高级检索+

基于全基因组的栀子花香成分合成TPS基因系统分析

许文杰, 娄千, 陈启桢, 胡开治, 曹敏, 刘燕琴, 韩蓉蓉, 宋经元

许文杰,娄千,陈启桢,胡开治,曹敏,刘燕琴,韩蓉蓉,宋经元. 基于全基因组的栀子花香成分合成TPS基因系统分析[J]. 植物科学学报,2024,42(1):85−95. DOI: 10.11913/PSJ.2095-0837.23017
引用本文: 许文杰,娄千,陈启桢,胡开治,曹敏,刘燕琴,韩蓉蓉,宋经元. 基于全基因组的栀子花香成分合成TPS基因系统分析[J]. 植物科学学报,2024,42(1):85−95. DOI: 10.11913/PSJ.2095-0837.23017
Xu WJ,Lou Q,Chen QZ,Hu KZ,Cao M,Liu YQ,Han RR,Song JY. Systematic analysis of TPS genes for the synthesis of floral aroma components of Gardenia jasminoides J. Ellis based on the whole genome[J]. Plant Science Journal,2024,42(1):85−95. DOI: 10.11913/PSJ.2095-0837.23017
Citation: Xu WJ,Lou Q,Chen QZ,Hu KZ,Cao M,Liu YQ,Han RR,Song JY. Systematic analysis of TPS genes for the synthesis of floral aroma components of Gardenia jasminoides J. Ellis based on the whole genome[J]. Plant Science Journal,2024,42(1):85−95. DOI: 10.11913/PSJ.2095-0837.23017
许文杰,娄千,陈启桢,胡开治,曹敏,刘燕琴,韩蓉蓉,宋经元. 基于全基因组的栀子花香成分合成TPS基因系统分析[J]. 植物科学学报,2024,42(1):85−95. CSTR: 32231.14.PSJ.2095-0837.23017
引用本文: 许文杰,娄千,陈启桢,胡开治,曹敏,刘燕琴,韩蓉蓉,宋经元. 基于全基因组的栀子花香成分合成TPS基因系统分析[J]. 植物科学学报,2024,42(1):85−95. CSTR: 32231.14.PSJ.2095-0837.23017
Xu WJ,Lou Q,Chen QZ,Hu KZ,Cao M,Liu YQ,Han RR,Song JY. Systematic analysis of TPS genes for the synthesis of floral aroma components of Gardenia jasminoides J. Ellis based on the whole genome[J]. Plant Science Journal,2024,42(1):85−95. CSTR: 32231.14.PSJ.2095-0837.23017
Citation: Xu WJ,Lou Q,Chen QZ,Hu KZ,Cao M,Liu YQ,Han RR,Song JY. Systematic analysis of TPS genes for the synthesis of floral aroma components of Gardenia jasminoides J. Ellis based on the whole genome[J]. Plant Science Journal,2024,42(1):85−95. CSTR: 32231.14.PSJ.2095-0837.23017

基于全基因组的栀子花香成分合成TPS基因系统分析

基金项目: 国家自然科学基金项目(82304674)。
详细信息
    作者简介:

    许文杰(1990−),女,博士,助理研究员,研究方向为植物次生代谢产物合成(E-mail:wjxu@implad.ac.cn

    通讯作者:

    宋经元: E-mail:jysong@implad.ac.cn

  • 中图分类号: Q943.2

Systematic analysis of TPS genes for the synthesis of floral aroma components of Gardenia jasminoides J. Ellis based on the whole genome

  • 摘要:

    栀子(Gardenia jasminoides J. Ellis)花色洁白且香气怡人,不仅具有极高的观赏价值,还是重要天然香料来源。萜类是栀子花独特香气的主要组成成分,但合成该类挥发性产物的关键萜类合酶(TPS)尚未鉴定。本研究基于栀子高质量基因组,通过转录组数据、系统发育树和保守结构域分析等,全面挖掘栀子萜类花香成分合成相关的TPS基因。结果显示,栀子基因组共注释到44个GjTPS基因,不均匀分布于11条染色体,其中9个GjTPS参与串联复制事件。所有GjTPS被划分为5个亚家族,其中27个属于被子植物特有的TPS-a、TPS-b和TPS-g分支。结合栀子5个器官的转录组数据及实时荧光定量PCR分析,筛选出5个候选GjTPS基因,其在盛开期的花器官中特异高表达,且含有DDXXD和NSE/DTE 活性基序。其中,GjTPS1、GjTPS2、GjTPS3和GjTPS27为TPS-b分支酶,推测为芳樟醇或罗勒烯等栀子主要花香成分合成酶,而TPS-a分支的GjTPS18可能是金合欢烯合酶。

    Abstract:

    Gardenia jasminoides J. Ellis flowers are white in color and have a pleasant aroma. These flowers have high ornamental value and are an important source of natural spices. Terpenes are the main components of the unique aroma of G. jasminoides flowers, but the key terpene synthases (TPSs) for the biosynthesis of such volatile products have not yet been identified. Here, based on the high-quality genome of G. jasminoides, this study comprehensively explored the TPS genes related to floral scent biosynthesis through transcriptomic, phylogenetic, and conserved domain analysis. In total, 44 GjTPS genes were identified in G. jasminoides, unevenly distributed on 11 chromosomes, and nine GjTPS genes participated in tandem duplication events. All GjTPSs were clustered into five subfamilies, 27 of which belonged to the angiosperm-specific clades, including TPS-a, TPS-b, and TPS-g. Combining transcriptomic data and quantitative real-time PCR (qRT-PCR) analyses of five organs, five candidate GjTPS genes, with high expression in blooming flowers and containing the active motif DDXXD and NSE/DTE, were screened. Among them, GjTPS1, GjTPS2, GjTPS3, and GjTPS27 were grouped in the TPS-b clade, speculated to be the TPSs responsible for the biosynthesis of the main floral aroma components of G. jasminoides, such as linalool and ocimene, while GjTPS18 from the TPS-a clade may be a farnesene synthase.

  • 1如需查阅附表内容请登录《植物科学学报》网站(http://www.plantscience.cn)查看本期文章。
  • 图  1   栀子转录组测序样本基因表达相关性(A)及萜类花香成分合成途径(B)

    圆的半径与相关系数成正比,蓝色和红色分别代表负相关和正相关。

    Figure  1.   Gene expression correlations of RNA-seq samples (A) and biosynthetic pathway of volatile terpenes in Gardenia jasminoides flowers (B)

    Circle radius is proportional to correlation coefficient. Blue and red indicate negative and positive correlations of gene expression between pairs of samples, respectively.

    图  2   栀子与其他物种TPS基因系统发育树

    Figure  2.   Phylogenetic tree of TPS genes in Gardenia jasminoides and other species

    图  3   栀子TPS基因编码产物保守基序(A)及基因结构(B)

    Figure  3.   Conserved motifs (A) and gene structures (B) of GjTPS

    图  4   栀子TPS基因家族共线性(A)及表达热图(B)

    红色字体标注的GjTPS基因与咖啡TPS存在共线性。

    Figure  4.   Collinear analysis (A) and gene expression heatmap (B) of GjTPSs

    GjTPSs in red are collinear with TPSs of Coffea canephora.

    图  5   栀子萜类花香成分合成候选TPS蛋白局部比对

    Figure  5.   Partial amino acid alignment of candidate TPSs for volatile terpene biosynthesis in Gardenia jasminoides flowers

    图  6   栀子萜类花香成分合成候选TPS基因相对表达水平

    Figure  6.   Relative expression levels of candidate TPS genes related to volatile terpene biosynthesis in Gardenia jasminoides flowers

    表  1   不同物种的TPS蛋白信息

    Table  1   Protein information of TPSs collected from multiple species

    蛋白名称
    Protein name
    蛋白编号
    Protein ID
    蛋白名称
    Protein name
    蛋白编号
    Protein ID
    FhrTPS1[8]AtTPS02P0CJ43.1
    FhrTPS2[8]AtTPS03A4FVP2.1
    FhrTPS4[8]AtTPS06Q84UU9.2
    FhrTPS6[8]AtTPS10Q9ZUH4.1
    FhaTPS7[8]AtTPS11Q4KSH9.2
    FhaTPS8[8]AtTPS12Q9T0J9.2
    SlTPS3G1JUH1.1AtTPS13Q9T0K1.2
    SlTPS5Q1XBU5.1AtTPS14Q84UV0.2
    SlTPS9O64961.1AtTPS20A0A178U9Y5.1
    SlTPS12D5KXD2.1AtTPS21Q84UU4.2
    SlTPS14G5CV54.1AtTPS23P0DI77.1
    SlTPS17G5CV52.1AtTPS24Q9LRZ6.1
    SlTPS24NP_001307929.1AtTPS27P0DI76.1
    SlTPS31G5CV46.1LadGERDSU3LVL5.1
    SlTPS40NP_001234008.2LadCADSU3LW50.1
    AgPIN1O24475.1LadCARSU3LVZ7.1
    AgLIM1O22340.1LaBERSQ2XSC4.1
    CaTPS1XP_027109762.1LaLINSQ2XSC5.1
    CaTPS2R4YXW8.2LaLIMSQ2XSC6.1
    CaTPS3XP_027093045.1
    注:At:拟南芥;Ca:小果咖啡;Lad:薰衣草栽培品种‘Diva’;La:薰衣草;Fhr:香雪兰杂交品种‘Red River’;Fha:香雪兰杂交品种‘Ambiance’;Sl:番茄;Ag:大冷杉。下同。
    Notes: At: Arabidopsis thaliana (L.) Heynh.; Ca: Coffea arabica L.; Lad: Lavandula angustifolia ‘Diva’; La: Lavandula angustifolia Mill.; Fhr: Freesia x hybrida ‘Red River’; Fha: Freesia x hybrida ‘Ambiance’; Sl: Solanum lycopersicum L.; Ag: Abies grandis (Douglas ex D. Don) Lindl.. Same below.
    下载: 导出CSV

    表  2   GjTPS基因表达定量引物

    Table  2   Primers of GjTPS for qRT-PCR

    基因
    Gene
    正向引物(5 ' →3 ')
    Forward primer
    反向引物(5 ' →3 ')
    Reverse primer
    GjACTINTCCTCTTCCAGCCTTCTATCGCTCATACGGTCAGCAATAC
    GjTPS1CTTAGGCAACATGGGTACAACTCCTTCTGATCCAAGATTCG
    GjTPS2ACTTGGTCTGGCCAATTACATGCCCATGTTGCCTAAG
    GjTPS3GTCTTGGTGAAGAAGGAGAAGCGTTGTACCATTCCACTCTG
    GjTPS18TCAGCCTTCCAAGTTAAGCGGTAAAGTTGAATTATGTGAGGGAA
    GjTPS19TTCAGTCTTGCAAGTCAAGCGGCATTAGTAAAGTTGTATTATGTGAAGA
    GjTPS27GGAGTCAACATCATCCCATACGCATGGACTAGAAATACTGGAG
    下载: 导出CSV
  • [1]

    Huang MS,Sanchez-Moreiras AM,Abel C,Sohrabi R,Lee S,et al. The major volatile organic compound emitted from Arabidopsis thaliana flowers,the sesquiterpene (E)-β-caryophyllene,is a defense against a bacterial pathogen[J]. New Phytol,2012,193(4):997−1008. doi: 10.1111/j.1469-8137.2011.04001.x

    [2]

    Willmer PG,Nuttman CV,Raine NE,Stone GN,Pattrick JG,et al. Floral volatiles controlling ant behaviour[J]. Funct Ecol,2009,23(5):888−900. doi: 10.1111/j.1365-2435.2009.01632.x

    [3]

    Mostafa S,Wang Y,Zeng W,Jin B. Floral scents and fruit aromas:functions,compositions,biosynthesis,and regulation[J]. Front Plant Sci,2022,13:860157. doi: 10.3389/fpls.2022.860157

    [4]

    Dudareva N,Klempien A,Muhlemann JK,Kaplan I. Biosynthesis,function and metabolic engineering of plant volatile organic compounds[J]. New Phytol,2013,198(1):16−32. doi: 10.1111/nph.12145

    [5]

    Yonekura-Sakakibara K,Saito K. Functional genomics for plant natural product biosynthesis[J]. Nat Prod Rep,2009,26(11):1466−1487. doi: 10.1039/b817077k

    [6] 李海燕,李火根,杨秀莲,岳远征,徐晨,等. 植物花香物质合成与调控研究进展[J]. 分子植物育种,2018,16(1):123−129.

    Li HY,Li HG,Yang XL,Yue YZ,Xu C,et al. Advances studies on the synthesis and regulation of floral substances in plant[J]. Molecular Plant Breeding,2018,16(1):123−129.

    [7]

    Li JJ,Yu XJ,Shan QR,Shi ZB,Li JH,et al. Integrated volatile metabolomic and transcriptomic analysis provides insights into the regulation of floral scents between two contrasting varieties of Lonicera japonica[J]. Front Plant Sci,2022,13:989036. doi: 10.3389/fpls.2022.989036

    [8]

    Gao FZ,Liu BF,Li M,Gao XY,Fang Q,et al. Identification and characterization of terpene synthase genes accounting for volatile terpene emissions in flowers of Freesia x hybrida[J]. J Exp Bot,2018,69(18):4249−4265. doi: 10.1093/jxb/ery224

    [9]

    Jullien F,Moja S,Bony A,Legrand S,Petit C,et al. Isolation and functional characterization of a τ-cadinol synthase,a new sesquiterpene synthase from Lavandula angustifolia[J]. Plant Mol Biol,2014,84(1):227−241.

    [10] 张瑜,徐志超,季爱加,宋经元. bZIP转录因子调控植物次生代谢产物生物合成的研究进展[J]. 植物科学学报,2017,35(1):128−137.

    Zhang Y,Xu ZC,Ji AJ,Song JY. Regulation of secondary metabolite biosynthesis by bZIP transcription factors in plants[J]. Plant Science Journal,2017,35(1):128−137.

    [11]

    Degenhardt J,Köllner TG,Gershenzon J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants[J]. Phytochemistry,2009,70(15-16):1621−1637. doi: 10.1016/j.phytochem.2009.07.030

    [12]

    Bohlmann J,Meyer-Gauen G,Croteau R. Plant terpenoid synthases:molecular biology and phylogenetic analysis[J]. Proc Natl Acad Sci USA,1998,95(8):4126−4133. doi: 10.1073/pnas.95.8.4126

    [13] 秦政,郑永杰,张文根,张龙,黎祖尧,杨光耀. 毛竹萜类合成酶基因家族序列鉴定与表达分析[J]. 植物科学学报,2018,36(4):575−585.

    Qin Z,Zheng YJ,Zhang WG,Zhang L,Li ZY,Yang GY. Genome-wide identification and expression analysis of TPS genes in moso bamboo (Phyllostachys edulis)[J]. Plant Science Journal,2018,36(4):575−585.

    [14]

    Chen F,Tholl D,Bohlmann J,Pichersky E. The family of terpene synthases in plants:a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom[J]. Plant J,2011,66(1):212−229. doi: 10.1111/j.1365-313X.2011.04520.x

    [15] 李亚文. 三种中国原产精油抗衰老功效及安全性研究[D]. 上海: 上海交通大学, 2019: 3.
    [16] 姜冬梅,朱源,余江南,徐希明. 芳樟醇药理作用及制剂研究进展[J]. 中国中药杂志,2015,40(18):3530−3533.

    Jiang DM,Zhu Y,Yu JN,Xu XM. Advances in research of pharmacological effects and formulation studies of linalool[J]. China Journal of Chinese Materia Medica,2015,40(18):3530−3533.

    [17] 卢路路,樊怡灵,邓珂,许光治,王艳,等. 不同品种和花期栀子花挥发性物质的主成分和聚类分析[J]. 核农学报,2021,35(7):1601−1608.

    Lu LL,Fan YL,Deng K,Xu GZ,Wang Y,et al. Principal component and cluster analysis of volatile components in cape jasmine flower from different cultivars at different stages of bloom[J]. Journal of Nuclear Agricultural Sciences,2021,35(7):1601−1608.

    [18] 徐晓俞,李程勋,李爱萍,郑开斌. 栀子鲜花精油挥发性成分分析[J]. 福建农业科技,2020(11):12−19.

    Xu XY,Li CX,Li AP,Zheng KB. Analysis of volatile components in essential oil of Gardenia jasminoides fresh flower[J]. Fujian Agricultural Science and Technology,2020(11):12−19.

    [19] 王文翠,毛伟芳,姚雷. 不同提取温度对栀子花香气成分的影响[J]. 上海交通大学学报(农业科学版),2017,35(2):47−53. doi: 10.3969/J.ISSN.1671-9964.2017.02.008

    Wang WC,Mao WF,Yao L. Effect of different extraction temperature on Gardenia aroma[J]. Journal of Shanghai Jiaotong University (Agricultural Science),2017,35(2):47−53. doi: 10.3969/J.ISSN.1671-9964.2017.02.008

    [20]

    Zhang XF,Klingeman WE,Hu J,Chen F. Emission of volatile chemicals from flowering dogwood (Cornus florida L.) flowers[J]. J Agric Food Chem,2008,56(20):9570−9574. doi: 10.1021/jf801651v

    [21]

    Bergström G,Dobson HEM,Groth I. Spatial fragrance patterns within the flowers of Ranunculus acris (Ranunculaceae)[J]. Plant Syst Evol,1995,195(3-4):221−242. doi: 10.1007/BF00989298

    [22]

    Verdonk JC,de Vos CHR,Verhoeven HA,Haring MA,van Tunen AJ,Schuurink RC. Regulation of floral scent production in petunia revealed by targeted metabolomics[J]. Phytochemistry,2003,62(6):997−1008. doi: 10.1016/S0031-9422(02)00707-0

    [23]

    Du F,Fan JM,Wang T,Wu Y,Grierson D,et al. Identification of differentially expressed genes in flower,leaf and bulb scale of Lilium oriental hybrid 'Sorbonne' and putative control network for scent genes[J]. BMC Genomics,2017,18(1):899. doi: 10.1186/s12864-017-4303-4

    [24]

    Nagegowda DA,Gutensohn M,Wilkerson CG,Dudareva N. Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers[J]. Plant J,2008,55(2):224−239. doi: 10.1111/j.1365-313X.2008.03496.x

    [25]

    Xu ZC,Pu XD,Gao RR,Demurtas OC,Fleck SJ,et al. Tandem gene duplications drive divergent evolution of caffeine and crocin biosynthetic pathways in plants[J]. BMC Biol,2020,18(1):63. doi: 10.1186/s12915-020-00795-3

    [26]

    Xu WJ,Lou Q,Hao LJ,Hu KZ,Cao M,et al. O-methyltransferases catalyze the last step of geniposide biosynthesis in Gardenia jasminoides[J]. Ind Crops Prod,2022,177:114438. doi: 10.1016/j.indcrop.2021.114438

    [27]

    Ye P,Liang SC,Wang XM,Duan LX,Jiang-Yan F,et al. Transcriptome analysis and targeted metabolic profiling for pathway elucidation and identification of a geraniol synthase involved in iridoid biosynthesis from Gardenia jasminoides[J]. Ind Crops Prod,2019,132:48−58. doi: 10.1016/j.indcrop.2019.02.002

    [28]

    Christianson DW. Structural biology and chemistry of the terpenoid cyclases[J]. Chem Rev,2006,106(8):3412−3442. doi: 10.1021/cr050286w

    [29]

    Dudareva N,Martin D,Kish CM,Kolosova N,Gorenstein N,et al. (E)-βa-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon:function and expression of three terpene synthase genes of a new terpene synthase subfamily[J]. Plant Cell,2003,15(5):1227−1241. doi: 10.1105/tpc.011015

    [30]

    Van Schie CCN,Haring MA,Schuurink RC. Tomato linalool synthase is induced in trichomes by jasmonic acid[J]. Plant Mol Biol,2007,64(3):251−263. doi: 10.1007/s11103-007-9149-8

    [31]

    Falara V,Akhtar TA,Nguyen TTH,Spyropoulou EA,Bleeker PM,et al. The tomato terpene synthase gene family[J]. Plant Physiol,2011,157(2):770−789. doi: 10.1104/pp.111.179648

    [32]

    Del Terra L,Lonzarich V,Asquini E,Navarini L,Graziosi G,et al. Functional characterization of three Coffea arabica L. monoterpene synthases:insights into the enzymatic machinery of coffee aroma[J]. Phytochemistry,2013,89:6−14. doi: 10.1016/j.phytochem.2013.01.005

  • 其他相关附件

图(6)  /  表(2)
计量
  • 文章访问数:  549
  • HTML全文浏览量:  42
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-16
  • 录用日期:  2023-05-20
  • 网络出版日期:  2023-03-13
  • 刊出日期:  2024-01-31

目录

    /

    返回文章
    返回