高级检索+

粗枝云杉PaPR10-1基因的克隆表达及生物信息学分析

李成松, 刘利娟, 梁芳, 赵炜栋, 杨春琳, 刘应高

李成松,刘利娟,梁芳,赵炜栋,杨春琳,刘应高. 粗枝云杉PaPR10-1基因的克隆表达及生物信息学分析[J]. 植物科学学报,2023,41(2):224−233. DOI: 10.11913/PSJ.2095-0837.22140
引用本文: 李成松,刘利娟,梁芳,赵炜栋,杨春琳,刘应高. 粗枝云杉PaPR10-1基因的克隆表达及生物信息学分析[J]. 植物科学学报,2023,41(2):224−233. DOI: 10.11913/PSJ.2095-0837.22140
Li CS,Liu LJ,Liang F,Zhao WD,Yang CL,Liu YG. Cloning, prokaryotic expression, and bioinformatics analysis of PaPR10-1 gene from Picea asperata Mast.[J]. Plant Science Journal,2023,41(2):224−233. DOI: 10.11913/PSJ.2095-0837.22140
Citation: Li CS,Liu LJ,Liang F,Zhao WD,Yang CL,Liu YG. Cloning, prokaryotic expression, and bioinformatics analysis of PaPR10-1 gene from Picea asperata Mast.[J]. Plant Science Journal,2023,41(2):224−233. DOI: 10.11913/PSJ.2095-0837.22140
李成松,刘利娟,梁芳,赵炜栋,杨春琳,刘应高. 粗枝云杉PaPR10-1基因的克隆表达及生物信息学分析[J]. 植物科学学报,2023,41(2):224−233. CSTR: 32231.14.PSJ.2095-0837.22140
引用本文: 李成松,刘利娟,梁芳,赵炜栋,杨春琳,刘应高. 粗枝云杉PaPR10-1基因的克隆表达及生物信息学分析[J]. 植物科学学报,2023,41(2):224−233. CSTR: 32231.14.PSJ.2095-0837.22140
Li CS,Liu LJ,Liang F,Zhao WD,Yang CL,Liu YG. Cloning, prokaryotic expression, and bioinformatics analysis of PaPR10-1 gene from Picea asperata Mast.[J]. Plant Science Journal,2023,41(2):224−233. CSTR: 32231.14.PSJ.2095-0837.22140
Citation: Li CS,Liu LJ,Liang F,Zhao WD,Yang CL,Liu YG. Cloning, prokaryotic expression, and bioinformatics analysis of PaPR10-1 gene from Picea asperata Mast.[J]. Plant Science Journal,2023,41(2):224−233. CSTR: 32231.14.PSJ.2095-0837.22140

粗枝云杉PaPR10-1基因的克隆表达及生物信息学分析

基金项目: 四川省教育厅重点项目(09ZA068)。
详细信息
    作者简介:

    李成松(1998−),男,硕士研究生,研究方向为森林保护学(E-mail:lcs2012514359@163.com

    通讯作者:

    刘应高: E-mail:lyg927@263.net

  • 中图分类号: Q943.2

Cloning, prokaryotic expression, and bioinformatics analysis of PaPR10-1 gene from Picea asperata Mast.

Funds: This work was supported by a grant from the Key Project of Education Department of Sichuan (09ZA068).
  • 摘要:

    PR10是病程相关蛋白(PRs)家族的重要成员,能增强植物抵御外界胁迫侵扰的能力。为进一步研究PR10蛋白的生物学功能,在转录组测序的基础上,利用RT-PCR技术获得一个粗枝云杉(Picea asperata Mast.)基因PaPR10-1,利用生物信息学方法对其核苷酸和氨基酸序列进行结构和功能分析,进一步构建PaPR10-1融合蛋白原核表达系统,获得高纯度PaPR10-1融合蛋白,并采用底物法体外分析其核糖核酸酶活性。结果显示:PaPR10-1基因ORF长486 bp,编码161个氨基酸。PaPR10-1蛋白无跨膜结构和信号肽,为胞内蛋白,含有“P-Loop”和Bet _v1-like保守结构域。系统进化分析结果表明,PaPR10-1蛋白与海岸松(Pinus pinaster Aiton)PR10蛋白归为一个分支,亲缘关系较近。目的蛋白在30 ℃下以0.2 mmol/L的IPTG诱导1 h表达量最佳,且具有核糖核酸酶活性。

    Abstract:

    PR10 is an important member of the pathogenesis-related protein (PR) family, which enhances the ability of plants to resist external stresses. In this study, a PR10 gene from Picea asperata Mast. PaPR10-1 was obtained by RT-PCR, with sequence characteristics then analyzed and prokaryotic expression system further constructed and optimized. Ribonuclease activity was then analyzed using the substrate method in vitro. Results showed that the open reading frame (ORF) of PaPR10-1 was 486 bp in length and encoded a protein with a 161 amino acid. Without a transmembrane structure and signal peptide, the PaPR10-1 protein was an intracellular protein with two conserved domains, “P-Loop” and Bet-v1-like, respectively. Phylogenetic analysis showed that PaPR10-1 was closely related to the PR10 protein of Pinus pinaster Aiton. Optimal expression conditions for the gene were 0.2 mmol/L IPTG at 30℃ for 1 h induction, and the expressed target protein exhibited ribonuclease activity.

  • 图  1   PaPR10-1 基因PCR产物

    Figure  1.   PCR product of PaPR10-1 gene

    图  2   PaPR10-1 基因 cDNA序列及其编码的氨基酸序列

    方框为“P-Loop”保守基序(GXGGXG) ;横线为潜在的磷酸化位点。

    Figure  2.   PaPR10-1 gene cDNA sequence and its encoded amino acid sequence

    Box is “P-Loop” conservative base order (GXGGXG); black bottom line is potential phosphorylation site.

    图  3   PaPR10-1疏水性分析

    Figure  3.   Hydrophobicity analysis of PaPR10-1

    图  4   PaPR10-1蛋白二级结构预测与分析(A)以及蛋白三级结构预测(B)

    A:蓝色表示α-螺旋;紫色表示无规则卷曲;红色表示延伸链;绿色表示β-转角;横向数值表示氨基酸位置。

    Figure  4.   Secondary structure prediction and analysis of PaPR10-1 protein (A) and tertiary structure prediction of (B)

    A: Blue indicates α-helix; purple represents random coil; red indicates extended strand; green indicates β-turn; lateral value indicates amino acid position.

    图  5   PaPR10-1与6种植物PR10的多重序列比对

    AAL50007.1:西部白松;ADJ53040.1:海岸松;QEQ43328.1:硬粒小麦;ACG68733.1:小麦;AAW83210.1:高粱;ABK22402.1:北美云杉。箭头表示β-折叠,字母TT表示β-转角,波浪线表示α-螺旋。

    Figure  5.   Multiple alignments of amino acid sequence of PaPR10-1 and six plant PR10s

    AAL50007.1: Pinus monticola Dougl.; ADJ53040.1: Pinus pinaster Aiton; QEQ43328.1: Triticum durum Desf.; ACG68733.1: Triticum aestivum L.; AAW83210.1: Sorghum Bicolor (L.) Moench; ABK22402.1: Picea sitchensis (Bong.) Carr. Arrows indicate β-pleated sheets, TT indicates β-turns, squiggles indicate α-helix.

    图  6   PR10系统进化树分析

    红色为双子叶植物,黄色为裸子植物,绿色为单子叶植物,蓝色为苔藓植物。

    Figure  6.   Phylogenetic tree analysis of PR10

    Red indicates dicot, yellow indicates gymnosperms, green indicates monocot, blue indicates bryophyte.

    图  7   pET-32a-PaPR10-1 转入BL21( DE3)的条带检测

    Figure  7.   Band detection of pET-32a-PaPR10-1 transferred to BL21(DE3)

    图  8   pET-32a-PaPR10-1-BL21( DE3)诱导条件的优化

    M:蛋白质分子量标准。A:最佳IPTG诱导浓度的筛选。1:不加IPTG诱导的pET-32a空载体;2:0.5 mmol /L 的 IPTG 诱导pET-32a空载体;3 ~ 7:IPTG诱导浓度分别为 0.2、0.4、0.6、0.8、1.0 mmol /L。B:最佳诱导时间的筛选。1:0.2 mmol /L IPTG 诱导pET-32a 空载体 4 h;2:不加IPTG诱导的pET-32a空载体;3:不加IPTG诱导的菌液; 4 ~ 8:0.2 mmol /L的IPTG分别诱导 1、2、3、4、5 h。C:最佳诱导温度的筛选。1:诱导全菌液;2 ~ 5:分别以 20℃、25℃、30℃和 37℃诱导上清中的蛋白表达;6 ~ 9:分别以20℃、25℃、30℃和 37℃诱导沉淀中的蛋白表达。

    Figure  8.   Optimization of induction conditions of pET-32a-PaPR10-1-BL21(DE3)

    M: Protein marker. A: Screening of optimal IPTG-induced concentration. 1: pET-32a empty vector without IPTG; 2: IPTG (0.5 mmol/L)-induced pET-32a empty vector; 3–7: pET-32a-PICHI-BL21(DE3) was induced by 0.2, 0.4, 0.6, 0.8, 1.0 mmol/L IPTG. B: Screening of optimal induction time. 1: IPTG (0.2 mmol/L)-induced pET-32a empty vector; 2: pET-32a empty vector without IPTG; 3: pET-32a-PICHI-BL21(DE3) without IPTG; 4–8: pET-32a-PICHI-BL21(DE3) was induced by IPTG (0.2 mmol/L) in 1, 2, 3, 4, 5 h. C: Screening of optimal induction temperature. 1: pET-32a-PICHI-BL21(DE3) was induced at 37℃; 2–5: Supernatant of pET-32a-PICHI-BL21(DE3) was induced at 20℃, 25℃, 30℃, and 37℃; 6–9: Precipitation of pET-32a-PICHI-BL21(DE3) was induced at 20℃, 25℃, 30℃, and 37℃.

    图  9   PaPR10-1蛋白纯化(A)及RNase活性检测(B)

    M:蛋白质分子量标准;a:纯化结果。 1:DEPC水;2:洗脱液;3:RNA酶清除剂 + PaPR10-1蛋白;4:PaPR10-1蛋白;5:RNA酶清除剂。

    Figure  9.   Purification of PaPR10-1 protein (A) and detection of ribonuclease activity (B)

    M: Protein marker; a: Purification result. B: 1: DEPC water; 2: Eluent; 3: RNase scavenger + PaPR10-1 protein; 4: PaPR10-1 protein; 5: RNase scavenger.

    表  1   引物序列

    Table  1   Primer sequences

    引物名称
    Primer name
    引物序列 (5'→3')
    Primer sequence (5'→3')
    PaPR10-1-FATGGTGGCAGGGACGGTAACAAC
    PaPR10-1-RTTAGCAGTATAAGTCGGGGTTGGAG
    PaPR10-1-BamHⅠ-FGGAATTCATGGTGGCAGGGACGGTAACAAC
    PaPR10-1-HindⅢ-RCCGCTCGAGTTAGCAGTATAAGTCGGGGTTGGAG
    下载: 导出CSV
  • [1]

    Van Loon LC,Van Strien EA. The families of pathogenesis-related proteins,their activities,and comparative analysis of PR-1 type proteins[J]. Physiol Mol Plant Pathol,1999,55 (2):85−97. doi: 10.1006/pmpp.1999.0213

    [2]

    Irigoyen ML,Garceau DC,Bohorquez-Chaux A,Lopez-Lavalle LAB,Perez-Fons L,et al. Genome-wide analyses of cassava Pathogenesis-related (PR) gene families reveal core transcriptome responses to whitefly infestation,salicylic acid and jasmonic acid[J]. BMC Genomics,2020,21 (1):93. doi: 10.1186/s12864-019-6443-1

    [3]

    Sels J,Mathys J,de Coninck BMA,Cammue BPA,de Bolle MFC. Plant pathogenesis-related (PR) proteins:a focus on PR peptides[J]. Plant Physiol Biochem,2008,46 (11):941−950. doi: 10.1016/j.plaphy.2008.06.011

    [4]

    Kim YJ,Jang MG,Lee HJ,Jang GH,Sukweenadhi J,et al. Functional characterization of the pathogenesis-related protein family 10 gene,PgPR10-4,from Panax ginseng in response to environmental stresses[J]. Plant Cell Tiss Org,2014,118 (3):531−543. doi: 10.1007/s11240-014-0505-5

    [5] 温韵洁,何红卫,黄群声,梁山,宾金华. 病程相关蛋白10在植物防御反应中的作用[J]. 植物生理学通讯,2008,44(3):585−592.

    Wen YJ,He HW,Huang QS,Liang S,Bin JH. Roles of pathogenesis-relative protein 10 in plant defense response[J]. Plant Physiology Communications,2008,44 (3):585−592.

    [6] 何华,陈朝银,韩青,张南南,葛锋,刘迪秋. 漾濞大泡核桃病程相关蛋白10基因JsPR10-1的克隆与表达分析[J]. 植物科学学报,2014,32(6):612−619.

    He H,Chen CY,Han Q,Zhang NN,Ge F,Liu DQ. Cloning and expression analysis of a pathogenesis-related protein 10 gene from Juglans sigillata[J]. Plant Science Journal,2014,32 (6):612−619.

    [7]

    Aglas L,Soh WT,Kraiem A,Wenger M,Brandstetter H,Ferreira F. Ligand binding of PR-10 proteins with a particular focus on the Bet v1 allergen family[J]. Curr Allergy Asthma Rep,2020,20 (7):25. doi: 10.1007/s11882-020-00918-4

    [8]

    Agarwal P,Agarwal PK. Pathogenesis related-10 proteins are small,structurally similar but with diverse role in stress signaling[J]. Mol Biol Rep,2014,41 (2):599−611. doi: 10.1007/s11033-013-2897-4

    [9]

    Somssich IE,Schmelzer E,Kawalleck P,Hahlbrock K. Gene structure and in situ transcript localization of pathogenesis-related protein 1 in parsley[J]. Mol Gen Genet,1988,213 (1):93−98. doi: 10.1007/BF00333403

    [10]

    Crowell DN,John ME,Russell D,Amasino RM. Characterization of a stress-induced,developmentally regulated gene family from soybean[J]. Plant Mol Biol,1992,18 (3):459−466. doi: 10.1007/BF00040662

    [11]

    Katilé SO,Perumal R,Rooney WL,Prom LK,Magill CW. Expression of pathogenesis-related protein PR-10 in sorghum floral tissues in response to inoculation with Fusarium thapsinum and Curvularia lunata[J]. Mol Plant Pathol,2010,11 (11):93−103.

    [12]

    Tang BF,Li X,Pu LM,Zhao Q,Cui XM,et al. A pathogenesis-related protein 10 gene PnPR10-3 was involved in molecular interaction between Panax notoginseng and Fusarium solani[J]. Australasian Plant Pathol,2019,48 (5):447−456. doi: 10.1007/s13313-019-00644-0

    [13] 刘建光,豆海宽,赵贵元,耿昭,韩硕,等. 海岛棉病程相关蛋白GbPR10基因的克隆及其在干旱胁迫下的功能分析[J]. 农业生物技术学报,2022,30(2):272−283. doi: 10.3969/j.issn.1674-7968.2022.02.006

    Liu JG,Dou HK,Zhao GY,Geng Z,Han S,et al. Cloning and drought stress function analysis of pathogenesis-related proteins GbPR10 gene in sea-island cotton (Gossypium barbadense)[J]. Journal of Agricultural Biotechnology,2022,30 (2):272−283. doi: 10.3969/j.issn.1674-7968.2022.02.006

    [14]

    Semerikov VL,Semerikova SA,Khrunyk YY,Putintseva YA. Sequence capture of mitochondrial genome with PCR-generated baits provides new insights into the biogeography of the genus Abies Mill.[J]. Plants,2022,11 (6):762. doi: 10.3390/plants11060762

    [15]

    Zeb U,Wang XK,AzizUllah A,Fiaz S,Khan H,et al. Comparative genome sequence and phylogenetic analysis of chloroplast for evolutionary relationship among Pinus species[J]. Saudi J Biol Sci,2022,29 (3):1618−1627. doi: 10.1016/j.sjbs.2021.10.070

    [16]

    Ekramoddoullah AKM,Taylor D,Hawkins BJ. Characterisation of a fall protein of sugar pine and detection of its homologue associated with frost hardiness of western white pine needles[J]. Can J For Res,1995,25 (7):1137−1147. doi: 10.1139/x95-126

    [17]

    Ekramoddoullah AKM. Physiology and molecular biology of a family of pathogenesis-related PR-10 proteins in conifers[J]. J Crop Improv,2004,10 (1-2):261−280. doi: 10.1300/J411v10n01_11

    [18]

    Ekramoddoullah AKM,Yu XS,Sturrock R,Zamani A,Taylor D. Detection and seasonal expression pattern of a pathogenesis-related protein (PR-10) in Douglas-fir (Pseudotsuga menziesii) tissues[J]. Physiol Plant,2000,110 (2):240−247. doi: 10.1034/j.1399-3054.2000.110214.x

    [19] 杨春琳,许秀兰,黄晓丽,刘应高,徐明庆,刘韩. 粗枝云杉幼林落针病的生理生化特性[J]. 东北林业大学学报,2014,42(9):148−152. doi: 10.3969/j.issn.1000-5382.2014.09.031

    Yang CL,Xu XL,Huang XL,Liu YG,Xu MQ,Liu H. Physiological and biochemical indexes on young growth of Picea asperata needle cast[J]. Journal of Northeast Forestry University,2014,42 (9):148−152. doi: 10.3969/j.issn.1000-5382.2014.09.031

    [20] 杨传杰,张君霞,黄鑫. 粗枝云杉对4种常见园林配置植物种子萌发的化感作用[J]. 甘肃农业大学学报,2018,53(2):103−107. doi: 10.3969/j.issn.1003-4315.2018.02.016

    Yang CJ,Zhang JX,Huang X. Allelopathy of Picea asperata to seed germination of four common garden configuration plants[J]. Journal of Gansu Agricultural University,2018,53 (2):103−107. doi: 10.3969/j.issn.1003-4315.2018.02.016

    [21] 杨春琳,许秀兰,徐明庆,刘应高. 云杉落针病几个生理生化指标的变化[J]. 湖南农业大学学报(自然科学版),2015,41(2):161−166.

    Yang CL,Xu XL,Xu MQ,Liu YG. Pathological changes of physiological and biochemical indexes in Picea balfouriana with needle cast[J]. Journal of Hunan Agricultural University(Natural Sciences),2015,41 (2):161−166.

    [22]

    Liu YF,Liu LJ,Yang S,Zeng Q,He ZR,Liu YG. Cloning,characterization and expression of the phenylalanine ammonia-lyase gene (PaPAL) from spruce Picea asperata[J]. Forests,2019,10 (8):613. doi: 10.3390/f10080613

    [23]

    Liu YF,Liu LJ,Yang CL,Han S,Yang S,et al. Molecular identification and antifungal activity of a defensin (PaDef) from Spruce[J]. J Plant Growth Regul,2022,41 (2):494−506. doi: 10.1007/s00344-021-10316-3

    [24] 刘裕峰,朱天辉,刘应高,李姝江,龙旭梅,等. 板栗咖啡酸氧甲基转移酶基因CmCOMT的克隆及原核表达[J]. 西北植物学报,2017,37(12):2332−2341. doi: 10.7606/j.issn.1000-4025.2017.12.2332

    Liu YF,Zhu TH,Liu YG,Li SJ,Long XM,et al. Cloning and prokaryotic expression of caffeic acid O-methyltransferase gene CmCOMT from Castanea mollissima Bl.[J]. Acta Botanica Boreali-Occidentalia Sinica,2017,37 (12):2332−2341. doi: 10.7606/j.issn.1000-4025.2017.12.2332

    [25] 谢纯政,梁炫强,李玲,刘海燕. 花生抗黄曲霉相关ARAhPR10基因克隆及其原核表达[J]. 基因组学与应用生物学,2009,28(2):237−244.

    Xie CZ,Liang XQ,Li L,Liu HY. Cloning and prokaryotic expression of ARAhPR10 gene with resistance to Aspergillus flavus in peanut[J]. Genomics and Applied Biology,2009,28 (2):237−244.

    [26] 任晋宏,薛慧清,刘晔,魏砚明,Adelson D等. 蒙古黄芪病程相关蛋白AmPR-10纯化及生物学功能研究[J]. 中国中药杂志,2018,43(18):3662−3667. doi: 10.19540/j.cnki.cjcmm.20180702.003

    Ren JH,Xue HQ,Liu Y,Wei YM,Adelson D,et al. Purification and biochemical function of Astragalus membtanaceus pathogenesis-related protein 10[J]. China Journal of Chinese Materia Medica,2018,43 (18):3662−3667. doi: 10.19540/j.cnki.cjcmm.20180702.003

    [27] 杨涛,王艳. 植物病程相关蛋白PR-10的研究进展[J]. 植物生理学报,2017,53(12):2057−2068. doi: 10.13592/j.cnki.ppj.2017.0284

    Yang T,Wang Y. Research progress of plant pathogenesis related protein PR-10[J]. Plant Physiology Journal,2017,53 (12):2057−2068. doi: 10.13592/j.cnki.ppj.2017.0284

    [28]

    Lebel S,Schellenbaum P,Walter B,Maillot P. Characterisation of the Vitis vinifera PR10 multigene family[J]. BMC Plant Biol,2010,10 (1):184. doi: 10.1186/1471-2229-10-184

    [29]

    Radauer C,Lackner P,Breiteneder H. The Bet v 1 fold:an ancient,versatile scaffold for binding of large,hydrophobic ligands[J]. BMC Evol Biol,2008,8 (1):286. doi: 10.1186/1471-2148-8-286

    [30]

    Liu JJ,Ekramoddoullah AKM. The family 10 of plant pathogenesis-related proteins:their structure,regulation,and function in response to biotic and abiotic stresses[J]. Physiol Mol Plant Pathol,2006,68 (1-3):3−13. doi: 10.1016/j.pmpp.2006.06.004

    [31]

    Chen R,He H,Yang Y,Qu Y,Ge F,Liu DQ. Functional characterization of a pathogenesis-related protein family 10 gene,LrPR10-5,from Lilium regale Wilson[J]. Australasian Plant Pathol,2017,46 (3):251−259. doi: 10.1007/s13313-017-0485-0

    [32]

    Rajendram A,Mostaffa NH,Dumin W,Oke MA,Simarani K,et al. Dual activity of Meloidogyne incognita-regulated Musa acuminata Pathogenesis-related-10 (MaPR-10) gene[J]. Gene,2022,809:146041. doi: 10.1016/j.gene.2021.146041

    [33] 王珏,胡丽丽,李桂兰,吴娜,张育敏. 同源蛋白序列比对探讨AmPR-10核酸酶活性机理[J]. 生物学杂志,2021,38(5):48−52.

    Wang J,Hu LL,Li GL,Wu N,Zhang YM. Exploring the mechanism of AmPR-10 nuclease activity based on the homologous protein sequence alignment[J]. Journal of Biology,2021,38 (5):48−52.

    [34]

    Matton DP,Brisson N. Cloning,expression,and sequence conservation of pathogenesis-related gene transcripts of potato[J]. Mol Plant Microbe Interact,1989,2 (6):325−331. doi: 10.1094/MPMI-2-325

    [35]

    Samac DA,Peñuela S,Schnurr JA,Hunt EN,Foster-Hartnett D,et al. Expression of coordinately regulated defence response genes and analysis of their role in disease resistance in Medicago truncatula[J]. Mol Plant Pathol,2011,12 (8):786−798. doi: 10.1111/j.1364-3703.2011.00712.x

    [36]

    Chadha P,Das RH. A pathogenesis related protein,AhPR10 from peanut:an insight of its mode of antifungal activity[J]. Planta,2006,225 (1):213−222. doi: 10.1007/s00425-006-0344-7

    [37]

    Wu F,Yan M,Li YK,Chang SJ,Song XM,et al. cDNA cloning,expression,and mutagenesis of a PR-10 protein SPE-16 from the seeds of Pachyrrhizus erosus[J]. Biochem Biophys Res Commun,2003,312 (3):761−766. doi: 10.1016/j.bbrc.2003.10.181

    [38]

    Biesiadka J,Bujacz G,Sikorski MM,Mariusz J,Jaskolski M. Crystal structures of two homologous pathogenesis-related proteins from yellow lupine[J]. J Mol Biol,2002,319 (5):1223−1234. doi: 10.1016/S0022-2836(02)00385-6

    [39]

    Pasternak O,Bujacz GD,Fujimoto Y,Hashimoto Y,Jelen F,et al. Crystal structure of Vigna radiata cytokinin-specific binding protein in complex with zeatin[J]. Plant Cell,2006,18 (10):2622−2634. doi: 10.1105/tpc.105.037119

    [40] 张玉,王杰,周世奇,郑甜甜,罗成刚,王元英. 烟草PR10蛋白生物活性及赤星病菌Alternaria alternata诱导下的表达分析[J]. 植物保护学报,2018,45(3):455−462.

    Zhang Y,Wang J,Zhou SQ,Zheng TT,Luo CG,Wang YY. Biological activity of tobacco PR10 protein and expression analysis induced by Alternaria alternata[J]. Journal of Plant Protection,2018,45 (3):455−462.

    [41] 赵乐,马利刚,王志霜,申业,郑晓珂. 丹参病程相关蛋白基因PR10的克隆与表达分析[J]. 西北植物学报,2015,35(6):1078−1084.

    Zhao L,Ma LG,Wang ZS,Shen Y,Zheng XK. Cloning and expression analysis of pathogenesis-related protein 10 gene of Salvia miltiorrhiza[J]. Acta Botanica Boreali-Occidentalia Sinica,2015,35 (6):1078−1084.

    [42]

    Schein CH,Noteborn MHM. Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature[J]. Nat Biotechnol,1988,6 (3):291−294. doi: 10.1038/nbt0388-291

    [43] 刘利娟,刘裕峰,杨帅,刘应高. 川西云杉几丁质酶基因PlCHI的克隆、表达与生物信息学分析[J]. 植物科学学报,2019,37(4):503−512.

    Liu LJ,Liu YF,Yang S,Liu YG. Cloning,expression,and bioinformatics analysis of the chitinase gene PlCHI in Picea likiangensis var. balfouriana[J]. Plant Science Journal,2019,37 (4):503−512.

图(9)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-29
  • 修回日期:  2022-10-29
  • 网络出版日期:  2023-05-05
  • 刊出日期:  2023-04-29

目录

    /

    返回文章
    返回