高级检索+

六个大丽花品种对高温胁迫的生理响应及耐热性综合评价

张映婵, 韩胜男, 王璐, 牛善策, 郝丽红, 郑志兴, 陈段芬, 向地英

张映婵,韩胜男,王璐,牛善策,郝丽红,郑志兴,陈段芬,向地英. 六个大丽花品种对高温胁迫的生理响应及耐热性综合评价[J]. 植物科学学报,2023,41(2):245−255. DOI: 10.11913/PSJ.2095-0837.22167
引用本文: 张映婵,韩胜男,王璐,牛善策,郝丽红,郑志兴,陈段芬,向地英. 六个大丽花品种对高温胁迫的生理响应及耐热性综合评价[J]. 植物科学学报,2023,41(2):245−255. DOI: 10.11913/PSJ.2095-0837.22167
Zhang YC,Han SN,Wang L,Niu SC,Hao LH,Zheng ZX,Chen DF,Xiang DY. Comprehensive evaluation of the physiological response and heat tolerance of six Dahlia pinnata Cav. cultivars to high-temperature stress[J]. Plant Science Journal,2023,41(2):245−255. DOI: 10.11913/PSJ.2095-0837.22167
Citation: Zhang YC,Han SN,Wang L,Niu SC,Hao LH,Zheng ZX,Chen DF,Xiang DY. Comprehensive evaluation of the physiological response and heat tolerance of six Dahlia pinnata Cav. cultivars to high-temperature stress[J]. Plant Science Journal,2023,41(2):245−255. DOI: 10.11913/PSJ.2095-0837.22167
张映婵,韩胜男,王璐,牛善策,郝丽红,郑志兴,陈段芬,向地英. 六个大丽花品种对高温胁迫的生理响应及耐热性综合评价[J]. 植物科学学报,2023,41(2):245−255. CSTR: 32231.14.PSJ.2095-0837.22167
引用本文: 张映婵,韩胜男,王璐,牛善策,郝丽红,郑志兴,陈段芬,向地英. 六个大丽花品种对高温胁迫的生理响应及耐热性综合评价[J]. 植物科学学报,2023,41(2):245−255. CSTR: 32231.14.PSJ.2095-0837.22167
Zhang YC,Han SN,Wang L,Niu SC,Hao LH,Zheng ZX,Chen DF,Xiang DY. Comprehensive evaluation of the physiological response and heat tolerance of six Dahlia pinnata Cav. cultivars to high-temperature stress[J]. Plant Science Journal,2023,41(2):245−255. CSTR: 32231.14.PSJ.2095-0837.22167
Citation: Zhang YC,Han SN,Wang L,Niu SC,Hao LH,Zheng ZX,Chen DF,Xiang DY. Comprehensive evaluation of the physiological response and heat tolerance of six Dahlia pinnata Cav. cultivars to high-temperature stress[J]. Plant Science Journal,2023,41(2):245−255. CSTR: 32231.14.PSJ.2095-0837.22167

六个大丽花品种对高温胁迫的生理响应及耐热性综合评价

基金项目: 河北省重点研发计划(20326814D)
详细信息
    作者简介:

    张映婵(1994−),女,硕士研究生,研究方向为观赏植物逆境生理(E-mail:2472469690@qq.com

    通讯作者:

    陈段芬: E-mail:chenduanfen@163.com

    向地英: yyxdy@hebau.edu.cn

  • 中图分类号: S682.2

Comprehensive evaluation of the physiological response and heat tolerance of six Dahlia pinnata Cav. cultivars to high-temperature stress

Funds: This work was supported by a grant from the Key R&D Program of Hebei Province (20326814D).
  • 摘要:

    本文以6个大丽花(Dahlia pinnata Cav.)品种为材料,研究高温胁迫处理(40℃/35℃,14 h 昼/10 h 夜)2 d对其形态和生理指标的影响,应用相关性分析、主成分分析和隶属函数法计算耐热性综合评价值D,并用逐步回归分析法筛选鉴定大丽花耐热性指标。结果显示:(1)高温胁迫后,叶片中Fv/Fm值和叶绿素含量均下降;抗坏血酸和还原型谷胱甘肽含量在叶片中上升,在茎中下降;可溶性糖和可溶性蛋白含量在叶片和茎中均下降;总酚含量在叶片中显著上升,在茎中显著下降;花青素含量在叶片和茎中均上升。(2)基于耐热性综合评价值D,6个品种中,‘SLGZ’耐热性较强;‘KEW’、‘QKL’和‘YH-C11’耐热性中等;‘AGR-C1’和‘YY-C5’耐热性弱。(3)回归分析结果表明,叶片的半致死温度和叶绿素含量、茎的可溶性蛋白和抗坏血酸含量、热害指数可作为鉴定大丽花耐热性的指标。

    Abstract:

    Six cultivars of Dahlia pinnata Cav. were used to investigate the effects of high-temperature stress (40℃/35℃, 14 h/10 h (day/night), 2 d) on morphological and physiological indices. Correlation analysis, principal component analysis, and membership function analysis were applied to calculate the comprehensive evaluation value D for heat resistance and stepwise regression analysis was used to screen indicators of heat tolerance. Results showed: (1) After high-temperature stress, the Fv / Fm value and chlorophyll content decreased in leaves. Ascorbic acid and reduced glutathione contents increased in leaves and decreased in stems, while soluble sugar and soluble protein contents decreased in both leaves and stems. Total phenol content increased significantly in leaves and decreased significantly in stems, while anthocyanin content increased in leaves and stems. (2) According to the comprehensive evaluation value D for heat resistance, among the six varieties, ‘SLGZ’ showed the strongest heat resistance, ‘KEW’, ‘QKL’, and ‘YH-C11 showed medium heat resistance, and ‘AGR-C1’ and ‘YY-C5’ showed the weakest heat resistance. (3) Regression analysis indicated that semi-lethal temperature and chlorophyll content of leaves, soluble protein and ascorbic acid content of stems, and the heat damage index could be used as indicators of heat tolerance in dahlias.

  • 图  1   高温胁迫对大丽花形态的影响

    Figure  1.   Effects of high-temperature stress on Dahlia pinnata morphology

    图  2   相对电导率和 Logistic 拟合曲线

    Figure  2.   Relative conductivity and logistic fitting curve

    图  3   高温胁迫对大丽花叶片生理指标的影响

    *和**分别表示在0.05和0.01水平上差异显著。下同。

    Figure  3.   Effects of high-temperature stress on physiological indices of Dahlia pinnata leaves

    * and ** are significantly different at 0.05 and 0.01 levels, respectively. Same below.

    图  4   高温胁迫对大丽花茎生理指标的影响

    Figure  4.   Effects of high-temperature stress on physiological indices of Dahlia pinnata stems

    表  1   6个供试大丽花品种基本信息

    Table  1   Information on six Dahlia pinnata cultivars

    品种
    Variety
    来源
    Origin
    ‘YH-C11’广州市怡华园艺有限公司
    ‘AGR-C1’云南艾格瑞农业科技有限公司
    ‘YY-C5’上海源怡种苗公司
    ‘SLGZ’北京中世花卉有限公司
    ‘QKL’北京林业大学
    ‘KEW’甘肃
    下载: 导出CSV

    表  2   大丽花形态指标和热害指数

    Table  2   Dahlia pinnata morphology and heat damage indices

    品种
    Cultivar
    枝条长度
    Branch length / cm
    枝条粗度
    Branch diameter / mm
    热害指数
    Heat damage index / %
    排序
    Order
    ‘YH-C11’41.83 ± 0.48cd8.62 ± 0.17b20.002
    ‘AGR-C1’26.67 ± 0.99ed7.33 ± 0.23c53.334
    ‘YY-C5’21.50 ± 1.45e6.08 ± 0.14d80.006
    ‘SLGZ’42.02 ± 0.61b12.62 ± 0.47a13.331
    ‘QKL’48.17 ± 0.55c9.50 ± 0.29b33.333
    ‘KEW’46.58 ± 0.84a17.33 ± 0.80a60.005
    注:同列不同小写字母表示不同品种在0.05水平上差异显著。
    Note:Different lowercase letters in the same column indicate significant difference at 0.05 level.
    下载: 导出CSV

    表  3   叶和茎的Logistic 方程及半致死温度

    Table  3   Logistic equations and LT50 values of leaves and stems

    测定部位
    Measurement site
    品种
    Culticar
    回归方程
    Logistic equation
    决定系数
    R2
    半致死温度
    LT50 / ℃
    叶片
    ‘YH-C11’Y = 71.80/(1 + e−(49.34−x)) + 27.210.99649.34
    ‘AGR-C1’Y = 75.56/(1 + e−(47.79−x)) + 15.070.99647.79
    ‘YY-C5’Y = 64.01/(1 + e−(46.07−x)) + 37.290.99046.07
    ‘SLGZ’Y = 75.19/(1 + e−(49.65−x)) + 27.210.99749.65
    ‘QKL’Y = 68.21/(1 + e−(50.38−x)) + 22.580.99850.38
    ‘KEW’Y = 67.11/(1 + e−(48.80−x)) + 20.410.99948.80

    ‘YH-C11’Y = 62.86/(1 + e−(54.49−x)) + 13.480.98954.49
    ‘AGR-C1’Y = 49.24/(1 + e−(51.60−x)) + 24.240.99351.60
    ‘YY-C5’Y = 43.56/(1 + e−(51.21−x)) + 20.600.99751.21
    ‘SLGZ’Y = 72.52/(1 + e−(52.35−x)) + 12.660.99052.35
    ‘QKL’Y = 65.67/(1 + e−(55.10−x)) + 82.440.96755.10
    ‘KEW’Y = 66.65/(1 + e−(52.63−x)) + 30.550.99852.63
    下载: 导出CSV

    表  4   半致死温度、热害指数和各指标相对值的相关性分析

    Table  4   Correlation analysis of relative values of LT50, HI, and each index

    指标
    Index
    LT50
    (L)
    LT50
    (S)
    Fv/Fm
    (L)
    Carotenoids (L)Chl
    (L)
    AsA
    (L)
    AsA
    (S)
    GSH
    (L)
    GSH
    (S)
    SS
    (L)
    SS
    (S)
    SP
    (L)
    SP
    (S)
    TP
    (L)
    TP
    (S)
    Anthocyanin
    (L)
    Anthocyanin
    (S)
    HI
    LT50 (L)1
    TL50 (S)0.811
    Fv/Fm (L)0.976**0.7091
    Carotenoids (L)−0.779−0.737−0.7101
    Chl (L)0.4190.1090.475−0.4921
    AsA (L)0.7510.967**0.615−0.6440.0481
    AsA (S)0.4040.0410.5060.1340.4760.0621
    GSH (L)−0.0670.088−0.248−0.164−0.4320.232−0.6041
    GSH (S)−0.274−0.490−0.0640.3030.234−0.6690.238−0.818*1
    SS (L)0.5900.3560.6600.0390.0600.3500.822*−0.4360.0681
    SS (S)0.457−0.1000.495−0.3190.581−0.0870.4700.066−0.0330.2501
    SP (L)0.5470.4530.412−0.3550.2760.6220.3560.432−0.7830.3050.4901
    SP (S)0.256−0.1530.389−0.2730.918**−0.2660.523−0.6360.5770.1080.578−0.0391
    TP (L)−0.185−0.3950.0160.3320.392−0.5320.500−0.946**0.932**0.242−0.014−0.5740.6671
    TP (S)0.7840.6430.785−0.908*0.3690.478−0.086−0.012−0.0210.1170.3300.0820.300−0.1351
    Anthocyanin (L)0.108−0.0800.213−0.4090.798−0.2480.074−0.5480.600−0.2690.238−0.3210.863*0.5900.4211
    Anthocyanin (S)−0.832*−0.775−0.8110.953**−0.458−0.6290.0230.0690.099−0.142−0.236−0.186−0.3170.131−0.964**−0.4461
    HI−0.833*−0.609−0.876*0.335−0.112−0.551−0.6230.2930.038−0.911*−0.313−0.332−0.108−0.057−0.5000.1600.5051
    注: *和**分别表示在0.05和0.01水平上差异显著。L:叶片;S:茎;Fv/Fm:最大荧光量子效率;Chl:叶绿素含量;Carotenoids:类胡萝卜素含量;AsA:抗坏血酸含量;GSH:还原型谷胱甘肽含量;SS:可溶性糖含量;SP:可溶性蛋白质含量;Anthocyanin:花青素含量;TP:总酚含量;HI:热害指数。
    Notes: * and ** are significantly different at 0.05 and 0.01 probability levels, respectively. L: Leaf; S: Stem; Fv/Fm: Maximum fluorescence quantum efficiency; Chl: Chlorophyll content; Carotenoids: Carotenoid content; AsA: Ascorbic acid content; GSH: Reduced glutathione content; SS: Soluble sugar content; SP: soluble protein content; Anthocyanin: Anthocyanin content; TP: Total phenolic content.
    下载: 导出CSV

    表  5   各指标主成分的特征向量及贡献率

    Table  5   Eigenvector and contribution rates of principal components of all indices

    主成分
    Principle factor
    P-1P-2P-3P-4
    特征值7.245.192.821.90
    贡献率 / %40.2528.8415.6810.56
    累计贡献率 / %40.2569.0984.7795.33
    特征向量LT50 (L)0.37−0.030.05−0.02
    Fv/Fm (L)0.360.060.08−0.05
    Anthocyanin (S)−0.32−0.010.260.17
    Carotenoids(L)−0.310.060.330.01
    LT50 (S)0.30−0.18−0.02−0.25
    TP (S)0.300.01−0.27−0.17
    HI−0.29−0.02−0.320.17
    AsA (L)0.27−0.240.04−0.14
    TP (L)−0.050.420.09−0.16
    GSH (L)−0.090.39−0.02−0.23
    GSH (S)−0.04−0.38−0.150.25
    SP(S)0.130.38−0.120.23
    Anthocyanin (L)0.080.33−0.360.02
    Chl (L)0.190.27−0.170.32
    SS (L)0.190.080.49−0.10
    AsA (S)0.150.230.420.18
    SS (S)0.170.120.020.53
    SP (L)0.20−0.200.150.45
    注: P-1:主成分1;P-2:主成分2;P-3:主成分3;P-3:主成分4。缩写同表4
    Notes: P-1: Principle factor 1; P-2: Principle factor 2; P-3: Principle factor 3; P-3: Principle factor 3. Abbreviations are the same as those given in Table 4.
    下载: 导出CSV

    表  6   不同品种大丽花的综合指标值(C)、权重、U(Xj)、D 值及VP值

    Table  6   Comprehensive index (C), index weight, U(Xj), D-value, and predicted value of each cultivar

    品种
    Cultivar
    C1C2C3C4U(X1)U(X2)U(X3)U(X4)DVP排序
    Order
    ‘YH-C11’0.360.020.41−1.950.730.560.650.000.590.584
    ‘AGR-C1’−0.70−0.49−0.41−0.010.350.370.380.700.400.385
    ‘YY-C5’−1.65−0.210.310.310.000.480.620.820.340.316
    ‘SLGZ’0.570.971.460.810.810.911.001.000.890.891
    ‘QKL’1.10−1.51−0.220.631.000.000.440.930.600.593
    ‘KEW’0.331.22−1.550.220.721.000.000.790.690.672
    权重 / %42.2230.2516.4511.08
    注: C1:综合指标值1;C2:综合指标值2;C3:综合指标值3;C4:综合指标值4。U(X1):隶属函数值1;U(X2):隶属函数值2;U(X3):隶属函数值3;U(X4):隶属函数值4。D:耐热性综合评价值。VP:预测值。
    Notes: C1: Comprehensive index value 1; C2: Comprehensive index value 2; C3: Comprehensive index value 3; C4: Comprehensive index value 4. U(X1): Membership function value 1; U(X2): Membership function value 2; U(X3): Membership function value 3; U(X4): Membership function value 4. D: Temperature resistance comprehensive evaluation values. VP: Predicted value.
    下载: 导出CSV
  • [1]

    Kumari P,Singh S,Yadav S. Analysis of thermotolerance behaviour of five chickpea genotypes at early growth stages[J]. Braz J Bot,2018,41 (3):551−565. doi: 10.1007/s40415-018-0484-6

    [2] 刘文英. 植物逆境与基因[M]. 北京: 北京理工大学出版社, 2015: 103−105.
    [3]

    Singh B,Kukreja S,Goutam U. Impact of heat stress on potato (Solanum tuberosum L.):present scenario and future opportunities[J]. J Hortic Sci Biotechnol,2020,95 (4):407−424. doi: 10.1080/14620316.2019.1700173

    [4] 逯久幸,苗润田,王司琦,赵鹏飞,张开明,等. 低温胁迫下秋菊叶片光系统特性分析[J]. 植物生理学报,2022,58(2):425−434. doi: 10.13592/j.cnki.ppj.2021.0065

    Lu JX,Miao RT,Wang SQ,Zhao PF,Zhang KM,et al. Analysis of photosystem features in autumn Chrysanthemum leaves under low temperature stress[J]. Plant Physiology Journal,2022,58 (2):425−434. doi: 10.13592/j.cnki.ppj.2021.0065

    [5]

    Li CJ,Han YY,Hao JH,Qin XX,Liu CJ,et al. Effects of exogenous spermidine on antioxidants and glyoxalase system of lettuce seedlings under high temperature[J]. Plant Signal Behav,2020,15 (12):1824697. doi: 10.1080/15592324.2020.1824697

    [6]

    Jahan MS,Shu S,Wang Y,Chen Z,He MM,et al. Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis[J]. BMC Plant Biol,2019,19 (1):414. doi: 10.1186/s12870-019-1992-7

    [7] 唐凯明. 四季桂叶绿素荧光和AsA-GSH循环对酸雨和高温的响应[D]. 杭州: 浙江农林大学, 2019: 4−7.
    [8]

    Wassie M,Zhang WH,Zhang Q,Ji K,Chen L. Effect of heat stress on growth and physiological traits of alfalfa (Medicago sativa L. ) and a comprehensive evaluation for heat tolerance[J]. Agronomy,2019,9 (10):597. doi: 10.3390/agronomy9100597

    [9]

    Karimi R,Amini H,Ghabooli M. Root endophytic fungus Piriformospora indica and zinc attenuate cold stress in grapevine by influencing leaf phytochemicals and minerals content[J]. Sci Horticu,2022,293:110665. doi: 10.1016/j.scienta.2021.110665

    [10] 张萍萍. 大丽花耐热性及化学调控机理的基础研究[D]. 苏州: 苏州大学, 2016: 24−72.
    [11]

    Zhao CL,Guan H,Yuan XF,Li XX,Gao L,et al. Effects of paclobutrazol on physiological parameters of dahlia under heat stress[J]. Agric Biotechnol,2018,7 (5):67−70.

    [12] 管华. 大丽花高温胁迫响应机制的蛋白质组学研究[D]. 苏州: 苏州大学, 2018: 26−86.
    [13] 吴强盛. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2018: 104−106, 138−141.
    [14]

    Mehrtens F,Kranz H,Bednarek P,Weisshaar B. The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis[J]. Plant Physiol,2005,138 (2):1083−1096. doi: 10.1104/pp.104.058032

    [15] 李玲. 植物生理学模块实验指导[M]. 北京: 科学出版社, 2009: 48−57, 100−102.
    [16] 凌瑞,戴中武,代晓雨,吴春梅,翟俊文,等. 8个绣球品种耐热性综合评价与耐热指标筛选[J]. 热带作物学报,2021,42(8):2209−2218. doi: 10.3969/j.issn.1000-2561.2021.08.012

    Ling R,Dai ZW,Dai XY,Wu CM,Zhai JW,et al. Evaluation of heat tolerance and screening the index for the as-sessment of heat tolerance in cultivars of hydrangea[J]. Chinese Journal of Tropical Crops,2021,42 (8):2209−2218. doi: 10.3969/j.issn.1000-2561.2021.08.012

    [17] 吴瑞香,杨建春,王利琴,郭秀娟. 应用多元分析法综合评价胡麻材料抗旱适应性[J]. 作物杂志,2018(5):10−16. doi: 10.16035/j.issn.1001-7283.2018.05.002

    Wu RX,Yang JC,Wang LQ,Guo XJ. Evaluation of the adaptability of flax drought resistance based on multiple statistics analysis[J]. Crops,2018 (5):10−16. doi: 10.16035/j.issn.1001-7283.2018.05.002

    [18] 朱亚迪,王慧琴,王洪章,任昊,吕建华,等. 不同夏玉米品种大喇叭口期耐热性评价和鉴定指标筛选[J]. 作物学报,2022,48(12):3130−3143.

    Zhu YD,Wang HQ,Wang HZ,Ren H,Lü JH,et al. Evaluation and identification index of heat tolerance in different summer maize varieties at V12 stage[J]. Acta Agronomica Sinica,2022,48 (12):3130−3143.

    [19]

    Weng JY,Li PL,Rehman A,Wang LK,Gao X,et al. Physiological response and evaluation of melon (Cucumis melo L.) germplasm resources under high temperature and humidity stress at seedling stage[J]. Sci Horticu,2021,288:110317. doi: 10.1016/j.scienta.2021.110317

    [20] 闫旭,张心艺,李阳宁,李铁华,胡胜男. 复层林对闽楠幼树生长、叶片形态和光合特性的影响[J]. 植物科学学报,2022,40(4):553−564. doi: 10.11913/PSJ.2095-0837.2022.40553

    Yan X,Zhang XY,Li YN,Li TH,Hu SN. Effects of unevenly aged two-layer mixed forest on growth,leaf morphology,and photosynthetic characteristics of Phoebe bournei (Hemsl. ) Yang saplings[J]. Plant Science Journal,2022,40 (4):553−564. doi: 10.11913/PSJ.2095-0837.2022.40553

    [21]

    Hu SS,Ding YF,Zhu C. Sensitivity and responses of chloroplasts to heat stress in plants[J]. Front Plant Sci,2020,11:375. doi: 10.3389/fpls.2020.00375

    [22]

    Huang C,Tian YL,Zhang BB,Hassan MJ,Li Z,et al. Chitosan (CTS) alleviates heat-induced leaf senescence in creeping bentgrass by regulating chlorophyll metabolism,antioxidant defense,and the heat shock pathway[J]. Molecules,2021,26 (17):5337. doi: 10.3390/molecules26175337

    [23] 汪雨茜,何伟伟,李大婧,包怡红,刘春泉,等. 不同浓度NaCl处理对发芽玉米中类胡萝卜素富集的影响[J]. 现代食品科技,2019,35(4):61−69. doi: 10.13982/j.mfst.1673-9078.2019.4.010

    Wang YX,He WW,Li DJ,Bao YH,Liu CQ,et al. Effects of different concentrations of NaCl treatment on carotenoid enrichment in germinated corn[J]. Modern Food Science and Technology,2019,35 (4):61−69. doi: 10.13982/j.mfst.1673-9078.2019.4.010

    [24]

    Xiao MG,Li ZX,Zhu L,Wang JY,Zhang B,et al. The multiple roles of ascorbate in the abiotic stress response of plants:antioxidant,cofactor,and regulator[J]. Front Plant Sci,2021,12:598173. doi: 10.3389/fpls.2021.598173

    [25] 韩键,白云赫,朱旭东,郑婷,张克坤,等. 植物谷胱甘肽应答非生物胁迫的分子机制[J]. 分子植物育种,2020,18(5):1672−1680. doi: 10.13271/j.mpb.018.001672

    Han J,Bai YH,Zhu XD,Zheng T,Zhang KK,et al. Molecular mechanism of glutathione response to abiotic stress in plants[J]. Molecular Plant Breeding,2020,18 (5):1672−1680. doi: 10.13271/j.mpb.018.001672

    [26]

    Li Y,Liu M,Yang XL,Zhang Y,Hui HT,et al. Multi-walled carbon nanotubes enhanced the antioxidative system and alleviated salt stress in grape seedlings[J]. Sci Hortic,2022,293:110698. doi: 10.1016/j.scienta.2021.110698

    [27]

    Altaf MA,Shahid R,Ren MX,Naz S,Altaf MM,et al. Melatonin improves drought stress tolerance of tomato by modulating plant growth,root architecture,photosynthesis,and antioxidant defense system[J]. Antioxidants,2022,11 (2):309. doi: 10.3390/antiox11020309

    [28] 赵森,于江辉,肖国樱. 高温胁迫对爪哇稻剑叶光合特性和渗透调节物质的影响[J]. 生态环境学报,2013,22(1):110−115. doi: 10.3969/j.issn.1674-5906.2013.01.021

    Zhao S,Yu JH,Xiao GY. Effects of high temperature stress on the photosynthesis and osmoregulation substances of flag leaves in Oryza stavia L. ssp. javanica[J]. Ecology and Environmental Sciences,2013,22 (1):110−115. doi: 10.3969/j.issn.1674-5906.2013.01.021

    [29]

    Rivero RM,Ruiz JM,Romero L. Can grafting in tomato plants strengthen resistance to thermal stress?[J]. J Sci Food Agric,2003,83 (13):1315−1319. doi: 10.1002/jsfa.1541

    [30] 郭鹏飞,雷健,罗佳佳,刘攀道,虞道耿,等. 柱花草苯丙氨酸解氨酶(SgPALs)对生物胁迫与非生物胁迫的响应[J]. 热带作物学报,2019,40(9):1742−1751. doi: 10.3969/j.issn.1000-2561.2019.09.011

    Guo PF,Lei J,Luo JJ,Liu PD,Yu DG,et al. Response of phenylpropane ammonia-lyase on biotic and abiotic stress in stylosanthes[J]. Chinese Journal of Tropical Crops,2019,40 (9):1742−1751. doi: 10.3969/j.issn.1000-2561.2019.09.011

    [31] 王鸿雪,刘天宇,庄维兵,王忠,朱林,等. 花青素苷在植物逆境响应中的功能研究进展[J]. 农业生物技术学报,2020,28(1):174−183.

    Wang HX,Liu TY,Zhuang WB,Wang Z,Zhu L,et al. Research advances in the function of anthocyanin in plant stress response[J]. Journal of Agricultural Biotechnology,2020,28 (1):174−183.

    [32] 马娟娟,赵斌,陈颖,凌熙晨,俞婕,等. 4个北美冬青品种苗对低温胁迫的生理响应及抗寒性比较[J]. 南京林业大学学报(自然科学版),2020,44(5):34−40. doi: 10.3969/j.issn.1000-2006.202003059

    Ma JJ,Zhao B,Chen Y,Ling XC,Yu J,et al. Physiological responses of seedlings of four Ilex verticillata varieties to low temperature stress and a comparison of their cold resistance[J]. Journal of Nanjing Forestry University (Natural Science Edition),2020,44 (5):34−40. doi: 10.3969/j.issn.1000-2006.202003059

    [33] 崔洁冰,张萌,张莹婷,徐进. 低温胁迫对柳杉不同无性系的影响及抗寒性评价[J]. 生物技术通报,2022,38(3):31−40.

    Cui JB,Zhang M,Zhang YT,Xu J. Effects of low temperature stress on different clones of Cryptomeria fortunei and evaluation of their cold resistance[J]. Biotechnology Bulletin,2022,38 (3):31−40.

    [34] 宋丽君,聂晓玉,何磊磊,蒯婕,杨华,等. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报,2021,47(9):1741−1752.

    Song LJ,Nin XY,He LL,Kuai J,Yang H,et al. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties[J]. Acta Agronomica Sinica,2021,47 (9):1741−1752.

图(4)  /  表(6)
计量
  • 文章访问数:  429
  • HTML全文浏览量:  76
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-29
  • 修回日期:  2022-10-09
  • 网络出版日期:  2023-05-05
  • 刊出日期:  2023-04-29

目录

    /

    返回文章
    返回