]. Plant Cell, 2015, 27(4):1332-1351.
[26] 李智敏, 严理, 严准. 玉米瘤黑粉菌的寄生策略及其调控机制[J]. 微生物学报, 2016, 56(9):1385-1397. Li ZM, Yan L, Yan Z. Parasitic strategy and regulation mechanism of Ustilago maydis:a review[J]. Acta microbiologica Sinica, 2016, 56(9):1385-1397.
[27] Kahmann R, Schirawski J. Mating in the smut fungi:from a to b to the downstream cascades[J]. Sex Fungi, 2007, 49:377-387.
[28] Heimel K, Scherer M, Vranes M, Wahl R, Pothiratana C, et al. The transcription factor Rbf1 is the master regulator for b-mating type controlled pathogenic development in Ustilago maydis[J]. PLoS Pathog, 2010, 6(8):e1001035.
[29] Wahl R, Zahiri A, Kämper J. The Ustilago maydis b ma-ting type locus controls hyphal proliferation and expression of secreted virulence factors in planta[J]. Mol Microbiol, 2010, 75(1):208-220.
[30] Lanver D, Berndt P, Tollot M, Naik V, Vranes M, et al. Plant surface cues prime Ustilago maydis for biotrophic development[J]. PLoS Pathog, 2014, 10(7):e1004272.
[31] Djamei A, Kahmann R. Ustilago maydis:dissecting the molecular interface between pathogen and plant[J]. PLoS Pathog, 2012, 8(11):e1002955.
[32] Zahiri A, Heimel K, Wahl R, Rath M, Kämper J. The Ustilago maydis forkhead transcription factor Fox1 is involved in the regulation of genes required for the attenuation of plant defenses during pathogenic development[J]. Mol Plant-Microbe Interact, 2010, 23(9):1118-1129.
[33] Lanver D, Müller AN, Happel P, Schweizer G, Haas FB, et al. The biotrophic development of Ustilago maydis stu-died by RNA-seq analysis[J]. Plant Cell, 2018, 30(2):300-323.
[34] Jacob F, Vernaldi S, Maekawa T. Evolution and conservation of plant NLR functions[J]. Front Immunol, 2013, 4:297.
[35] Goulet KM, Saville BJ. Carbon acquisition and metabolism changes during fungal biotrophic plant pathogenesis:insights from Ustilago maydis[J]. Can J Plant Pathol, 2017, 39(3):247-266.
[36] Doehlemann G, Wahl R, Vranes M, De Vries RP, Kämper J, et al. Establishment of compatibility in the Ustilago maydis/maize pathosystem[J]. J Plant Physiol, 2008, 165(1):29-40.
[37] Doehlemann G, Wahl R, Horst RJ, Voll LM, Usadel B, et al. Reprogramming a maize plant:transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis[J]. Plant J, 2008, 56(2):181-195.
[38] Van der Linde K, Mueller AN, Hemetsberger C, Kaschani F, van der Hoorn RAL, et al. The maize cystatin CC9 inte-racts with apoplastic cysteine proteases[J]. Plant Signaling Behav, 2012, 7(11):1397-1401.
[39] Van der Linde K, Hemetsberger C, Kastner C, Kaschani F, van der Hoorn RA, et al. A maize cystatin suppresses host immunity by inhibiting apoplastic cysteine proteases[J]. Plant Cell, 2012, 24(3):1285-1300.
[40] Ziemann S, Linde K, Lahrmann U, Acar B, Kaschani F, et al. An apoplastic peptide activates salicylic acid signalling in maize[J]. Nat Plants, 2018, 4(3):172-180.
[41] Tanaka S, Han X, Kahmann R. Microbial effectors target multiple steps in the salicylic acid production and signaling pathway[J]. Front Plant Sci, 2015, 6:349.
[42] Rabe F, Ajami-Rashidi Z, Doehlemann G, Kahmann R, Djamei A. Degradation of the plant defence hormone salicylic acid by the biotrophic fungus Ustilago maydis[J]. Mol Microbiol, 2013, 89(1):179-188.
[43] Krombach S, Reissmann S, Kreibich S, Bochen F, Kahmann R. Virulence function of the Ustilago maydis sterol carrier protein 2[J]. New Phytol, 2018, 220(2):553-566.
[44] Ökmen B,Kemmerich B, Hilbig D,Wemhöner R, Aschenbroich J, et al. Dual function of a secreted fungalysin metalloprotease in Ustilago maydis[J]. New Phytol, 2018, 220(1):249-261.
[45] Kiendler-Scharr A, Wildt J, Dal Maso M, Hohaus T, Kleist E, et al. New particle formation in forests inhibited by isoprene emissions[J]. Nature, 2009, 461(7262):381-384.
[46] Matei A, Ernst C, Günl M, Thiele B, Altmüller J, et al. How to make a tumour:cell type specific dissection of Ustilago maydis-induced tumour development in maize leaves[J]. New Phytol, 2018, 217(4):1681-1695.
[47] Morrison EN, Emery RJN, Saville BJ. Fungal derived cytokinins are necessary for normal Ustilago maydis infection of maize[J]. Plant Pathol, 2017, 66(5):726-742.
[48] Doehlemann G, Requena N, Schaefer P, Brunner F, O'Connell R, et al. Reprogramming of plant cells by filamentous plant-colonizing microbes[J]. New Phytol, 2014, 204(4):803-814.
[49] Reineke G, Heinze B, Schirawski J, Buettner H, Kahmann R, et al. Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation[J]. Mol Plant Pathol, 2008, 9(3):339-355.
[50] Morrison EN, Emery RJN, Saville BJ. Phytohormone involvement in the Ustilago maydis-Zea mays pathosystem:relationships between abscisic acid and cytokinin levels and strain virulence in infected cob tissue[J]. PLoS One, 2015, 10(6):e0130945.
[51] Jiménez Bremont JF, Marina M, Guerrero-Gonzalez MDLL, Rossi FR, Sánchez-Rangel D, et al. Physiological and molecular implications of plant polyamine metabolism during biotic interactions[J]. Front Plant Sci, 2014, 5:95.
[52] Rodríguez-Kessler M, Ruiz OA, Maiale S, Ruiz-Herrera J, Jimenez-Bremont JF. Polyamine metabolism in maize tumors induced by Ustilago maydis[J]. Plant Physiol Biochem, 2008, 46(8-9):805-814.
[53] Jasso-Robles FI, Jiménez-Bremont JF, Becerra-Flora A, Juárez-Montiel M, Gonzalez ME, et al. Inhibition of polyamine oxidase activity affects tumor development during the maize-Ustilago maydis interaction[J]. Plant Physiol Biochem, 2016, 102:115-124.
[54] Morkunas I, Ratajczak L. The role of sugar signaling in plant defense responses against fungal pathogens[J]. Acta Physiol Plant, 2014, 36(7):1607-1619.
[55] Horst RJ, Engelsdorf T, Sonnewald U, Voll LM. Infection of maize leaves with Ustilago maydis prevents establishment of C4 photosynthesis[J]. J Plant Physiol, 2008, 165(1):19-28.
[56] Kretschmer M, Croll D, Kronstad JW. Maize susceptibility to Ustilago maydis is influenced by genetic and chemical perturbation of carbohydrate allocation[J]. Mol Plant Pathol, 2017, 18(9):1222-1237.
[57] Couturier M, Navarro D, Olivé C, Chevret D, Haon M, et al. Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis[J]. BMC Genom, 2012, 13(1):57.
[58] Brown NA, Ries LN, Goldman GH. How nutritional status signalling coordinates metabolism and lignocellulolytic enzyme secretion[J]. Fungal Genet Biol, 2014, 72:48-63.
[59] Tauzin AS, Giardina T. Sucrose and invertases, a part of the plant defense response to the biotic stresses[J]. Front Plant Sci, 2014, 5:293.
[60] Cabello S, Lorenz C, Crespo S, Cabrera J, Ludwig R, et al. Altered sucrose synthase and invertase expression affects the local and systemic sugar metabolism of nematode-infected Arabidopsis thaliana plants[J]. J Exp Bot, 2014, 65(1):201-212.
[61] Hardin SC, Duncan KA, Huber SC. Determination of structural requirements and probable regulatory effectors for membrane association of maize sucrose synthase[J]. Plant Physiol, 2006, 141(3):1106-1119.
[62] Wippel K, Wittek A, Hedrich R, Sauer N. Inverse pH regulation of plant and fungal sucrose transporters:a mechanism to regulate competition for sucrose at the host/pathogen interface[J]. PLoS One, 2010, 5(8):e12429.
[63] Wahl R, Wippel K, Goos S, Kämper J, Sauer N. A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis[J]. PLoS biol, 2010, 8(2):e1000303.
[64] Schuler D, Wahl R, Wippel K, Vranes M, Münsterkötter M, et al. Hxt1, a monosaccharide transporter and sensor required for virulence of the maize pathogen Ustilago maydis[J]. New Phytol, 2015, 206(3):1086-1100.
[65] Wittek A, Dreyer I, Al-Rasheid KA, Sauer N, Hedrich R, et al. The fungal UmSrt1 and maize ZmSUT1 sucrose transporters battle for plant sugar resources[J]. J Integr Plant Biol, 2017, 59(6):422-435.
[66] Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, et al. Sugar transporters for intercellular exchange and nutrition of pathogens[J]. Nature, 2010, 468(7323):527-532.
[67] Sosso D, van der Linde K, Bezrutczyk M, Schuler D, Schneider K, et al. Sugar partitioning between Ustilago maydis and its host Zea mays L. during infection[J]. Plant Physiol, 2019, 179(4):1373-1385.
计量
- 文章访问数: 938
- HTML全文浏览量: 34
- PDF下载量: 611