高级检索+

菊花开花遗传调控机制研究进展

张秋玲, 李骏倬, 王钟曼, 戴思兰

张秋玲,李骏倬,王钟曼,戴思兰. 菊花开花遗传调控机制研究进展[J]. 植物科学学报,2023,41(6):768−780. DOI: 10.11913/PSJ.2095-0837.23004
引用本文: 张秋玲,李骏倬,王钟曼,戴思兰. 菊花开花遗传调控机制研究进展[J]. 植物科学学报,2023,41(6):768−780. DOI: 10.11913/PSJ.2095-0837.23004
Zhang QL,Li JZ,Wang ZM,Dai SL. Research progress on the genetic regulatory mechanism of flowering in Chrysanthemum[J]. Plant Science Journal,2023,41(6):768−780. DOI: 10.11913/PSJ.2095-0837.23004
Citation: Zhang QL,Li JZ,Wang ZM,Dai SL. Research progress on the genetic regulatory mechanism of flowering in Chrysanthemum[J]. Plant Science Journal,2023,41(6):768−780. DOI: 10.11913/PSJ.2095-0837.23004

菊花开花遗传调控机制研究进展

基金项目: 国家自然科学基金项目(32371948);北京市科技计划项目(Z191100008519002)。
详细信息
    作者简介:

    张秋玲(1993-),女,博士研究生,研究方向为花卉繁殖与栽培(E-mail:qiulin_zhang@sina.com

    通讯作者:

    戴思兰: E-mail:silandai@sina.com

  • 中图分类号: Q75

Research progress on the genetic regulatory mechanism of flowering in Chrysanthemum

Funds: This work was supported by grants from the National Natural Science Foundation of China (32371948) and Beijing Science and Technology Project (Z191100008519002).
  • 摘要:

    开花是植物发育过程中一个关键的质变过程,是植物从营养生长向生殖生长阶段的转变。对于观赏植物来说,开花的早晚决定了其市场应用和经济价值。植物开花受到内外信号的复杂调控,基于模式植物拟南芥(Arabidopsis thaliana (L.) Heynh)的研究,目前已经阐明了6条主要的开花调控途径,这些途径彼此独立又互相交叉,形成复杂的遗传调控网络。菊花(Chrysanthemum × morifolium Ramat)作为起源于中国的世界名花,是世界花卉市场的重要一员,但因其是典型的短日照植物,不仅增加了生产中开花期调控成本,也限制了菊花的应用范围。本文以高等植物开花遗传调控网络为基础,综述了菊花开花遗传调控机制的研究进展,以期为菊花开花时间改良育种工作提供理论指导,同时也为解析高等植物开花机制提供新见解。

    Abstract:

    Flowering represents a critical transition in plant development, shifting from the vegetative to reproductive growth stages. In ornamental plants, the timing of flowering significantly impacts marketability and economic value. Plant flowering is regulated by complex internal and external signals. Studies on the model plant Arabidopsis thaliana have identified six primary pathways related to flowering regulation. These independent but intersecting pathways form a complex genetic regulatory network. Chrysanthemum × morifolium, a famous flower originating from China, holds a considerable share of the world flower market. However, its typical short-day flowering requirements not only increase production costs but also limit its application scope. Based on the flowering regulatory networks of higher plants, this review discusses current research progress on the genetic regulatory mechanisms underlying chrysanthemum flowering, thus providing theoretical guidance for the breeding and improvement of flowering time, as well as new insights into the flowering mechanisms of higher plants.

  • 水生(维管)植物代表能够适应水生环境条件的一个植物类群[1],但该类群在分类学上是一个非自然类群(Non-natural taxonomic group)。现存水生植物约6 000种,分布在维管植物约87科407属中[2-4]。化石和系统发育研究表明,在被子植物进化早期,距今1.2亿年前的白垩纪就发生了植物从陆地向水域生境的“回归”演化[5-7],该过程在淡水被子植物中至少独立发生了100次[3, 8, 9]。由于空气和水的流体特性截然不同,植物在从陆地到水域的“回归”过程中,面临着与陆地生境差异巨大的水环境条件[10],这些差异为水生植物的光合作用、生长发育以及种群维持提供了截然不同的生态挑战与机遇(表1)。

    表  1  植物在水生环境中面临的机遇和挑战及水生植物的应对方式(改自Maberly 和 Gontero[14]
    Table  1.  Opportunities and challenges faced by plants in aquatic environments and how aquatic plants respond (modified from Maberly and Gontero[14])
    环境特征
    Environmental feature
    机遇
    Opportunity
    挑战
    Challenge
    水生植物应对方式
    Aquatic plant response
    水分可利用性高无水分胁迫藻类竞争生产力高;表皮细胞包含叶绿体;
    叶片薄;分泌化感物质
    生长介质密度高支撑性高水阻力大机械组织投资减少;茎和叶具有韧性
    光照可利用性低光抑制和光伤害可能低光合作用和分布深度受限表皮细胞富含叶绿体
    温度变化幅度小温度胁迫风险小
    O2可利用性低光呼吸可能低地下组织器官缺氧通气组织贯通根茎叶;向地下部位泵氧
    无机碳可利用性低局部生境CO2多;
    HCO3浓度高
    CO2日变化和年变化
    范围极大
    拓展到局部高CO2生境生长;发展无机碳浓缩机制:HCO3利用、C4和景天酸代谢(CAM)
    养分可利用性高根、茎、叶均可接触营养元素藻类竞争根茎叶均吸收养分;化感作用
    下载: 导出CSV 
    | 显示表格

    对不同水、陆环境的适应与进化使得现存植物表现出不同的区系分布特点。陆生植物拥有较低比例的广域分布种和较高比例的地方特有种,水生植物却拥有较高比例的占有宽阔地理范围的广域分布类群[11]。与陆生植物相比,虽然水生植物单系类群(单个科或者属)内部的分类分化相对较低[3],但是通常可生长于多样化的生境,如海洋、溪流、河川、湖泊、沼泽、池塘以及其他小水体等。水生植物为何能够适应如此宽广的生境?其适应多样化生境的机制又如何?对这些问题的回答,也即揭示水生植物适应性进化的机制,长期以来一直是生态学及进化生物学领域中的研究热点。

    从陆地到水域,植物面临的选择压力完全不同[12]。温度和水分条件通常是陆生植物的限制因素,而水体中迅速的光衰减和低CO2浓度则是水生植物维持正常生长发育必须面对的限制因子[13]。作为光合作用的关键底物,陆生植物和水生植物对无机碳利用的不同适应方式表明,以光合无机碳利用策略为核心开展植物的适应机制研究,可能是揭示水生植物适应性进化的关键。

    光合作用功能生物的出现是生物进化的一个关键环节,光合作用被诺贝尔奖委员会称为“地球上最重要的化学反应”[15],其将太阳能转化成的化学能构成了全球食物链的基础。在光合作用过程中,植物通过何种方式(包括吸收、固定和同化)、利用何种类型的无机碳被称为光合作用无机碳利用策略。

    根据光合作用过程中CO2固定所产生的原初同化产物的不同,光合作用类型可以分为以下几种:C3途径(卡尔文循环),其原初同化产物为具有3个碳原子的3-磷酸甘油酸;C4途径和景天科酸代谢途径(CAM),其原初同化产物为具有4个碳原子的草酰乙酸。也就是说植物光合作用至少包含了C3、C4和CAM途径3种无机碳利用策略,其中C3途径是所有植物共同具有的无机碳同化途径,也只有该途径具备合成淀粉等产物的能力,C4和CAM途径只能起固定和转运CO2的作用,不能单独合成淀粉等产物,是植物为适应不同生境条件而进化出的衍生类型[16]。C4和CAM途径通过增加Rubisco(核酮糖-1,5-二磷酸羧化酶/加氧酶,催化卡尔文循环碳固定的第一个反应,是卡尔文循环的限速酶)周围CO2的浓度,提高Rubisco的羧化活性、降低光呼吸作用,从而提高植物的光合作用效率,被称为植物的无机碳浓缩机制(Inorganic carbon concentrating mechanisms,CCMs)[17]

    陆生植物无机碳利用策略研究表明,C4和CAM途径都是多次独立进化的结果。在陆地植物进化过程中,C4途径至少独立进化了62次[18],不同的C4植物进化支在C4代谢起源时间上甚至有30 Ma(百万年)的差异[16];在现有高等植物中,超过6%的物种具有CAM代谢过程[19],分布于大多数陆生植物不同的科属中(36科,至少343个属),而C4植物主要分布在比较进化的类群中[20]。现存C4和CAM植物虽然在生化机制上使用一套共同的酶来促进CO2的捕获(均通过磷酸烯醇式丙酮酸羧化酶催化产生草酰乙酸完成CO2的捕获),并提高其在Rubisco活性中心周围的浓度(均通过叶绿体中NADP依赖的苹果酸酶或线粒体中的NAD依赖的苹果酸酶,或者细胞质基质中的磷酸烯醇式丙酮酸羧化激酶脱羧产生CO2),但采用的实现方法不同。C4植物通过产生特殊的Kranz花环结构,利用两类不同细胞(叶肉细胞和维管束鞘细胞)在空间上区隔CO2捕获过程和还原过程;而CAM代谢途径的CO2捕获过程和还原过程分别在晚上和白天的同一个细胞(叶肉细胞)中进行,存在时间分隔。对陆生植物的研究表明,除了马齿苋属(Portulaca)植物外,C4和CAM光合途径是不相容的,不能同时存在于同一种植物。实际上,马齿苋属植物的光合作用以C4过程为主,CAM途径活性很低,且二者发生在叶片的不同部位[20],这与典型CAM植物中CO2的捕获和还原过程在一个细胞中进行完全不同。CAM与C4光合途径不相容有许多生化、解剖结构和进化过程的原因。从进化角度来看,在进化初期选择CAM或C4途径可能是其C3祖先各自进化过程中的第一步,从而导致了CAM和C4途径在陆生植物中不能同时存在于同一植物[20]。许多与C4和CAM代谢相关的基因已经在其C3祖先中作为补缺途径(Anaplerotic pathways)和存储机能(Storage mechanisms)存在[21-23],C3物种是否进化为CAM或C4物种,在很大程度上取决于其进化序列的初始步骤是否招募这些基因为C4或CAM途经所用[24, 25]。目前,对陆生植物不同光合无机碳利用策略的比较研究不仅为认识植物光合作用的适应与进化积累了丰富的资料,也为水生植物相关研究的进一步深入打下了坚实基础。

    一般认为陆生C4植物是在温暖和日照强烈的地区进化而来[26, 27],而CAM植物则主要发现于干旱地区[19, 28]。目前认为,这两种无机碳利用策略是对陆生生境中高温、高光强和干旱胁迫的适应,而处于水环境中的水生植物完全不受这些环境因素的胁迫。因此,与陆生植物相比,水生植物无机碳利用策略具有特殊性,研究水生植物的光合作用极大地拓展了对光合作用过程的原有认知。水生植物不仅具有陆生植物C4和CAM这两种无机碳浓缩机制,还具有蓝藻等大多数藻类所具有的HCO3利用能力[17]。Raven[29]认为,基于HCO3主动运输过程的无机碳利用策略对碳元素的吸收与累积,与植物对其他营养元素(如氮和磷)的积累过程类似。因此,HCO3的吸收可能是水生植物从已有的对其他营养元素进行转运的体系中获取相关要素的结果[30]。从植物进化的历史看,HCO3利用是植物光合作用进化中最早发展的无机碳获取策略之一,以充分利用水中丰富的HCO3资源,克服无机碳限制对植物生长和发育的影响。水生植物光合作用的生理生化过程虽然与陆生植物类似,但二者的适应意义完全不同。对陆生植物来说,一般C4植物具有更高的CO2利用效率[31],而CAM植物的水分利用效率通常比C4和C3植物更高[32, 33]。陆生植物不同的光合无机碳利用策略更多地反映了植物对温度和水分的适应,而水生植物光合无机碳获取策略则是适应水中复杂多变的无机碳限制的结果,通常情况下限制陆生光合作用的水分因子对水生植物来说不复存在。虽然大气中的CO2浓度在地质时间尺度上变化巨大[34],但在年度到几十年的尺度上基本保持稳定,为陆生植物光合作用提供了稳定的碳源。陆生植物的C4和CAM光合途径通过提高细胞内CO2浓度,增加Rubisco酶的羧化活性,从而降低光呼吸水平,提高植物的光合作用效率。从这个意义上看,陆生植物的无机碳浓缩机制(C4和CAM)是提高无机碳利用效率的结果,而水生植物的无机碳利用策略则是应对水中无机碳限制的结果。

    水生植物无机碳来源的多样性也高于陆生植物。一般来说,大气中CO2是陆生植物唯一的无机碳来源,而水生植物则可以从大气、水体以及生长基质中获取无机碳。此外,水体中无机碳的形态多样,总溶解性无机碳(Dissolved inorganic carbon,DIC)有4种存在形式,即CO2、H2CO3、HCO3和CO32−。水体中无机碳来源复杂,除了大气中CO2的溶解外,流域岩石溶解和风化、输移、水柱和沉积物的生物活动等均是水体中无机碳的重要来源。虽然CO2易溶于水,但HCO3却是海洋和大多数淡水系统中最丰富的无机碳形式[35],如海水HCO3的浓度约为2 mmol/L,是空气平衡状态时CO2浓度的140倍[14]。大气中的CO2扩散迅速,能为陆生植物光合作用提供稳定的碳源,而CO2在水中的扩散速率是在空气中的万分之一[36],且水体与水生植物体边界通常存在较厚的静水层,不利于CO2从水体到植物叶片表面的扩散,使得水体中CO2的供应成为水生植物光合作用的一个重要限制因子[37]。尤其是在高生产力的水体中,在白天进行光合作用时,同为初级生产者的浮游藻类凭借其对无机碳捕获的竞争优势,能将CO2迅速吸收,导致水体CO2的表观浓度几乎降低至零[13, 38]。这些系统在进行光合作用时,有机碳和无机碳之间的生物转化速率大大超过CO2从大气再供给、流域输入和来自水体深处的无机碳补充,因此,内陆水体中CO2浓度在一天中不同的时间会在极低到过饱和状态间频繁波动[39]。水环境的特殊性成为与陆生环境截然不同的自然选择力量,使得水生植物演化出与陆生植物不同的功能性状,以增强其在水生生境中的适应性[12, 13]

    对水生植物而言,多样化的无机碳获取方式是其为适应复杂多变的水体无机碳环境而进化产生的最重要的光合功能性状。尽管水生植物光合作用的基本生理生化过程与陆生植物类似,但为了适应水体中变化迅速、常常成为限制因子的无机碳环境,满足光合作用对无机碳的需求,水生植物在组织结构、植物形态、生理生化特征及遗传和转录水平等方面表现出多样化的适应策略(图1)。这些策略包括:(1)生境选择。一些水生植物选择在局部CO2丰富的水体中生长,有些植物可以同时利用两种以上来源(水体、大气和沉积物)的无机碳。(2)结构适应。水生植物叶片结构简单,表皮细胞含叶绿体,可直接吸收无机碳进行光合作用;体内腔隙系统发达,可用于贮藏从外界获取以及内部生理活动产生的无机碳,以循环利用。(3)生理机制[40]。具备利用HCO3的能力[13, 38, 41, 42];通过行使类似陆生植物中的C4途径及CAM途径来实现碳浓缩[42-45]。(4)遗传和转录水平的适应。海生植物大叶藻(Zostera marina L.)基因组包含两个隶属于SLC4基因家族的HCO3转运通道以及两个胞外CA酶基因[46];台湾水韭(Isoetes taiwanensis De Vol)则招募了细菌类型的PEPC进行CO2固定,行使CAM活性[47];龙舌草(Ottelia alismoides (L.) Pers.)αCA1和SLC4在低碳时表达,协助HCO3的利用[48];黑藻(Hydrilla verticillata (L. f.) Royle)通过低碳诱导可以特异性表达C4类型的PEPC和NADP-ME酶[49]。这些基因的存在及特异性表达奠定了水生植物特殊无机碳利用策略的分子基础。(5)多种碳获取策略共存。水生植物碳同化的基本生理生化过程与陆生植物类似,然而碳获取策略则表现出多样性。Maberly和Gontero[14]对水生植物无机碳获取策略进行了总结,发现在百余种水生植物中,约有44%的淡水植物[50]和超过80%的海生植物具有HCO3利用能力,HCO3是最普遍的无机碳获取策略。约30%的淡水植物通过浮水叶或挺水叶利用大气中的CO2。约20%的淡水植物利用局部微生境中的高浓度CO2(如有些底泥表面CO2浓度是水体-大气平衡状态的10倍)[51, 52]。直接利用底泥CO2的水生植物约占3%左右(通常为比较矮小的水韭型植物,根茎中包含大量贯通的通气组织)[53]。另外,约有4%的物种显示出C4代谢能力(如黑藻和艾格草(Elodea densa (Planchon) Caspary)等)[49, 54],而具有CAM代谢途径的占约9%(如水韭和泽番椒(Deinostema violacea (Maximowicz) T. Yamazaki)等)[55, 56],这与陆地上CAM植物的估计比例相当[19]。很多水生植物同时具有多种碳获取策略,能够在不同环境条件下迅速地调整和转换。

    图  1  水生植物无机碳利用策略的特殊性和多样性
    A:中华水韭(Isoetes sinensis Palmer);B:龙舌草(Ottelia alismoides (L.) Pers.)(照片由付文龙拍摄);C:水筛(Blyxa japonica (Miq.) Maxim.);D:穿叶眼子菜(Potamogeton perfoliatus L.);E:一种轮藻(Chara sp.)(照片由刘洋拍摄);F:眼子菜(Potamogeton distinctus A. Bennett);G:紫萍(Spirodela polyrhiza (L.) Schleid)。轮藻不属于植物,但在无机碳利用时,通常将其视为沉水植物。图中pH极性叶片染色显示眼子菜属植物近轴面被酚酞染成红色(碱性),远轴面无色,表明这类叶片在利用HCO3过程中形成pH极性。溴麝香草酚蓝染色显示轮藻属在利用HCO3过程中,细胞呈酸性(黄色)和碱性(蓝色)相间(图片来源于Beilby等[57])。
    Figure  1.  The distinctiveness and diversity of inorganic carbon utilization strategies in aquatic plants
    A: Isoetes sinensis Palmer; B: Ottelia alismoides (L.) Pers. (Photographed by Fu Wenlong); C: Blyxa japonica (Miq.) Maxim.; D: Potamogeton perfoliatus L.; E: Chara sp. (Photographed by Liu Yang); F: Potamogeton distinctus A. Bennett; G: Spirodela polyrhiza (L.) Schleid. Characean algae are not plant, but they are usually regarded as submerged plants in study of inorganic carbon utilization. Under phenolphthalein staining, the adaxial surface of Potamogeton plant leaf is red (alkalinity), while the abaxial surface is colorless, indicating pH polarity of two sides of the same leaf during the process of HCO3 use. Under bromothymol blue staining, the interior of Chara cell exhibits alternating acidity (yellow) and alkalinity (blue) during HCO3use (The image is from Beilby et al. [57]).

    水生植物多样化的无机碳利用策略为研究植物光合作用适应性进化提供了丰富的素材。不同水生植物类群的多次独立起源演化为开展无机碳利用策略适应性进化的比较研究提供了可能,在不同分支中都有可能演化出多样化的无机碳获取策略。特别是不同自然类群(单系类群)内的多样化无机碳获取策略,对这些代表性类群的无机碳获取策略开展系统研究,可以降低系统发育关系对光合作用适应性进化机制的影响,如水鳖科植物包含了目前已知的所有无机碳利用策略。

    水鳖科是泽泻亚纲中的代表性水生类群,是世界分布、全水生的单子叶植物,包含18属约120种[58](根据最新分子生物学证据,目前该科共包括137个种,划分为14个属(https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:30013086-2)),是水生生态系统中重要的成分,可分布于从淡水到海洋的各种水体中。现有研究表明,水鳖科起源于距今约65 Ma的晚白垩纪到古新世,是非常古老的单子叶植物科,且在较近的历史时期演化出海洋水生植物[59-61]。该科植物生活型多样(可沉水、浮叶乃至漂浮生长),形态变异大,繁育系统复杂,为研究水生植物的变异与适应提供了丰富的性状资源。同时,该科植物属间物种分化速率存在巨大差异,如广布于温带、亚热带和热带的黑藻属(Hydrilla)仅有1种,而海菜花属(Ottelia)则有23种[62-64],且有若干种下分类单元。此外,该属的龙舌草还形成了水生植物中一个典型的多倍性系列[65-67],这些特征使水鳖科植物具有重要的系统发育学研究意义。

    水鳖科植物也是研究水生植物光合无机碳利用策略适应性进化与调控机制的理想材料。首先,在已经检测过光合无机碳获取策略的百余种水生植物中,就包括约20种水鳖科植物,基本资料最为丰富。其次,该科植物的光合碳获取策略涵盖了全部已知的机制(表2),包括利用空气、水体和基质中CO2的能力,HCO3利用能力,C4以及CAM 途径。同时,有关光合作用中碳浓缩机制的深入研究也主要集中在水鳖科植物中。如黑藻是第一个被发现具有单细胞C4光合途径的水生植物,在低CO2浓度诱导下,其光合碳同化途径可从C3向C4发生转变[68, 69]。而龙舌草是第一个被发现同时具有HCO3利用、C4和CAM等3种无机碳浓缩机制的水生植物[70],C4和CAM的共存现象值得深入研究。Pedersen[71]针对Han等[72]的有关龙舌草多种光合作用途径并存的结构基础论文评述中指出,这一发现有可能在研发C4水稻(Oryza sativa L.)的工作中激发新的希望。最后,水鳖科是一个起源古老的单子叶植物科,其中C4代谢途径很可能先于陆生C4代谢途径出现,代表了C4光合途径的原型[25]。利用这些材料进行研究,可避免与C4植物进化密切相关的其他生物学事件的干扰(如陆生植物 Kranz 结构的形成)。如在黑藻中,CO2的浓缩是在含叶绿体的细胞中进行的,无需组织分化以及Kranz结构的形成[73],其光合碳同化途径从C3向C4转变过程中发生的一系列变化可能是保证C4碳同化的最低要求[74]。因此,分析光合碳同化途径转变过程中生理生化以及分子生物学的变化,将有利于阐明不同碳同化途径对植物适应性的贡献与意义。

    表  2  水鳖科植物无机碳利用策略的多样性
    Table  2.  Diversity of inorganic carbon utilization strategies in Hydrocharitaceae plants

    Genus
    种数
    No. of species
    HCO3利用
    Bicarbonate use
    大气CO2
    Atmosphere CO2
    基质CO2
    Substrate CO2
    C4途径
    C4 pathway
    CAM途径
    CAM pathway
    Appertiella1UUUUU
    Blyxa[50, 56]14NNSNN
    Elodea[50, 75]9YNUI/NN
    Enhalus[76]1YNUUU
    Halophila[77]17YNUNN
    Hydrilla[78, 73]1YNUIS
    Hydrocharisa5NYUUU
    Lagarosiphon[50]9Y/NUUUU
    Najas[50]39Y/NNUNN
    Nechamandra[56, 79]1YNUUS
    Ottelia[45, 79-81]23YYUY/NI/N
    Stratiotes[82]1YYUUU
    Thalassia[77,83,84]2YNUSN
    Vallisneria[56, 84]14YNYNS/N
    注:Y,具备该途径;N,不具备该途径;S,疑似具备该途径;U,尚未进行测试;I,需要在特殊条件下诱导出该途径;Y/N,在已测试的该属所有物种中,有的物种具有该途径,有的物种不具有该途径;I/N,在已测试的该属所有物种中,有的物种该途径的产生需要诱导,有的物种则不具备该途径;S/N,在已测试的该属所有物种中,有些物种疑似具有该途径,有的物种不具备该途径。a,数据来源于本实验室。
    Notes: Y, all plants have this pathway; N, none plant have this pathway; S, the plants are suspected to have this pathway; U, not yet tested; I, this pathway needs to be induced under special conditions; Y/S, among all the tested species from this genus, some have this pathway and some do not; I/N, among all the tested species from this genus, some need to be induced to produce this pathway and some do not have this pathway; S/N, among all the tested species from this genus, some are suspected to have this pathway and some do not have. a, indicates the data are from our lab.
    下载: 导出CSV 
    | 显示表格

    揭示水生植物多样化的光合作用无机碳获取策略的起源、共存、转变及进化的分子遗传学机制,对理解水生植物普遍的适应性具有重要意义。同时,对水生植物无机碳利用策略的深入研究也具有重要的现实意义。水生植物往往具备多种无机碳获取和碳浓缩机制,从而降低无机碳限制对光合作用的影响,提高无机碳利用效率,其调控机理有望为提高农作物光合效率提供借鉴。如识别和设计C4光合所需基因,利用基因工程手段将水稻等C3作物改造成光合效率更高的C4作物,这也是国际C4水稻联盟(International C4 Rice Consortium)的关键使命[85]。此外,水生生境中,无机碳环境始终处于快速变化的过程中,昼、夜无机碳浓度甚至达到百倍的差异[39],探索水生植物对无机碳环境的适应机理也有助于理解植物响应全球变化的生理机制。最近,Iversen等[50]指出,在全球范围内,具有HCO3利用能力水生植物出现的频率随着生境HCO3浓度的增加而增加;区域尺度上,在CO2浓度高于空气-水平衡浓度的水域生境中,具有HCO3利用能力的水生植物出现的频率就降低,这与HCO3利用能力是水生植物对生境碳限制的一种适应机制的结论相一致,而全球变化所带来的HCO3和CO2浓度的变化可能会改变淡水植物群落的物种组成。

    基于水生植物无机碳利用策略为核心的植物适应机制研究,不仅有望在水生植物的适应性进化机制基础理论方面取得重大突破,也将为研究植物演化过程中光合作用的适应性进化过程与机制提供典型范例,同时也为不同光合途径转化、共存的调控机制与方法研究奠定基础。

  • 图  1   拟南芥中以光周期途径为主的开花途径和菊花中响应光周期的同源基因

    红线代表在菊花中涉及的研究(参考网站:https://www.wikipathways.org/index.php/Pathway:WP622)。

    Figure  1.   Flowering pathway dominated by photoperiodic pathway in Arabidopsis thaliana and photoperiod-responsive homologous genes in Chrysanthemum

    Red line represents research involving Chrysanthemum (Photoperiodic pathway available online: https://www.wikipathways.org/index.php/Pathway: WP2312).

    图  2   高等植物温度途径及菊花中响应温度变化的同源基因

    红线代表在菊花中涉及的研究。

    Figure  2.   Temperature pathway of higher plants and temperature-responsive homologous genes in Chrysanthemum

    Red line represents research involving Chrysanthemums.

  • [1] 舒黄英,郝园园,蔡庆泽,王振,朱国鹏,等. 模式植物拟南芥开花时间分子调控研究进展[J]. 植物科学学报,2017,35(4):603−608. doi: 10.11913/PSJ.2095-0837.2017.40603

    Shu HY,Hao YY,Cai QZ,Wang Z,Zhu GP,et al. Recent research progress on the molecular regulation of flowering time in Arabidopsis thaliana[J]. Plant Science Journal,2017,35 (4):603−608. doi: 10.11913/PSJ.2095-0837.2017.40603

    [2] 张秋玲,刘海鹏,高康,孔德元,戴思兰. 盆栽菊花反季节开花调控技术研究[J]. 黑龙江农业科学,2021(9):62−67.

    Zhang QL,Liu HP,Gao K,Kong DY,Dai SL. Research on anti-seasonal flowering control technology of potted chrysanthemum[J]. Heilongjiang Agricultural Sciences,2021 (9):62−67.

    [3] 陈俊愉, 程绪珂. 富贵神仙品(中国花经节编)[M]//王明明. 大匠之门5. 南宁: 广西美术出版社, 2015: 1-100.
    [4] 谯德惠. 花卉产销实现平稳增长——2012年全国花卉统计数据分析[J]. 中国花卉园艺,2013(15):26−31.
    [5] 李小青. 我国花卉出口贸易的现状、问题及对策[J]. 中国市场,2022(29):75−78. doi: 10.13939/j.cnki.zgsc.2022.29.075
    [6] 张引潮. 坚定信心锚定花卉业高质量发展——在2022全国花卉产销形势分析会上的讲话[J]. 中国花卉园艺,2022(4):10−15. doi: 10.3969/j.issn.1009-8496.2022.4.zghhyy202204003
    [7] 尚嘉琪. 地被菊花期改良育种技术研究[D]. 晋中: 山西农业大学, 2017: 1-10.
    [8] 古晓红,李方舟,张海生,杨婷婷,王军. 大豆常规杂交育种和生物分子育种的优劣对比[J]. 种子科技,2020,38(17):29−30. doi: 10.3969/j.issn.1005-2690.2020.17.013
    [9] 雒新艳,张俊丽,张二海. 盆栽小菊育种研究进展[J]. 山东林业科技,2021,51(1):81−86. doi: 10.3969/j.issn.1002-2724.2021.01.019

    Luo XY,Zhang JL,Zhang EH. Research progress on potted chrysanthemum breeding[J]. Journal of Shandong Forestry Science and Technology,2021,51 (1):81−86. doi: 10.3969/j.issn.1002-2724.2021.01.019

    [10] 赵小刚. 日中性小菊新品种选育及小菊开花期遗传分析[D]. 北京: 北京林业大学, 2019: 1-10.
    [11] 蒋志敏,王威,储成才. 植物氮高效利用研究进展和展望[J]. 生命科学,2018,30(10):1060−1071. doi: 10.13376/j.cbls/2018128

    Jiang ZM,Wang W,Chu CC. Towards understanding of nitrogen use efficiency in plants[J]. Chinese Bulletin of Life Sciences,2018,30 (10):1060−1071. doi: 10.13376/j.cbls/2018128

    [12]

    Gojon A. Nitrogen nutrition in plants:rapid progress and new challenges[J]. J Exp Bot,2017,68 (10):2457−2462. doi: 10.1093/jxb/erx171

    [13]

    Srikanth A,Schmid M. Regulation of flowering time:all roads lead to Rome[J]. Cell Mol Life Sci,2011,68 (12):2013−2037. doi: 10.1007/s00018-011-0673-y

    [14]

    Blümel M,Dally N,Jung C. Flowering time regulation in crops:what did we learn from Arabidopsis?[J]. Curr Opin Biotechnol,2015,32:121−129. doi: 10.1016/j.copbio.2014.11.023

    [15] 孙昌辉,邓晓建,方军,储成才. 高等植物开花诱导研究进展[J]. 遗传,2007,29(10):1182−1190. doi: 10.3321/j.issn:0253-9772.2007.10.005

    Sun CH,Deng XJ,Fang J,Chu CC. An overview of flowering transition in higher plants[J]. Hereditas (Beijing),2007,29 (10):1182−1190. doi: 10.3321/j.issn:0253-9772.2007.10.005

    [16] 张艺能,周玉萍,陈琼华,黄小玲,田长恩. 拟南芥开花时间调控的分子基础[J]. 植物学报,2014,49(4):469−482. doi: 10.3724/SP.J.1259.2014.00469

    Zhang YN,Zhou YP,Chen QH,Huang XL,Tian CE. Molecular basis of flowering time regulation in Arabidopsis[J]. Chinese Bulletin of Botany,2014,49 (4):469−482. doi: 10.3724/SP.J.1259.2014.00469

    [17]

    Komeda Y. Genetic regulation of time to flower in Arabidopsis thaliana[J]. Annu Rev Plant Biol,2004,55:521−535. doi: 10.1146/annurev.arplant.55.031903.141644

    [18]

    Wahl V,Ponnu J,Schlereth A,Arrivault S,Langenecker T,et al. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana[J]. Science,2013,339 (6120):704−707. doi: 10.1126/science.1230406

    [19]

    Teotia S,Tang GL. To bloom or not to bloom:role of MicroRNAs in plant flowering[J]. Mol Plant,2015,8 (3):359−377. doi: 10.1016/j.molp.2014.12.018

    [20]

    Achard P,Cheng H,de Grauwe L,Decat J,Schoutteten H,et al. Integration of plant responses to environmentally activated phytohormonal signals[J]. Science,2006,311 (5757):91−94. doi: 10.1126/science.1118642

    [21]

    Balasubramanian S,Sureshkumar S,Lempe J,Weigel D. Potent induction of Arabidopsis thaliana flowering by elevated growth temperature[J]. PLoS Genetics,2006,2 (7):e106. doi: 10.1371/journal.pgen.0020106

    [22]

    Martínez C,Pons E,Prats G,León J. Salicylic acid regulates flowering time and links defence responses and reproductive development[J]. Plant J,2004,37 (2):209−217. doi: 10.1046/j.1365-313X.2003.01954.x

    [23]

    Vidal EA,Moyano TC,Canales J,Gutiérrez RA. Nitrogen control of developmental phase transitions in Arabidopsis thaliana[J]. J Exp Bot,2014,65 (19):5611−5618. doi: 10.1093/jxb/eru326

    [24]

    Kitamoto N,Ueno S,Takenaka A,Tsumura Y,Washitani I,Ohsawa R. Effect of flowering phenology on pollen flow distance and the consequences for spatial genetic structure within a population of Primula sieboldii (Primulaceae)[J]. Am J Bot,2006,93 (2):226−233. doi: 10.3732/ajb.93.2.226

    [25]

    Elzinga JA,Atlan A,Biere A,Gigord L,Weis AE,Bernasconi G. Time after time:flowering phenology and biotic interactions[J]. Trends Ecol Evol,2007,22 (8):432−439. doi: 10.1016/j.tree.2007.05.006

    [26]

    Lemoine NP,Doublet D,Salminen JP,Burkepile DE,Parker JD. Responses of plant phenology,growth,defense,and reproduction to interactive effects of warming and insect herbivory[J]. Ecology,2017,98 (7):1817−1828. doi: 10.1002/ecy.1855

    [27]

    Vermeulen PJ. On selection for flowering time plasticity in response to density[J]. New Phytol,2015,205 (1):429−439. doi: 10.1111/nph.12984

    [28] 万亚楠. 菊花的花期调控方法初探[J]. 现代园艺,2013(20):50−51. doi: 10.3969/j.issn.1006-4958.2013.20.035
    [29] 张树林, 戴思兰. 中国菊花全书[M]. 北京: 中国林业出版社, 2013: 1-100.
    [30] 陈洪国,马容明. GA3对菊花开花和花瓣某些生理生化指标的影响[J]. 安徽农业科学,2006,34(6):1050−1051. doi: 10.3969/j.issn.0517-6611.2006.06.005

    Chen HG,Ma RM. Effects of GA3 on the flowering and some physiological indexes of chrysanthemum[J]. Journal of Anhui Agricultural Sciences,2006,34 (6):1050−1051. doi: 10.3969/j.issn.0517-6611.2006.06.005

    [31] 刘敏,丁江南,王飞翔,于晓英. 叶面喷施赤霉素对瓜叶菊生长与开花的影响[J]. 天津农业科学,2010,16(6):36−38. doi: 10.3969/j.issn.1006-6500.2010.06.014

    Liu M,Ding JN,Wang FX,Yu XY. Effects of gibberellins treatment on growth and flowering of Senecio × hybridus[J]. Tianjin Agricultural Sciences,2010,16 (6):36−38. doi: 10.3969/j.issn.1006-6500.2010.06.014

    [32] 张秋玲,杨秀珍,戴思兰,张倩,罗虹,张伯晗. 不同氮磷钾水平对毛华菊生长发育的影响[J]. 山东农业大学学报(自然科学版),2020,51(4):611−616. doi: 10.3969/j.issn.1000-2324.2020.04.005

    Zhang QL,Yang XZ,Dai SL,Zhang Q,Luo H,Zhang BH. Effect of different N,P,K proportions on the development of Chrysanthemum vestitum[J]. Journal of Shandong Agricultural University (Natural Science Edition),2020,51 (4):611−616. doi: 10.3969/j.issn.1000-2324.2020.04.005

    [33] 张秋玲,杨秀珍,戴思兰,邱丹丹,董南希,李清清. 不同氮水平下毛华菊形态性状的差异分析[J]. 中国农业大学学报,2020,25(5):70−77. doi: 10.11841/j.issn.1007-4333.2020.05.07

    Zhang QL,Yang XZ,Dai SL,Qiu DD,Dong NX,Li QQ. Difference analysis of morphological traits of Chrysanthemum vestitum under different nitrogen levels[J]. Journal of China Agricultural University,2020,25 (5):70−77. doi: 10.11841/j.issn.1007-4333.2020.05.07

    [34] 马朝峰. 甘菊和毛华菊PHYAPHYB同源基因表达分析及ClPHYB功能验证[D]. 北京: 北京林业大学, 2019: 1-10.
    [35] 王富刚,张静,张雄. 光敏色素与植物的光形态建成[J]. 基因组学与应用生物学,2017,36(8):3167−3171. doi: 10.13417/j.gab.036.003167

    Wang FG,Zhang J,Zhang X. Phytochromes and plant photomorphogenesis[J]. Genomics and Applied Biology,2017,36 (8):3167−3171. doi: 10.13417/j.gab.036.003167

    [36] 王君杰,田翔,秦慧彬,王海岗,曹晓宁,等. 光周期对糜子生长发育及叶片内源激素的调控效应[J]. 中国农业科学,2021,54(2):286−295. doi: 10.3864/j.issn.0578-1752.2021.02.005

    Wang JJ,Tian X,Qin HB,Wang HG,Cao XN,et al. Regulation effects of photoperiod on growth and leaf endogenous hormones in broomcorn millet[J]. Scientia Agricultura Sinica,2021,54 (2):286−295. doi: 10.3864/j.issn.0578-1752.2021.02.005

    [37] 贺玉利. 菊花矮化及提前开花栽培技术[J]. 北方园艺,2003(3):80. doi: 10.3969/j.issn.1001-0009.2003.03.055
    [38] 姜贝贝,房伟民,陈发棣,赵宏波,顾俊杰. 植株营养生长天数对切花菊花芽分化与品质的影响[J]. 中国农业科学,2008,41(6):1755−1760. doi: 10.3864/j.issn.0578-1752.2008.06.024

    Jiang BB,Fang WM,Chen FD,Zhao HB,Gu JJ. Effect of vegetative growth days on flower bud differentiation and quality of cut chrysanthemum[J]. Scientia Agricultura Sinica,2008,41 (6):1755−1760. doi: 10.3864/j.issn.0578-1752.2008.06.024

    [39] 陆思宇,杨再强,杨立,张源达,郑涵. 不同光周期对菊花生长发育及内源激素的影响[J]. 华北农学报,2021,36(6):106−115. doi: 10.7668/hbnxb.20192386

    Lu SY,Yang ZQ,Yang L,Zhang YD,Zheng H. Effects of different photoperiods on the growth and development process and endogenous hormones of chrysanthemum[J]. Acta Agriculturae Boreali-Sinica,2021,36 (6):106−115. doi: 10.7668/hbnxb.20192386

    [40] 陆思宇. 光周期对‘红面’菊花生长发育的影响机理[D]. 南京: 南京信息工程大学, 2022: 1-10.
    [41]

    Hsu PY,Harmer SL. Wheels within wheels:the plant circadian system[J]. Trends Plant Sci,2014,19 (4):240−249. doi: 10.1016/j.tplants.2013.11.007

    [42]

    Yu JW,Rubio V,Lee NY,Bai SL,Lee SY,et al. COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability[J]. Molecular Cell,2008,32 (5):617−630. doi: 10.1016/j.molcel.2008.09.026

    [43]

    Song YH,Shim JS,Kinmonth-Schultz HA,Imaizumi T. Photoperiodic flowering:time measurement mechanisms in leaves[J]. Annu Rev Plant Biol,2015,66:441−464. doi: 10.1146/annurev-arplant-043014-115555

    [44]

    Shim JS,Kubota A,Imaizumi T. Circadian clock and photoperiodic flowering in Arabidopsis:CONSTANS is a hub for signal integration[J]. Plant Physiol,2017,173 (1):5−15. doi: 10.1104/pp.16.01327

    [45]

    Jing YJ,Guo Q,Lin RC. The chromatin-remodeling factor PICKLE antagonizes polycomb repression of FT to promote flowering[J]. Plant Physiol,2019,181 (2):656−668. doi: 10.1104/pp.19.00596

    [46]

    Jing YJ,Guo Q,Zha P,Lin RC. The chromatin‐remodelling factor PICKLE interacts with CONSTANS to promote flowering in Arabidopsis[J]. Plant Cell Environ,2019,42 (8):2495−2507. doi: 10.1111/pce.13557

    [47]

    Kadman-Zahavi A,Yahel H. Phytochrome effects in night-break illuminations on flowering of Chrysanthemum[J]. Physiol Plant,1971,25 (1):90−93. doi: 10.1111/j.1399-3054.1971.tb01094.x

    [48]

    Jeong SW,Park S,Jin JS,Seo ON,Kim GS,et al. Influences of four different light-emitting diode lights on flowering and polyphenol variations in the leaves of chrysanthemum (Chrysanthemum morifolium)[J]. J Agric Food Chem,2012,60 (39):9793−9800. doi: 10.1021/jf302272x

    [49]

    Nissim-Levi A,Kitron M,Nishri Y,Ovadia R,Forer I,et al. Effects of blue and red LED lights on growth and flowering of Chrysanthemum morifolium[J]. Sci Hortic,2019,254:77−83. doi: 10.1016/j.scienta.2019.04.080

    [50]

    Yang LW,Wen XH,Fu JX,Dai SL. ClCRY2 facilitates floral transition in Chrysanthemum lavandulifolium by affecting the transcription of circadian clock-related genes under short-day photoperiods[J]. Hortic Res,2018,5:58. doi: 10.1038/s41438-018-0063-9

    [51]

    Yang LW,Fu JX,Qi S,Hong Y,Huang H,Dai SL. Molecular cloning and function analysis of ClCRY1a and ClCRY1b,two genes in Chrysanthemum lavandulifolium that play vital roles in promoting floral transition[J]. Gene,2017,617:32−43. doi: 10.1016/j.gene.2017.02.020

    [52]

    Wang SJ,Zhang CL,Zhao J,Li RH,Lv JH. Expression analysis of four pseudo-response regulator (PRR) genes in Chrysanthemum morifolium under different photoperiods[J]. PeerJ,2019,7:e6420. doi: 10.7717/peerj.6420

    [53] 陈丹丹,邹庆军,郭巧生,汪涛. 短日照处理对野菊CO基因表达量的影响[J]. 中国中药杂志,2019,44(4):648−653. doi: 10.19540/j.cnki.cjcmm.2019.0014

    Chen DD,Zou QJ,Guo QS,Wang T. Effect of short-day treatment on expression of CO gene in Chrysanthemum indicum[J]. China Journal of Chinese Materia Medica,2019,44 (4):648−653. doi: 10.19540/j.cnki.cjcmm.2019.0014

    [54]

    Oda A,Narumi T,Li TP,Kando T,Higuchi Y,et al. CsFTL3,a chrysanthemum FLOWERING LOCUS T-like gene,is a key regulator of photoperiodic flowering in chrysanthemums[J]. J Exp Bot,2012,63 (3):1461−1477. doi: 10.1093/jxb/err387

    [55]

    Higuchi Y,Narumi T,Oda A,Nakano Y,Sumitomo K,et al. The gated induction system of a systemic floral inhibitor,antiflorigen,determines obligate short-day flowering in chrysanthemums[J]. Proc Natl Acad Sci USA,2013,110 (42):17137−17142. doi: 10.1073/pnas.1307617110

    [56]

    Sun J,Wang H,Ren LP,Chen SM,Chen FD,et al. CmFTL2 is involved in the photoperiod- and sucrose-mediated control of flowering time in chrysanthemum[J]. Hortic Res,2017,4:17001. doi: 10.1038/hortres.2017.1

    [57]

    Zuo L,Wang T,Guo Q,Yang F,Zou Q,et al. Conserved CO-FT module regulating flowering time in Chrysanthemum indicum L.[J]. Russ J Plant Physiol,2021,68 (6):1018−1028. doi: 10.1134/S102144372106025X

    [58]

    Oda A,Higuchi Y,Hisamatsu T. Photoperiod-insensitive floral transition in chrysanthemum induced by constitutive expression of chimeric repressor CsLHY-SRDX[J]. Plant Sci,2017,259:86−93. doi: 10.1016/j.plantsci.2017.03.007

    [59]

    Oda A,Higuchi Y,Hisamatsu T. Constitutive expression of CsGI alters critical night length for flowering by changing the photo-sensitive phase of anti-florigen induction in chrysanthemum[J]. Plant Sci,2020,293:110417. doi: 10.1016/j.plantsci.2020.110417

    [60] 赵航, 梁丽, 张淑欣. 温度调控植物开花的研究进展[J/OL]. 分子植物育种, 2022. https: //kns.cnki.net/kcms/detail/46.1068.S.20220420.1718.020.html.

    Zhao H, Liang L, Zhang SX. Research progress on temperature-regulated of plant flowering[J]. Molecular Plant Breeding, 2022. https: //kns.cnki.net/kcms/detail/46.1068.S.20220420.1718.020.html.

    [61]

    Laurie DA. Comparative genetics of flowering time[J]. Plant Mol Biol,1997,35 (1-2):167−177.

    [62]

    Trevaskis B,Hemming MN,Dennis ES,Peacock WJ. The molecular basis of vernalization-induced flowering in cereals[J]. Trends Plant Sci,2007,12 (8):352−357. doi: 10.1016/j.tplants.2007.06.010

    [63]

    Bouché F,Woods DP,Amasino RM. Winter memory throughout the plant kingdom:different paths to flowering[J]. Plant Physiol,2017,173 (1):27−35. doi: 10.1104/pp.16.01322

    [64]

    Kim DH,Sung S. Vernalization-triggered intragenic chromatin loop formation by long noncoding RNAs[J]. Dev Cell,2017,40 (3):302−312.e4. doi: 10.1016/j.devcel.2016.12.021

    [65]

    Xu SJ,Xiao J,Yin F,Guo XY,Xing LJ,et al. The protein modifications of O-GlcNAcylation and phosphorylation mediate vernalization response for flowering in winter wheat[J]. Plant Physiol,2019,180 (3):1436−1449. doi: 10.1104/pp.19.00081

    [66]

    Lutz U,Nussbaumer T,Spannagl M,Diener J,Mayer KF,Schwechheimer C. Natural haplotypes of FLM non-coding sequences fine-tune flowering time in ambient spring temperatures in Arabidopsis[J]. eLife,2017,6:e22114. doi: 10.7554/eLife.22114

    [67]

    Kumar SV,Lucyshyn D,Jaeger KE,Alós E,Alvey E,et al. Transcription factor PIF4 controls the thermosensory activation of flowering[J]. Nature,2012,484 (7393):242−245. doi: 10.1038/nature10928

    [68]

    Song YH,Ito S,Imaizumi T. Flowering time regulation:photoperiod- and temperature-sensing in leaves[J]. Trends Plant Sci,2013,18 (10):575−583. doi: 10.1016/j.tplants.2013.05.003

    [69]

    Jin SY,Ahn JH. Regulation of flowering time by ambient temperature:repressing the repressors and activating the activators[J]. New Phytol,2021,230 (3):938−942. doi: 10.1111/nph.17217

    [70]

    Posé D,Verhage L,Ott F,Yant L,Mathieu J,et al. Temperature-dependent regulation of flowering by antagonistic FLM variants[J]. Nature,2013,503 (7476):414−417. doi: 10.1038/nature12633

    [71]

    Kim JJ,Lee JH,Kim W,Jung HS,Huijser P,Ahn JH. The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis[J]. Plant Physiol,2012,159 (1):461−478. doi: 10.1104/pp.111.192369

    [72]

    Jung JH,Seo PJ,Ahn JH,Park CM. Arabidopsis RNA-binding protein FCA regulates MicroRNA172 processing in thermosensory flowering[J]. J Biol Chem,2012,287 (19):16007−16016. doi: 10.1074/jbc.M111.337485

    [73]

    Kumar SV,Wigge PA. H2A. Z-containing nucleosomes mediate the thermosensory response in Arabidopsis[J]. Cell,2010,140 (1):136−147. doi: 10.1016/j.cell.2009.11.006

    [74]

    Zheng SZ,Hu HM,Ren HM,Yang ZL,Qiu Q,et al. The Arabidopsis H3K27me3 demethylase JUMONJI 13 is a temperature and photoperiod dependent flowering repressor[J]. Nat Commun,2019,10 (1):1303. doi: 10.1038/s41467-019-09310-x

    [75]

    Huang H,Nusinow DA. Into the evening:complex interactions in the Arabidopsis circadian clock[J]. Trends Genet,2016,32 (10):674−686. doi: 10.1016/j.tig.2016.08.002

    [76]

    Ezer D,Jung JH,Lan H,Biswas S,Gregoire L,et al. The evening complex coordinates environmental and endogenous signals in Arabidopsis[J]. Nat Plants,2017,3 (7):17087. doi: 10.1038/nplants.2017.87

    [77]

    Zhao H,Xu D,Tian T,Kong FY,Lin K,et al. Molecular and functional dissection of EARLY-FLOWERING 3 (ELF3) and ELF4 in Arabidopsis[J]. Plant Sci,2021,303:110786. doi: 10.1016/j.plantsci.2020.110786

    [78]

    Cho AR,Kim YJ. Night temperature determines flowering time and quality of Chrysanthemum morifolium during a high day temperature[J]. J Hortic Sci Biotechnol,2021,96 (2):239−248. doi: 10.1080/14620316.2020.1834460

    [79]

    Cockshull KE,Kofranek AM. High night temperatures delay flowering,produce abnormal flowers and retard stem growth of cut-flower chrysanthemums[J]. Sci Hortic,1994,56 (3):217−234. doi: 10.1016/0304-4238(94)90004-3

    [80]

    Nakano Y,Higuchi Y,Sumitomo K,Oda A,Hisamatsu T,Naro N. Delay of flowering by high temperature in chrysanthemum:heat-sensitive time-of-day and heat effects on CsFTL3 and CsAFT gene expression[J]. J Hortic Sci Biotechnol,2015,90 (2):143−149. doi: 10.1080/14620316.2015.11513165

    [81]

    Nakano Y,Takase T,Sumitomo K,Suzuki S,Tsuda-Kawamura K,Hisamatsu T. Delay of flowering at high temperature in chrysanthemum:duration of darkness and transitions in lighting determine daily peak heat sensitivity[J]. Hortic J,2020,89 (5):602−608. doi: 10.2503/hortj.UTD-192

    [82]

    Luo C,Liu H,Ren JN,Chen DL,Cheng X,et al. Cold-inducible expression of an Arabidopsis thaliana AP2 transcription factor gene,AtCRAP2,promotes flowering under unsuitable low-temperatures in chrysanthemum[J]. Plant Physiol Biochem,2020,146:220−230. doi: 10.1016/j.plaphy.2019.11.022

    [83]

    Lyu J,Aiwaili P,Gu ZY,Xu YJ,Zhang YH,et al. Chrysanthemum MAF2 regulates flowering by repressing gibberellin biosynthesis in response to low temperature[J]. Plant J,2022,112 (5):1159−1175. doi: 10.1111/tpj.16002

    [84]

    Sumitomo K,Nakano Y,Hisamatsu T,Oda A,Narumi-Kawasaki T,et al. Delayed flowering due to ‘cold memory’ is regulated by suppression of FLOWERING LOCUS T-like 3 gene in chrysanthemums[J]. J Hortic Sci Biotechnol,2023,98 (3):334−341. doi: 10.1080/14620316.2022.2136112

    [85]

    Zhang XY,Zhang P,Wang G,Bao ZL,Ma FF. Chrysanthemum lavandulifolium homolog ClMAD1 modulates the floral transition during temperature shift[J]. Environ Exp Bot,2022,194:104720. doi: 10.1016/j.envexpbot.2021.104720

    [86]

    Sumitomo K,Li TP,Hisamatsu T. Gibberellin promotes flowering of chrysanthemum by upregulating CmFL,a chrysanthemum FLORICAULA/LEAFY homologous gene[J]. Plant Sci,2009,176 (5):643−649. doi: 10.1016/j.plantsci.2009.02.003

    [87]

    Wilson RN,Heckman JW,Somerville CR. Gibberellin is required for flowering in Arabidopsis thaliana under short days[J]. Plant Physiol,1992,100 (1):403−408. doi: 10.1104/pp.100.1.403

    [88]

    Murase K,Hirano Y,Sun TP,Hakoshima T. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1[J]. Nature,2008,456 (7221):459−463. doi: 10.1038/nature07519

    [89]

    Yan JD,Li XM,Zeng BJ,Zhong M,Yang JX,et al. FKF1 F‐box protein promotes flowering in part by negatively regulating DELLA protein stability under long‐day photoperiod in Arabidopsis[J]. J Integr Plant Biol,2020,62 (11):1717−1740. doi: 10.1111/jipb.12971

    [90]

    Achard P,Herr A,Baulcombe DC,Harberd NP. Modulation of floral development by a gibberellin-regulated microRNA[J]. Development,2004,131 (14):3357−3365. doi: 10.1242/dev.01206

    [91]

    Allen RS,Li JY,Stahle MI,Dubroué A,Gubler F,Millar AA. Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family[J]. Proc Natl Acad Sci USA,2007,104 (41):16371−16376. doi: 10.1073/pnas.0707653104

    [92]

    Pharis RP. Flowering of Chrysanthemum under non-inductive long days by gibberellins and N6-benzyladenine[J]. Planta,1972,105 (3):205−212. doi: 10.1007/BF00385392

    [93]

    Dong B,Deng Y,Wang HB,Gao R,Stephen GU,et al. Gibberellic acid signaling is required to induce flowering of chrysanthemums grown under both short and long days[J]. Int J Mol Sci,2017,18 (6):1259. doi: 10.3390/ijms18061259

    [94]

    Yang YJ,Ma C,Xu YJ,Wei Q,Imtiaz M,et al. A zinc finger protein regulates flowering time and abiotic stress tolerance in chrysanthemum by modulating gibberellin biosynthesis[J]. Plant Cell,2014,26 (5):2038−2054. doi: 10.1105/tpc.114.124867

    [95]

    Zhu L,Guan YX,Liu YN,Zhang ZH,Jaffar MA,et al. Regulation of flowering time in chrysanthemum by the R2R3 MYB transcription factor CmMYB2 is associated with changes in gibberellin metabolism[J]. Hortic Res,2020,7 (1):96. doi: 10.1038/s41438-020-0317-1

    [96]

    Wu G,Park MY,Conway SR,Wang JW,Weigel D,Poethig RS. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis[J]. Cell,2009,138 (4):750−759. doi: 10.1016/j.cell.2009.06.031

    [97]

    Wang JW,Czech B,Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana[J]. Cell,2009,138 (4):738−749. doi: 10.1016/j.cell.2009.06.014

    [98]

    Fornara F,Coupland G. Plant phase transitions make a SPLash[J]. Cell,2009,138 (4):625−627. doi: 10.1016/j.cell.2009.08.011

    [99]

    Yang HC,Han ZF,Cao Y,Fan D,Li H,et al. A companion cell–dominant and developmentally regulated H3K4 demethylase controls flowering time in Arabidopsis via the repression of FLC expression[J]. PLoS Genet,2012,8 (4):e1002664. doi: 10.1371/journal.pgen.1002664

    [100]

    Song AP,Gao TW,Wu D,Xin JJ,Chen SM,et al. Transcriptome-wide identification and expression analysis of chrysanthemum SBP-like transcription factors[J]. Plant Physiol Biochem,2016,102:10−16. doi: 10.1016/j.plaphy.2016.02.009

    [101] 朱文静. 菊花转录因子CmSPL4. 1/5. 1/6/13的克隆与功能鉴定[D]. 南京: 南京农业大学, 2020: 1-10.
    [102] 魏倩. 菊花核因子NF-YB调节开花时间和干旱胁迫耐性的机理分析[D]. 北京: 中国农业大学, 2015: 1-10.
    [103]

    Wei Q,Ma C,Xu YJ,Wang TL,Chen YY,et al. Control of chrysanthemum flowering through integration with an aging pathway[J]. Nat Commun,2017,8 (1):829. doi: 10.1038/s41467-017-00812-0

    [104] 马超. 菊花成花调控机制: 第三届全国植物开花·衰老与采后生物学大会论文摘要集[C]. 杭州: 中国植物生理与植物分子生物学学会, 2019.
    [105]

    Jiang JF, Zhang ZX, Hu Q, Zhu YQ, Gao Z, et al. The flowering repressor SVP recruits the TOPLESS co-repressor to control flowering in chrysanthemum and Arabidopsis[J/OL]. BioRxiv, 2021. doi: 10.1101/2021.11.23.469726.

    [106]

    Wang CQ,Guthrie C,Sarmast MK,Dehesh K. BBX19 interacts with CONSTANS to repress FLOWERING LOCUS T transcription,defining a flowering time checkpoint in Arabidopsis[J]. Plant Cell,2014,26 (9):3589−3602. doi: 10.1105/tpc.114.130252

    [107]

    Yuan L,Yu YJ,Liu MM,Song Y,Li HM,et al. BBX19 fine-tunes the circadian rhythm by interacting with PSEUDO-RESPONSE REGULATOR proteins to facilitate their repressive effect on morning-phased clock genes[J]. Plant Cell,2021,33 (8):2602−2617. doi: 10.1093/plcell/koab133

    [108]

    Zhang T. Tick-tock:BBX19 functions as a novel regulator of the circadian clock[J]. Plant Cell,2021,33 (8):2511−2512. doi: 10.1093/plcell/koab142

    [109]

    Wang LJ,Sun J,Ren LP,Zhou M,Han XY,et al. CmBBX8 accelerates flowering by targeting CmFTL1 directly in summer chrysanthemum[J]. Plant Biotechnol J,2020,18 (7):1562−1572. doi: 10.1111/pbi.13322

    [110]

    Wang LJ,Cheng H,Wang Q,Si CN,Yang YM,et al. CmRCD1 represses flowering by directly interacting with CmBBX8 in summer chrysanthemum[J]. Hortic Res,2021,8:79. doi: 10.1038/s41438-021-00516-z

    [111]

    Chen H,Huang F,Liu YN,Cheng PL,Guan ZY,et al. Constitutive expression of chrysanthemum CmBBX29 delays flowering time in transgenic Arabidopsis[J]. Can J Plant Sci,2020,100 (1):86−94. doi: 10.1139/cjps-2018-0154

    [112]

    Ping Q,Cheng PL,Huang F,Ren LP,Cheng H,et al. The heterologous expression in Arabidopsis thaliana of a chrysanthemum gene encoding the BBX family transcription factor CmBBX13 delays flowering[J]. Plant Physiol Biochem,2019,144:480−487. doi: 10.1016/j.plaphy.2019.10.019

    [113]

    Morita S,Murakoshi Y,Hojo A,Chisaka K,Harada T,Satoh S. Early flowering and increased expression of a FLOWERING LOCUS T-like gene in chrysanthemum transformed with a mutated ethylene receptor gene mDG-ERS1(etr1-4)[J]. J Plant Biol,2012,55 (5):398−405. doi: 10.1007/s12374-012-0109-8

    [114]

    Huang YY,Xing XJ,Tang Y,Jin JY,Ding L,et al. An ethylene‐responsive transcription factor and a flowering locus KH domain homologue jointly modulate photoperiodic flowering in chrysanthemum[J]. Plant Cell Environ,2022,45 (5):1442−1456. doi: 10.1111/pce.14261

    [115]

    Gomi K. Jasmonic acid:an essential plant hormone[J]. Int J Mol Sci,2020,21 (4):1261. doi: 10.3390/ijms21041261

    [116]

    Guan YX,Ding L,Jiang JF,Shentu YY,Zhao WQ,et al. Overexpression of the CmJAZ1-like gene delays flowering in Chrysanthemum morifolium[J]. Hortic Res,2021,8:87. doi: 10.1038/s41438-021-00525-y

    [117]

    Yuan S,Zhang ZW,Zheng C,Zhao ZY,Wang Y,et al. Arabidopsis cryptochrome 1 functions in nitrogen regulation of flowering[J]. Proc Natl Acad Sci USA,2016,113 (27):7661−7666. doi: 10.1073/pnas.1602004113

    [118]

    Lin YL,Tsay YF. Influence of differing nitrate and nitrogen availability on flowering control in Arabidopsis[J]. J Exp Bot,2017,68 (10):2603−2609. doi: 10.1093/jxb/erx053

    [119]

    Sanagi M,Aoyama S,Kubo A,Lu Y,Sato Y,et al. Low nitrogen conditions accelerate flowering by modulating the phosphorylation state of FLOWERING BHLH 4 in Arabidopsis[J]. Proc Natl Acad Sci USA,2021,118 (19):e2022942118. doi: 10.1073/pnas.2022942118

    [120]

    Zhang SN,Zhang YY,Li KN,Yan M,Zhang JF,et al. Nitrogen mediates flowering time and nitrogen use efficiency via floral regulators in rice[J]. Curr Biol,2021,31 (4):671−683.e5. doi: 10.1016/j.cub.2020.10.095

  • 期刊类型引用(2)

    1. 傅俊士,南丽丽,张泽龙,吴世文,陈孝善. 21份猫尾草种子形态特征及SSR遗传多样性评价. 中国草地学报. 2024(09): 23-33 . 百度学术
    2. 张卓亿,谢晓方,王霞,谢旖,谭欣懿,肖淑媛. 芦苇、南荻在食用菌栽培中的基质化利用研究进展. 北方园艺. 2024(24): 113-121 . 百度学术

    其他类型引用(1)

图(2)
计量
  • 文章访问数:  495
  • HTML全文浏览量:  89
  • PDF下载量:  163
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-12-11
  • 修回日期:  2023-01-12
  • 网络出版日期:  2023-03-12
  • 刊出日期:  2024-01-04

目录

/

返回文章
返回