高级检索+

基于组合模型的丹参潜在地理分布研究

高瑜, 李佳颖, 刘宇哲, 孟繁蕴

高瑜, 李佳颖, 刘宇哲, 孟繁蕴. 基于组合模型的丹参潜在地理分布研究[J]. 植物科学学报, 2021, 39(6): 571-579. DOI: 10.11913/PSJ.2095-0837.2021.60571
引用本文: 高瑜, 李佳颖, 刘宇哲, 孟繁蕴. 基于组合模型的丹参潜在地理分布研究[J]. 植物科学学报, 2021, 39(6): 571-579. DOI: 10.11913/PSJ.2095-0837.2021.60571
GAO Yu, LI Jia-ying, LIU Yu-zhe, MENG Fan-yun. Potential geographical distribution of Salvia miltiorrhiza Bunge based on ensemble model[J]. Plant Science Journal, 2021, 39(6): 571-579. DOI: 10.11913/PSJ.2095-0837.2021.60571
Citation: GAO Yu, LI Jia-ying, LIU Yu-zhe, MENG Fan-yun. Potential geographical distribution of Salvia miltiorrhiza Bunge based on ensemble model[J]. Plant Science Journal, 2021, 39(6): 571-579. DOI: 10.11913/PSJ.2095-0837.2021.60571

基于组合模型的丹参潜在地理分布研究

基金项目: 

国家自然科学基金项目(81072999)

详细信息
    作者简介:

    高瑜(1997-),女,硕士研究生,研究方向为植物自然资源利用(E-mail:missgaocn@163.com)

    通讯作者:

    孟繁蕴,E-mail:mfy@bnu.edu.cn

  • 中图分类号: Q948

Potential geographical distribution of Salvia miltiorrhiza Bunge based on ensemble model

Funds: 

supported by a grant from the National Natural Science Foundation of China(81072999)

  • 摘要: 利用丹参(Salvia miltiorrhiza Bunge)的地理分布数据和28个环境变量,基于Biomod2平台利用9个物种分布模型,模拟丹参在我国的空间分布,统计其适生区面积,并确定影响丹参分布的环境变量。结果显示:我国中部、东部的大部分地区适宜丹参生长,其中山东、湖北、陕西、安徽等地为丹参最适宜分布区;丹参在我国的总适生区面积为2.44×107 km2,其中湖南省的适生区面积最高,其次是四川省和湖北省;在当前环境条件下,温度与潜在蒸散量等是影响丹参分布的主导环境因子;推进式回归树模型GBM和随机森林模型RF在9个模型中表现最好。研究结果表明湖北省北部、河南省南部和安徽省的中南部最适宜种植丹参。
    Abstract: Salvia miltiorrhiza Bunge has high medicinal value, with new pharmacological effects still being discovered. Here, our research goal was to explore the suitability of S. miltiorrhiza participation in the ecological environment and carry out suitable regions in China. Based on nine species distribution models in the Biomod2 platform, we used distribution data of S. miltiorrhiza and 28 environmental variables to predict its spatial distribution in China, calculate its suitable distribution areas, and identify factors that affect its distribution. Most regions in the central and eastern parts of China were suitable for S. miltiorrhiza, especially Hunan, Shandong, Hubei, Shaanxi, and Anhui. The total suitable area in China was 2.44×107 km2, with Hunan having the highest suitable area, followed by Sichuan and Hubei. Under current environmental conditions, temperature and potential evapotranspiration are the leading environmental factors affecting the distribution of S. miltiorrhiza. Among the nine models, GBM and RF showed the best performance. This study provides scientific support for choosing appropriate planting regions for S. miltiorrhiza, which should contribute to the protection of the species.
  • [1]

    Ren J,Fu L,Nile SH,Zhang J,Kai G. Salvia miltiorrhiza in treating cardiovascular diseases:a review on its pharmacological and clinical applications[J]. Front Pharmacol,2019,10:753.

    [2]

    Wang X,Yang Y,Liu X,Gao X. Pharmacological properties of tanshinones, the natural products from Salvia miltiorrhiza[J]. Adv Pharmacol,2020,87:43-70.

    [3] 王庆浩,陈爱华,张伯礼.丹参:一种中药研究的模式生物[J].中医药学报,2009,37(4):1-3.

    Wang QH,Chen AH,Zhang BL. Salviae miltiorrhiza:a mode organism for Chinese traditional medicine genomic studies[J]. Acta Chinese Medicine and Pharmacology,2009,37(4):1-3.

    [4]

    Zhang CL,Yang D,Liang Z,Liu J,Yan K,et al. Climatic factors control the geospatial distribution of active ingredients in Salvia miltiorrhiza Bunge in China[J]. Sci RepUk,2019,9(1):904.

    [5] 方文韬,邓爱平,康利平,南铁贵,唐金富,等.丹参药材商品规格等级标准及质量评价[J].中国现代中药,2020,22(2):188-201.

    Fang WT,Deng AP,Kang LP,Nan TG,Tang JF,et al.Research on standards of commercial grades for Chinese materia medica and quality evaluation of Salviae miltiorrhizae Radix et Rhizoma[J]. Modern Chinese Medicine,2020,22(2):188-201.

    [6] 方文韬,邓爱平,任振丽,南铁贵,康利平,等.丹参品质评价研究进展[J].中国中药杂志,2018,43(6):1077-1085.

    Fang WT,Deng AP,Ren ZL,Nan TG,Kang LP,et al.Research progress on quality evaluation Salviae miltiorrhizae Radix et Rhizome(Danshen)[J]. China Journal of Chinese Materia Medica,2018,43(6):1077-1085.

    [7] 郑文科,魏建和,陈士林,孙晓波,马双成,张伯礼.中药材品质提升基地共建共享模式和发展策略[J].世界科学技术-中医药现代化,2018,20(11):1905-1910.

    Zheng WK,Wei JH,Chen SL,Sun XB,Ma SC,Zhang BL. The development strategy and mode of co-construction and sharing base to improve the Chinese herbal medicine quality[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology,2018,20(11):1905-1910.

    [8]

    Araújo MB,Peterson AT. Uses and misuses of bioclimatic envelope modeling[J]. Ecology,2012,93(7):1527-1539.

    [9]

    Elith J,Leathwick JR. Species distribution models:ecological explanation and prediction across space and time[J]. Aaau Rev Ecol Evol S,2009,40(1):677-697.

    [10]

    Soberón J,Nakamura M. Niches and distributional areas:concepts,methods,and assumptions[J]. Proc Natl Acad Sci USA,2009,106(S2):19644-19650.

    [11]

    Elith J,Phillips SJ,Hastie T,Dudík M,Chee YE,Yates CJ. A statistical explanation of MaxEnt for ecologists[J].Divers Distrib,2011,17(1):43-57.

    [12]

    Yi YJ,Zhou Y,Cai Y,Yang W,Li Z,Zhao X. The influence of climate change on an endangered riparian plant species:the root of riparian Homonoia[J]. Ecol Indic,2018,92:40-50.

    [13]

    Prevéy JS,Parker LE,Harrington CA,Lamb CT,Proctor MF. Climate change shifts in habitat suitability and phenology of huckleberry(Vaccinium membranaceum)[J]. Agr Forest Meteorol,2020,280:107803.

    [14]

    Shrestha UB,Sharma KP,Devkota A,Siwakoti M,Shrestha BB. Potential impact of climate change on the distribution of six invasive alien plants in Nepal[J]. Ecol Indic,2018,95:99-107.

    [15]

    Qin A,Liu B,Guo Q,Bussmann RW,Ma F,et al. Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch.,an extremely endangered conifer from southwestern China[J]. Glob Ecol Conserv,2017,10:139-146.

    [16]

    Hu W,Wang Y,Dong P,Zhang D,Yu W,et al. Predicting potential mangrove distributions at the global northern distribution margin using an ecological niche model:determining conservation and reforestation involvement[J].Forest Ecol Manag,2020,478:118517.

    [17] 李单琦,胡菀,韩彩霞,陈陆丹,张志勇,等.基于Max Ent模型的濒危观赏植物福建柏潜在适生区预测[J].植物科学学报,2020,38(6):743-750.

    Li DQ,Hu W,Han CX,Chen LD,Zhang ZY,et al. Prediction of potential suitable distribution of Fokienia hodginsii(Dunn)Henry et Thomas based on Max Ent model[J].Plant Science Journal,2020,38(6):743-750.

    [18]

    Adhikari D,Tiwary R,Singh PP,Upadhaya K,Singh B,et al. Ecological niche modeling as a cumulative environmental impact assessment tool for biodiversity assessment and conservation planning:a case study of critically endangered plant Lagerstroemia minuticarpa in the Indian Eastern Himalaya[J]. J Environ Manage,2019,243:299-307.

    [19] 郭彦龙,李新,赵泽芳,卫海燕.黑河流域胡杨适宜生境分布模拟[J].中国科学:地球科学,2019,49(3):537-553.

    Guo YL,Li X,Zhao ZF,Wei HY. Modeling the distribution of Populus euphratica in the Heihe River Basin,an inland river basin in an arid region of China[J]. Science China Earth Sciences,2019,49(3):537-553.

    [20]

    Araújo MB,New M. Ensemble forecasting of species distributions[J]. Trends Ecol Evol,2007,22(1):42-47.

    [21]

    Ranjitkar S,Xu J,Shrestha KK,Kindt R. Ensemble forecast of climate suitability for the Trans-Himalayan Nyctaginaceae species[J]. Ecol Model,2014,282:18-24.

    [22]

    Hao T,Elith J,Guillera-Arroita G,Lahoz-Monfort JJ. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD[J]. Divers Distrib,2019,25(5):839-852.

    [23]

    Duque LJ,Navarro-Cerrillo R,Gils H,Groen T. Forecasting oak decline caused by Phytophthora cinnamomi in Andalusia:identification of priority areas for intervention[J].Forest Ecol Manag,2018,417:122-136.

    [24] 李倩,梁宗锁,董娟娥,付亮亮,蒋传中.丹参品质与主导气候因子的灰色关联度分析[J].生态学报,2010,30(10):2569-2575.

    Li Q,Liang ZS,Dong JE,Fu LL,Jiang CZ. Grey correlation for main climatic factors and quality of Danshen(Salvia miltiorrhiza Bunge)[J]. Acta Ecologica Sinica,2010,30(10):2569-2575.

    [25] 张辰露,梁宗锁,郭宏波,刘景玲,刘岩,等.不同气候区丹参生物量、有效成分变化与气象因子的相关性研究[J].中国中药杂志,2015,40(4):607-613.

    Zhang CL,Liang ZS,Guo HB,Liu JL,Liu Y,et al. Correlation analysis between meteorlogical factors,biomass,and active components of Salvia miltiorrhiza in different climatic zones[J]. China Journal of Chinese Materia Medica,2015,40(4):607-613.

    [26] 高铭,倪淑萍,沈亮.基于MaxEnt模型的丹参全球潜在生态适宜产区分析[J].中国药房,2018,29(16):2243-2247.

    Gao M,Ni SP,Shen L. Analysis of global potential ecological suitable producing area for Salvia miltiorrhiza based on Max Ent model[J]. China Pharmacy,2018,29(16):2243-2247.

    [27]

    Dormann CF,Elith J,Bacher S,Buchmann C,Carl G,et al. Collinearity:a review of methods to deal with it and a simulation study evaluating their performance[J]. Ecography,2013,36(1):27-46.

    [28]

    Le Maitre DC,Thuiller W,Schonegevel L. Developing an approach to defining the potential distributions of invasive plant species:a case study of Hakea species in South Africa[J]. Global Ecol Biogeogr,2008,17(5):569-584.

    [29]

    Thuiller W,Georges D,Engler R,Breiner F. Package ‘biomod2’[EB/OL].(2020-02-26)[2021-11-18].https://cran.r-project.org/web/packages/biomod2/biomod2.pdf.

    [30]

    Title PO,Bemmels JB. ENVIREM:an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling[J]. Ecography,2018,41(2):291-307.

    [31] 国家青藏高原科学数据中心.基于世界土壤数据库(HWSD)的中国土壤数据集(v1.1)[EB/OL].(2019-09-21)[2021-10-02]. https://data.tpdc.ac.cn/zh-hans/data/611f7d50-b419-4d14-b4dd-4a944b141175/.
    [32] 上官微,戴永久.面向陆面模拟的中国土壤数据集[EB/OL].(2014-01-05)[2021-10-02]. https://data.tpdc.ac.cn/zhhans/data/11573187-fd64-47b1-81a6-0c7c224112a0/.
    [33]

    Shangguan W,Dai YJ,Liu BY,Zhu AX,Duan QY,et al.A China dataset of soil properties for land surface modeling[J]. J Adv Model Earth Sy,2013,5(2):212-224.

    [34]

    Venter O,Sanderson EW,Magrach A,Allan JR,Beher J,et al. Last of the wild project,version 3(LWP-3):2009 human footprint,2018 release[EB/OL].(2018)[2021-10-06]. https://sedac.ciesin.columbia.edu/data/set/wildareas-v3-2009-human-footprint.

    [35]

    Giehl E,Jarenkow J. Niche conservatism and the differences in species richness at the transition of tropical and subtropical climates in South America[J]. Ecography,2012,35(10):933-943.

    [36]

    Phillips SJ,Anderson RP,Schapire RE. Maximum entropy modeling of species geographic distributions[J]. Ecol Model,2006,190(3):231-259.

    [37]

    Allouche O,Tsoar A,Kadmon R. Assessing the accuracy of species distribution models:prevalence,kappa and the true skill statistic(TSS)[J]. J Appl Ecol,2006,43(6):1223-1232.

    [38]

    Zhang X,Liu LY. Development of a global 30-m impervious surface map using multi-source and multi-temporal remote sensing datasets with the Google Earth Engine platform[DB/OL].(2019-10-18)[2021-10-02]. https://zenodo.org/record/3505079#.YZZPL9BBxPZ.

    [39] 黄波,宜树华,张欣雨,马青山,向波,等.基于BIOMOD的黄河源区黄帚橐吾分布[J].草业科学,2020,37(11):2198-2210.

    Huang B,Yi SH,Zhang XY,Ma QS,Xiang B,et al. Distribution of Ligularia virgaurea in the source region of the Yellow River based on BIOMOD[J]. Pratacultural Science,2020,37(11):2198-2210.

    [40] 朱妮.基于组合物种分布模型(Ensemble Model)的厚朴适宜生境分布模拟[J].四川农业大学学报,2019,37(4):481-489.

    Zhu N. Modelling the suitable habitat distribution of Magnolia officinalis using ensemble model[J]. Journal of Sichuan Agricultural University,2019,37(4):481-489.

    [41] 陈思斯,刘想,童鑫玥,管毕财.基于多模型集合预测尖萼红山茶物种分布[J].生态科学,2020,39(2):58-66.

    Chen SS,Liu X,Tong XY,Guan BC. Predict of Camellia edithae species distribution based on multi-model combination[J]. Ecological Science,2020,39(2):58-66.

    [42] 毕迎凤,许建初,李巧宏,Guisan A,Thuiller W,等.应用Bio Mod集成多种模型研究物种的空间分布———以铁杉在中国的潜在分布为例[J].植物分类与资源学报,2013,35(5):647-655.

    Bi YF,Xu JC,Li QH,Guisan A,Thuiller W,et al. Applying Bio Mod for Model-Ensemble in species distributions:a case study for Tsuga chinensis in China[J]. Plant Diversity,2013,35(5):647-655.

    [43] 吴艺楠,马育军,刘文玲,李小雁,王佩.基于BIOMOD的青海湖流域高原鼠兔分布模拟[J].动物学杂志,2017,52(3):390-402.

    Wu YN,Ma YJ,Liu WL,Li XY,Wang P. Modelling the distribution of Plateau Pika(Ochotona curzoniae)in Qinghai Lake Basin using BIOMOD[J]. Chinese Journal of Zoology,2017,52(3):390-402.

    [44] 刘晓彤,袁泉,倪健.中国植物分布模拟研究现状[J].植物生态学报,2019,43(4):273-283.

    Liu XT,Yuan Q,Ni J. Research advances in modelling plant species distribution in China[J]. Chinese Journal of Plant Ecology,2019,43(4):273-283.

    [45] 罗玫,王昊,吕植.使用大熊猫数据评估Biomod2和MaxEnt分布预测模型的表现[J].应用生态学报,2017,28(12):4001-4006.

    Luo M,Wang H,LüZ. Evaluating the performance of species distribution models Biomod2 and Max Ent using the giant panda distribution data[J]. Chinese Journal of Applied Ecology,2017,28(12):4001-4006.

    [46] 詹志来,邓爱平,彭华胜,张小波,郭兰萍,黄璐琦.基于历代本草产地变迁的药材道地性探讨———以黄芪、丹参为例[J].中国中药杂志,2016,41(17):3202-3208.

    Zhan ZL, Deng AP, Peng HS, Zhang XB, Guo LP,Huang LQ. Study of genuineness based on changes of ancient herbal origin———taking Astragalus membranaceus and Salvia miltiorrhiza as examples[J]. China Journal of Chinese Materia Medica,2016,41(17):3202-3208.

    [47] 张辰露,孙群,叶青.连作对丹参生长的障碍效应[J].西北植物学报,2005,25(5):1029-1034.

    Zhang CL,Sun Q,Ye Q. Obstacle effect of continuous cropping on Salvia miltiorrhiza growth[J]. Acta Botanica Boreali-Occidentalia Sinica,2005,25(5):1029-1034.

    [48] 赵杨景,陈四宝,高光耀,冯毓秀,杨世林,等.不同产地丹参的无机元素含量及其生长土壤的理化性质[J].中国中药杂志,2004(9):27-33.

    Zhao YJ,Chen SB,Gao GY,Feng YX,Yang SL,et al.Content of inorganic elements of Salvia miltiorrhiza root in different area and physicochemical properties of its growing soil[J]. China Journal of Chinese Materia Medica,2004(9):27-33.

  • 期刊类型引用(10)

    1. 刘成林,郭素娟. 气候变化下板栗适宜性分析及分布预测. 林业科学. 2024(04): 109-118 . 百度学术
    2. 孟乡,李耿,刘斌,史楠楠. 基于Biomod2平台组合模型的蒙古黄芪生产区划研究. 中国现代中药. 2024(11): 1843-1847 . 百度学术
    3. 王娜,张懿,李汶霖,张咏梅. 珍稀濒危药用植物白及的潜在分布格局分析. 中国野生植物资源. 2024(11): 129-136 . 百度学术
    4. 张宗亚,杜春红,张云,王洪琼,宋静,周济华,王丽芳,孙佳昱,沈美芬,陈春琼,江华,颜嘉琦,冯锡光,王文雅,钱沛君,薛靖波,李石柱,董毅. 基于随机森林和最大熵模型的云南省钉螺潜在地理分布预测. 中国血吸虫病防治杂志(中英文). 2024(06): 562-571+613 . 百度学术
    5. 丘佩容,邓鑫,陈泽山,杨贻铃,莫丹娥,龚妙虹,庄烁琳. 丹参抗肝癌潜在机制的研究进展. 中华中医药学刊. 2023(01): 103-106 . 百度学术
    6. 桂琴,郭其强,袁刚毅,张亚琴,罗丝琼,谢娜. 林下生境对大叶丹参叶表型及光合特性的影响. 森林与环境学报. 2023(02): 185-193 . 百度学术
    7. 吴阮琦,谢艳,张亚琴,陈兴福,吴秀清,高宇明. 四川不同地区丹参的质量一致性分析. 中国民族民间医药. 2023(08): 27-33 . 百度学术
    8. 王思楠,李瑞平,吴英杰,赵水霞,王秀青. 基于模型平均法的表层土壤含水率多模型综合反演. 农业工程学报. 2022(05): 87-94 . 百度学术
    9. 张源,秦誉嘉,张岳,付卫东,张国良,李志红. 基于集成模型预测外来入侵植物北美刺龙葵的适生区. 植物保护学报. 2022(05): 1434-1439 . 百度学术
    10. 陈昆圆,文艺,许相奎,周博,张红瑞,王铁霖,孟颢光,蒋士君,崔江宽. 河南省丹参根结线虫病原种类鉴定. 河南农业大学学报. 2022(06): 998-1006 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  489
  • HTML全文浏览量:  10
  • PDF下载量:  464
  • 被引次数: 17
出版历程
  • 收稿日期:  2021-05-16
  • 修回日期:  2021-07-22
  • 网络出版日期:  2022-10-31
  • 发布日期:  2021-12-27

目录

    /

    返回文章
    返回