Research progress on mechanisms of plant adaptation to flooding stress
-
摘要:
涝渍胁迫是农业生产中的主要非生物逆境之一。涝渍胁迫包括渍害和涝害,通过低氧胁迫、离子毒害、能量短缺等方面抑制植物的生长发育。为了适应涝渍环境,植物在不同生态条件下形成了多样且复杂的响应和适应机制。本文综述了涝渍胁迫对植物的危害,植物适应涝渍胁迫的形态多样性与主要分子响应机制,讨论了提高植物耐涝渍性的遗传途径,以期为深入研究植物抗涝渍胁迫机制和培育抗涝渍作物提供理论指导。
Abstract:Flooding stress constitutes a major abiotic challenge in agricultural production. Flooding stress, including waterlogging and submergence, inhibits plant growth and development through hypoxia, ion toxicity, and energy deficits. As such, plants have evolved various adaptive responses and mechanisms to counter flooding stress under diverse ecological conditions. This review discusses the detrimental effects of flooding stress on plants, as well as the morphological diversity and molecular mechanisms associated with plant adaptation to flooding stress. The genetic strategies for improving plant resistance to flooding stress are also discussed. This review aims to provide guidance for future research into the mechanisms of plant resistance to flooding stress and flooding stress-resistant crop breeding.
-
花色苷(Anthocyanin),又称花色素苷,是普遍存在于自然界中的一类天然水溶性色素,广泛分布于高等植物各种组织和器官中,如种子、叶、花和果实等,赋予其丰富的色彩。花色苷在结构上由花色素(Anthocyanidin)通过糖苷键与同一个或多个糖基团(阿拉伯糖、葡萄糖、鼠李糖、半乳糖、木糖等)结合形成。在自然环境下,游离状态的花色素极不稳定,糖基化后可转化为稳定的花色苷存在于植物体内[1]。目前自然界中已知的花色素约20余种,以矢车菊花色素、矮牵牛花色素、芍药花色素、飞燕草花色素、锦葵花色素和天竺葵花色素最为常见,其中,矢车菊花色素(花青素)与葡萄糖形成的矢车菊花色素3’-O-葡萄糖苷(即花青苷)为植物界分布最广泛的花色苷[2]。
花色苷作为植物体内重要的次生代谢产物,在植物繁衍、响应生物和非生物逆境中具有重要的生物学功能[3],如防御病菌感染、抵御低温和干旱等外界环境胁迫[4]。在人体健康方面,具有改善血糖平衡、降低血脂和预防心血管疾病等功能[5],近年来已经开展了许多花色苷的人类营养学和生物活性研究[6]。研究发现,花色苷可与MAPK和Akt信号传导相互作用,防止细胞凋亡[7];抑制皮肤表皮中环氧合酶2的表达,降低促炎细胞因子的产生[8];有效预防紫外辐射在哺乳动物皮肤中引发的炎症和癌变[9]。在健康饮食的大背景下,花色苷以其安全性高、天然、几乎无毒副作用、具有潜在医疗价值和营养价值的特点,成为果品健康品质的重要标志之一。因此,研究花色苷积累机制对于改善果实外观品质、提高营养保健价值具有重要意义。
随着花色苷在果实品质和营养保健中的重要性逐渐被认可,有关果实花色苷合成、转运积累及其调控方面的研究受到了广泛关注。目前,植物花色苷生物合成途径已十分清晰,且在不同物种中高度保守。花色苷是类黄酮途径的终产物,由位于内质网膜上的一系列酶催化合成,主要包括查尔酮合成酶(Chalcone synthase,CHS)、查尔酮异构酶(Chalcone isomerase,CHI)、黄烷酮3-羟化酶(Flavanone 3-hydroxylase,F3H)、类黄酮3’-羟化酶(Flavonoid 3’-hydroxylase,F3’H)、类黄酮3’5’-羟化酶(Flavonoid 3’, 5’-hydroxylase,F3’5’H)、二氢黄酮醇4-还原酶(Dihydroflavonol 4-reductase,DFR)、花色素合成酶(Anthocyanidin synthase,ANS)和UDP葡萄糖-类黄酮3-O-葡糖基转移酶(UDP-glucose: flavonoid 3-O-glucosyltransferase,UFGT)[2,10]。花色苷合成相关的结构基因受转录水平上的调控。MYB转录因子是最先被证实参与花色苷合成调控的关键基因,它与bHLH和WD40转录因子形成MBW复合体,协同调控结构基因的转录[11-13]。
1. 花色苷转运模型
花色苷在细胞内质网膜上合成后稳定地储存于液泡中,这一过程依赖于植物体内高效的转运机制[14]。花色苷转运至液泡中储存对植物自身而言有着重要的生物学意义[15],低pH值的液泡条件是花色苷呈现鲜艳色彩的必要先决条件,此外,花色苷作为活性代谢物,液泡隔离可有效减少细胞损伤。花色苷转运过程极大程度地影响其积累,然而其胞内运输机制仍不清晰。目前,关于花色苷转运有3类主要模型,分别为谷胱甘肽S-转移酶(Glutathione S-transferases,GST)、膜转运蛋白(Membrane transporters)以及囊泡运输(Vesicle trafficking)介导的转运(图1)[16-18]。
花色苷主要通过GST、膜转运蛋白(ABC、MATE、BTL-homologue等)以及自噬作用、内质网和高尔基体的囊泡运输系统转运至液泡。ABC:ATP-结合框;BTL-homologue:胆红素易位酶同族体;GST:谷胱甘肽S-转移酶;MATE:多药和毒性化合物外排。Anthocyanins are primarily transported to the vacuole by GST, membrane transporters (e.g., ABC, MATE, BTL-homologue), and vesicle transport system of autophagy, endoplasmic reticulum, and Golgi apparatus. ABC: ATP-binding cassette; BTL-homologue: Bilitranslocase-homologue; GST: Glutathione S-transferase; MATE: Multidrug and toxic compound extrusion.1.1 GST介导的花色苷转运机制
谷胱甘肽S-转移酶,即谷胱甘肽转移酶,是一类广泛存在于生物体中的酶类,可催化还原型谷胱甘肽与代谢产物上电子亲和度较高的官能团发生结合反应,形成较为稳定的结构,从而起到解毒和代谢作用[19]。GST对于维持细胞内外环境平衡、促进化学物质代谢和区域性隔离具有重要的生理意义。此外,GST也可作为非酶配体蛋白发挥其功能。在高等植物中,GST为一类具有多成员的超家族,包括Phi、TAU、THETA、ZETA、LAMBDA、DHAR和TCHQD等7个亚家族。由于各亚家族成员在底物特异性和转运靶向上存在差异,使其在植物体内具有丰富的功能,如参与类黄酮代谢及生物和非生物胁迫响应等[20-22]。
花色苷被认为是GST关键内源底物之一[23]。大量GST突变体,如玉米(Zea mays L.)bz2(Bronze 2)[24]、矮牵牛(Petunia hybrida (Hook.) E. Vilm.)an9(Anthocyanin 9)[25, 26]、康乃馨(Dianthus caryophyllus L.)fl3(Flavonoids 3)[27]和拟南芥(Arabidopsis thaliana (L.) Heynh.)tt19(Transparent testa 19)[28]等,均呈现出花色苷含量显著降低的表型,说明GST在花色苷积累中有着至关重要的作用。参与花色苷转运的GSTs主要来源于Phi亚家族,已在紫苏(Perilla frutescens (L.) Britt.)[29]、仙客来(Cyclamen persicum Mill.)[30]、茶(Camellia sinensis (L.) Kuntze)[31]和菊花(Chrysanthemum morifolium Ramat.)[32]等多种植物中相继被分离与鉴定。曾有人提出GST通过其酶活性介导花色苷转运过程的假说[33],但目前仍未发现关于GST催化亲核性的谷胱甘肽与花色苷发生反应的直接证据。近年来的研究表明,GST在花色苷转运过程中可能仅扮演着运输媒介,通过直接与花色苷物理结合形成谷胱甘肽交联复合物,促进它们从细胞质向液泡传递[26, 34]。
果树中参与花色苷转运的GST基因及其相应的转录调控机制逐渐被揭示。LcGST4参与了荔枝(Litchi chinensis Sonn.)的花色苷积累,并响应外界光照和ABA的调控[35]。苹果(Malus × domestica Borkh.)果实发育过程中MdGSTF6的表达水平与花色苷含量呈显著正相关[36]。类似的研究在中华猕猴桃(Actinidia chinensis Planch.)、梨(Pyrus pyrifolia (Burm. f.) Nakai)和杨梅(Morella rubra Lour.)中也有报道[37-39]。除果实着色外,GST也参与了其他器官中花色苷的积累。草莓(Fragaria × ananassa Duch.)RAP编码的谷胱甘肽转移酶蛋白,在叶片和茎段着色中起关键作用[40, 41]。PpGST1先后被发现与桃(Prunus persica (L.) Batsch)花色形成和果实着色密切相关,参与花色苷从内质网膜上转出的过程[42, 43]。GST在不同物种中存在功能分化,一些GST具有较强的底物特异性,只特定参与花色苷积累,而有些GST除了介导花色苷转运外,还参与其他次生代谢物的转运[44]。例如,葡萄(Vitis vinifera L.)中VviGST3特异性介导原花青素的积累,而VviGST4同时参与花色苷和原花青素的转运[45]。在多种植物中均发现,花色苷生物合成过程中关键MYB转录因子可通过调控GST的表达水平参与花色苷转运,从而影响其花色苷的积累[46, 47]。上述研究为GST介导花色苷的积累提供了重要生物学证据,但关于其作为配体蛋白参与花色苷转运的作用机制,以及花色苷与GST结合后如何跨膜运输转至液泡内的分子机制尚不清晰。此外,除已报道的参与花色苷转运的主要GST成员,是否存在其他功能冗余的GST成员?参与花色苷转运的GST基因是否具备转运其他类黄酮物质的功能?GST对不同花色苷单体是否表现出底物特异性和转运活性差异?这些问题仍有待解决。相关研究的深入开展将有助于更加全面地了解GST在植物花色苷转运中的作用。
1.2 膜转运蛋白介导的花色苷转运机制
越来越多的遗传、生物化学和分子生物学证据表明,ATP-结合框(ATP-binding cassette,ABC)及多药和毒性化合物外排(Multidrug and toxic compound extrusion,MATE)两类膜转运蛋白参与花色苷的跨膜转运过程[48]。
1.2.1 MRP型ABC转运蛋白
ABC是一类广泛存在于真核生物和原核生物中的转运蛋白,可通过ATP水解产生的能量来驱动底物跨膜运输,是目前已知数量和功能最丰富的一类家族。ABC蛋白通过转运不同底物而参与植物体的一系列生理过程,如次生代谢产物与激素转运、脂质代谢、重金属解毒和器官形成与发育等。
植物体内ABC转运蛋白包含8大亚家族(ABCA-ABCG和ABCI),其中ABCC亚家族即多药耐药相关蛋白(Multidrug resistance-associated protein,MRP)被证实在花色苷跨膜转运中发挥重要作用,相关工作在拟南芥、水稻(Oryza sativa L.)、玉米、葡萄及桃中均已有报道。拟南芥AtMRP1和AtMRP2与有毒异源和内源性物质(如除草剂和花色苷)的含量密切相关[49, 50]。玉米ZmMRP3定位于液泡膜,其表达水平与花色苷合成基因具有一定的相关性,敲除ZmMRP3后的突变体与bz2有着相似的表型,呈现花色苷转运至液泡过程受阻而保留在细胞质中的现象,但该突变体糊粉层组织表型未受到影响。ZmMrp3同源基因ZmMrp4可能在糊粉层花色苷的积累中起到了关键作用[51]。在不同品种桃果实中,PpABCC1的转录水平与花色苷含量显著正相关,过表达PpABCC1可促进果肉和果皮着色[52]。ABCC以花色苷单体为特异转运底物仅在葡萄和拟南芥中有直接的证据:体外转运实验表明,VvABCC1靶向转运葡萄中锦葵色素3’-O-葡萄糖苷,且这一过程依赖谷胱甘肽[53];拟南芥中AtABCC2特异参与矢车菊花色素3’-O-葡萄糖苷的积累[54]。
1.2.2 MATE转运蛋白
MATE是广泛存在于各种生物体中的一种跨膜转运蛋白,其作用机制是以膜两侧质子浓度梯度作为驱动力介导底物的跨膜转运[55]。MATE转运蛋白通过识别并结合不同大小、结构和化学性质的底物,选择性地对其进行跨膜运输。MATE蛋白在植物中执行着相对保守、基础的转运功能,在拟南芥和葡萄中已有报道其介导花色苷的积累。TT12(TRANSPARENT TESTA 12)编码的MATE转运蛋白定位于液泡膜上,作为质子逆向转运蛋白,调节拟南芥种皮中原花青素和花色苷向液泡内的跨膜转运过程。tt12突变体中积累的花色苷含量显著低于野生型,且种皮呈浅棕色或透明色[56, 57]。FFT编码的MATE转运蛋白参与拟南芥未成熟种子中的花色苷积累[58]。葡萄中AM1和AM3特异性介导酰基花色苷的跨膜转运[59]。多个MATE转运蛋白对酰基花色苷表现出特异的偏好性或较高的转运活性,但有关花色苷修饰(如酰基化和糖基化)对MATE蛋白转运活性的影响机制还需要进一步探究。研究表明,除在花色苷转运中起重要作用,MATE还参与其他类黄酮物质的积累过程。在蒺藜苜蓿(Medicago truncatula Gaertn.)中,表儿茶素3’-O-葡萄糖苷和酰化黄酮醇分别为MtMATE1和MtMATE2的靶向转运底物[60, 61];VvMATE1和VvMATE2参与葡萄果实发育过程中原花青素的积累[62]。草莓中TT12的同源基因FaTT12-1不参与花色苷的转运,仅特异在原花青素的跨膜转运过程发挥重要作用,并能响应外界红光的调控[63]。
膜转运蛋白在花色苷跨膜转运过程中发挥着关键作用,但相关的机制研究仍较为缺乏,关于其底物识别与结合机制、跨膜方式、水解机制等转运机理知之甚少。有研究推测,膜转运蛋白与GST协同参与花色苷跨膜运输至液泡的过程,GST可能作为载体蛋白与花色苷共价结合,形成谷胱甘肽交联复合物以标记花色苷,并将其传递至液泡膜上,使其被液泡膜上的膜转运蛋白识别,进而实现花色苷的跨膜转运[55]。目前已经初步鉴别了多种在植物中参与花色苷转运的膜转运蛋白。除上述ABC和MATE两类蛋白外,康乃馨和葡萄中还发现了与花色苷积累水平显著相关的胆红素易位酶同族体BTL-homologue(Bilitranslocase-homologue)[17, 23],但目前仍缺乏其介导花色苷跨膜转运的直接生物学证据。不同类型膜转运蛋白在介导花色苷转运过程中的相互关系,如是否存在底物竞争关系、协作和整合效应等,尚需深入探讨。
1.3 囊泡运输介导的花色苷转运机制
囊泡运输是一种高效、稳定的胞内底物转运方式,主要包含形成、运输和融合3个步骤。囊泡运输是花色苷从细胞质转至液泡中的另一种转运模型,有关囊泡运输介导的花色苷转运少有报道,该模型的提出源于显微镜观察结果[64]。花色苷被报道可通过自噬作用(Autophagy)、内质网和高尔基体的囊泡运输系统转运至液泡(图1),这些囊泡运输网络之间相互独立[55]。花色苷合成后,在细胞质中聚集形成有膜包裹的花色苷泡状体(Anthocyanoplast),该泡状体逐渐融合,继而被前液泡组成体(Pre-vacuolar compartments)所包裹,并运输至中央大液泡,最终在液泡中形成不规则、动态的花色苷液泡内涵体(Anthocyanic vacuolar inclusions,AVIs)[65]。AVIs的形成不仅可使花瓣颜色加深及出现蓝移现象,而且能优先选择聚集酰基化花色苷[66-68]。对诱导大量产生花色苷的拟南芥表皮进行镜检观察,发现了花色苷泡状体和液泡内涵体,类似的结构在葡萄中也存在[69, 70],这一现象为囊泡运输介导花色苷的积累提供了理论支撑。在拟南芥未成熟种子和葡萄毛状根中进一步观察到了包含花色苷和原花青素的囊泡从内质网向中央液泡动态移动的过程,证实了类黄酮物质也可通过囊泡运输从内质网转出至液泡[71, 72]。拟南芥囊泡运输因子GFS9(GREEN FLUORESCENTSEED9)被认为是液泡内类黄酮物质积累的关键因子[73]。尽管已经发现了多种囊泡运输方式,但有关囊泡参与花色苷积累过程的分子和生化证据仍十分缺乏。
2. 小结与展望
色泽是影响果实外观和营养品质性状的重要指标,花色苷作为果实核心色素组分,研究其积累机制对完善花色苷从合成到积累这一完整代谢通路的理论具有重要意义。当前人们对果实中花色苷含量、分布和组成、生物合成的了解日益清晰,在花色苷合成及转录调控分子机制等方面已取得一系列成果,并对后续的转运过程开展了研究。解析胞内花色苷实时传递和跨膜动态运输已成为花色苷研究的难点。花色苷属于类黄酮合成途径的分支产物之一,与原花青素和黄酮醇等物质在生物合成上密切关联。鉴于其他类黄酮物质与花色苷属于同一代谢途径的不同产物,且其分子结构具有相似性,它们是否共享相似的转运机制及载体蛋白也是值得深思的问题。虽然还缺乏对类黄酮物质转运机制的系统研究,但深入理解花色苷转运可为进一步解析类黄酮物质在果实中的积累机制奠定基础。
为适应复杂多变的外界环境,植物体内转运机制具有多样化、高效性和冗余性等特点,不同转运机制在底物特异性、定位及转运效率上各异[18],而在果实上有关多种转运模型协调转运花色苷的研究较为缺乏。近年来,GST、膜转运蛋白以及囊泡运输介导的果实花色苷转运相关研究已取得了初步进展,但不同转运模型的分子生物学证据仍不充足。以下方面的研究亟待进一步深入开展,以全面明晰果实花色苷的转运机制:(1)不同转运蛋白的转运活性差异及其底物特异性,花色苷修饰差异是否会影响其跨膜转运效率;(2)转运蛋白响应内在激素和外界环境因子参与花色苷积累的分子机制,以及表观调控对花色苷转运的影响;(3)GST如何与花色苷结合并促发其转运,GST-花色苷复合物如何在膜转运蛋白的协助下实现跨膜运输;(4)GST与囊泡动态移动间的关系,GST-花色苷复合物是否参与花色苷装载至囊泡及囊泡裂变和动态融合的过程;(5)多种转运机制如何分工协同参与胞内花色苷的转运过程。
-
图 1 植物响应和适应涝渍胁迫的调控网络
涝渍胁迫诱导植物体内产生乙烯、低氧、NO、能量短缺和ROS等信号,以帮助植物适应胁迫下的生长。不同背景颜色表示不同的信号响应通路。涝渍胁迫导致淹水组织迅速积累乙烯,乙烯积累导致乙烯受体和乙烯负调节器CRT1(Constitutive triple response 1)复合物失去对乙烯正调节器EIN2(Ethylene-insensitive 2)的抑制作用,从而诱导转录因子EIN3(Ethylene-insensitive 3)和EIL(EIN3-LIKE)的积累,进而促进下游靶基因的表达。涝渍引起缺氧状态导致有氧呼吸受到抑制,从而导致淹水组织能量供应不足。Ca2 + -CBL(Calcineurin B-like protein)-CIPK15(Calcineurin B-like protein-interacting protein kinase 15)-SnRK1(Suc-non-fermenting 1-related protein kinase 1)模块以及OsTPP7(Trehalose-6-phosphate phosphatase 7)等参与能量感知和低能源状态下糖类利用效率,增加在涝渍胁迫下的能量供应,从而促进植物在涝渍胁迫下的生长。同时,植物能感知缺氧信号,在生理和分子水平产生适应性响应。正常生长状态下,Ⅶ亚族乙烯响应因子(Ethylene response factor Ⅶ,ERF-Ⅶ)蛋白与ACBPs(Acyl-CoA-binding proteins)在质膜上紧密结合,涝渍胁迫发生时蛋白转移到细胞核中行使转录因子功能,促进下游靶基因的表达。同时,涝渍缺氧状态会抑制NERP(N-end rule pathway)蛋白降解反应,从而提高ERF-Ⅶs蛋白的稳定性,进一步促进其行使转录激活功能。拟南芥中MPK3/MPK6、SR1(Submergence resistant 1)、WRKY12、WRKY33参与到了ERF-Ⅶs对靶基因的转录激活过程中。低氧条件下,线粒体电子传递链上生成NO,通过对蛋白质翻译后修饰,例如调节ERF-Ⅶs的稳定性,参与涝渍胁迫响应。而拟南芥中ERF-Ⅶs能够诱导血红蛋白编码基因HB1(Hemoglobin 1)的表达,促进植物对胞内NO的清除,维持NO的稳态。低浓度的活性氧(ROS)作为信号分子参与胁迫响应,可以通过叶绿体和线粒体中的电子传递链以非酶促的方式产生或者通过RBOHs(Respiratory burst oxidase homolog proteins)以酶促的方式产生。植物体内通过ROS清除酶系统(超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-Px)等)和非酶抗氧化剂(抗坏血酸(AsA)、谷胱甘肽(GSH)、褪黑素(Meltonin)等)能对过多的ROS进行清除。多种调控机制构成复杂的调控网络,促进植物响应和适应涝渍胁迫。
Figure 1. Regulatory network of plant responses and adaptations to flooding stress
Flooding stress induces ethylene production, hypoxia, NO, energy shortage, and ROS in plants to promote growth under flooding stress. Different background colors indicate different signal response pathways. Flooding stress causes the rapid accumulation of ethylene in flooded tissues, resulting in ethylene receptor and ethylene negative regulator CRT1 (Ethylene insensitive 2) complexes to lose their inhibitory effects on ethylene positive regulator EIN2 (Ethylene insensitive 2). Accumulation of transcription factors EIN3 (Ethyleninsensitive 3) and EIL (EIN3-like) by EIN2 promotes the expression of downstream target genes. Hypoxic state of flooding suppresses aerobic respiration, leading to insufficient energy supply to flooded tissues. Ca2 + -CBL (Calcineurin B-like protein)-CIPK15 (Calcineurin B-like protein-interacting protein kinase 15)-SnRK1 (Suc-non-fermenting 1-related protein kinase 1) module and OsTPP7 (Trehalose-6-phosphate phosphatase 7) participate in energy perception and sugar utilization efficiency under low energy states and increase energy supply under flooding stress, thus promoting plant growth under flooding stress. At the same time, plants can sense hypoxic signals and produce adaptive responses at the physiological and molecular levels. Under normal growth conditions, the ethylene response factor Ⅶ (ERF-Ⅶ) protein closely binds to acyl-CoA-binding proteins (ACBPs) on the plasma membrane. Under flooding stress, ERF-Ⅶs are transferred to the nucleus to promote the expression of downstream target genes. At the same time, hypoxia inhibits NERP (N-end rule pathway) protein degradation, thereby improving ERF-Ⅶs protein stability and further promoting its transcriptional activation function. MPK3/MPK6, SR1 (Submergence resistant 1), WRKY12, and WRKY33 in Arabidopsis thaliana are involved in the transcriptional activation of target genes by ERF-Ⅶs. Under hypoxic conditions, NO is produced on the electron transport chain of mitochondria and is involved in the flooding stress response through post-translational modifications to proteins, such as regulating ERF-Ⅶs stability. ERF-Ⅶs can induce hemoglobin coding gene HB1 (Hemoglobin 1) expression, promote intracellular NO clearance, and maintain NO homeostasis in A. thaliana. Low-concentration ROS participate in the stress response as signaling molecules, produced in a non-enzymatic manner via electron transport chain in chloroplasts and mitochondria or enzymatically via respiratory burst homolog proteins (RBOHs). In plants, excessive ROS can be removed by excessive oxygen removal enzymes (superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and glutathione peroxidase (GSH-PX)) and non-enzymatic antioxidants (ascorbate (AsA), glutathione (GSH), and melatonin (Melatonin)). These various regulatory mechanisms constitute a complex regulatory network that promotes plant response and adaptation to flooding stress.
表 1 已验证的植物响应和适应涝渍胁迫的基因
Table 1 Verified genes involved in response and adaptation to flooding stress in plants
基因
Gene物种
Species植株生长适应性表型
Growth adaptive phenotype参考文献
ReferenceSUB1 水稻 Oryza sativa 株高 [37] SK1、SK2 水稻 总节间伸长长度 [38] SnRK1、CIPK15 水稻 株高 [73] OsTPP7 水稻 胚芽鞘长度 [39] LGF1 水稻 最小气室厚度/水下净光合作用 [44] SD1(OsGA20ox2) 水稻 总节间长度 [90] OsCBL10 水稻 胚芽鞘长度 [40] OsGF14h、OsVP1;OsHOX3、OsGA20ox1 水稻 存活率/胚芽鞘长度 [41] OsUGT75A、OsJAZ6;OsJAZ7、OsABI3 水稻 胚芽鞘长度 [42] LSD1、EDS1、PAD4 拟南芥 Arabidopsis thaliana 通气组织形成 [24] RAP2.2 拟南芥 存活率/鲜重 [91] HRE1、HRE2、PRT6;ATE1、ATE2 拟南芥 存活指数/萌发率 [57] RAP2.12 拟南芥 存活率/干重 [58] ACBP3 拟南芥 存活率/干重 [92] GDH2 拟南芥 存活率/损伤指数 [93] SnRK1 拟南芥 坏死叶面积百分比 [87] MYC2、LOX2-S、AOS;JAR1、COI1、VTC1、GSH1 拟南芥 存活率/干重 [79] eIFiso4G1、SnRK1 拟南芥 存活率 [76] RBOHD、ORE1、SAG113 拟南芥 新叶形成速度/失水率/叶绿素含量 [85] ACBP1、ACBP2、LACS2、FAD3 拟南芥 存活率/叶绿素含量 [94] SR1、WRKY33 拟南芥 存活率/干重 [62] WRKY12 拟南芥 存活率/干重 [61] TaERFⅦ.1 小麦 Triticum aestivum 存活率/叶绿素含量/粒重 [59] EREB180 玉米 Zea mays 茎鲜重/根长/不定根数 [60] CmERF5、CmRAP2.3 菊 Chrysanthemum morifolium 叶片黄化率/恢复率 [82] -
[1] Sasidharan R,Bailey-Serres J,Ashikari M,Atwell BJ,Colmer TD,et al. Community recommendations on terminology and procedures used in flooding and low oxygen stress research[J]. New Phytol,2017,214 (4):1403−1407. doi: 10.1111/nph.14519
[2] Setter TL,Waters I. Review of prospects for germplasm improvement for waterlogging tolerance in wheat,barley and oats[J]. Plant Soil,2003,253 (1):1−34. doi: 10.1023/A:1024573305997
[3] Fukao T,Barrera-Figueroa BE,Juntawong P,Peña-Castro JM. Submergence and waterlogging stress in plants:a review highlighting research opportunities and understudied aspects[J]. Front Plant Sci,2019,10:340. doi: 10.3389/fpls.2019.00340
[4] Marschner H. Mechanisms of adaptation of plants to acid soils[J]. Plant Soil,1991,134 (1):1−20. doi: 10.1007/BF00010712
[5] Kirk G. The Biogeochemistry of Submerged Soils[M]. Chichester: Wiley, 2004: 17-44.
[6] Shabala S. Physiological and cellular aspects of phytotoxicity tolerance in plants:The role of membrane transporters and implications for crop breeding for waterlogging tolerance[J]. New Phytol,2011,190 (2):289−298. doi: 10.1111/j.1469-8137.2010.03575.x
[7] Drew MC,Lynch JM. Soil anaerobiosis,microorganism,and root function[J]. Ann Rev Phytopathol,1980,18:37−66. doi: 10.1146/annurev.py.18.090180.000345
[8] Armstrong J,Armstrong W. Rice and Phragmites:effects of organic acids on growth,root permeability,and radial oxygen loss to the rhizosphere[J]. Am J Bot,2001,88 (8):1359−1370. doi: 10.2307/3558443
[9] Gibbs J,Greenway H. Review:mechanisms of anoxia tolerance in plants. I. Growth,survival and anaerobic catabolism[J]. Funct Plant Biol,2003,30 (1):1−47. doi: 10.1071/PP98095
[10] Sasidharan R,Voesenek LACJ. Ethylene-mediated acclimations to flooding stress[J]. Plant Physiol,2015,169 (1):3−12. doi: 10.1104/pp.15.00387
[11] Colmer TD,Greenway H. Ion transport in seminal and adventitious roots of cereals during O2 deficiency[J]. J Exp Bot,2010,62 (1):39−57.
[12] Mommer L,Visser EJW. Underwater photosynthesis in flooded terrestrial plants:a matter of leaf plasticity[J]. Ann Bot,2005,96 (4):581−589. doi: 10.1093/aob/mci212
[13] Peng YJ,Zhou ZX,Tong RG,Hu XY,Du KB. Anatomy and ultrastructure adaptations to soil flooding of two full-sib poplar clones differing in flood-tolerance[J]. Flora,2017,233:90−98. doi: 10.1016/j.flora.2017.05.014
[14] Mommer L,Pons TL,Wolters-Arts M,Venema JH,Visser EJW. Submergence-induced morphological,anatomical,and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance[J]. Plant Physiol,2005,139 (1):497−508. doi: 10.1104/pp.105.064725
[15] Zhou WJ,Lin XQ. Effects of waterlogging at different growth stages on physiological characteristics and seed yield of winter rape (Brassica napus L. )[J]. Field Crops Res,1995,44 (2-3):103−110. doi: 10.1016/0378-4290(95)00075-5
[16] Ren BZ,Zhang JW,Dong ST,Liu P,Zhao B. Effects of waterlogging on leaf mesophyll cell ultrastructure and photosynthetic characteristics of summer maize[J]. PLoS One,2016,11 (9):e0161424. doi: 10.1371/journal.pone.0161424
[17] Jackson MB,Armstrong W. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence[J]. Plant Biol,1999,1 (3):274−287. doi: 10.1111/j.1438-8677.1999.tb00253.x
[18] Yamauchi T,Colmer TD,Pedersen O,Nakazono M. Regulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stress[J]. Plant Physiol,2018,176 (2):1118−1130. doi: 10.1104/pp.17.01157
[19] Takahashi H, Yamauchi T, Colmer TD, Nakazono M. Aerenchyma formation in plants[M]//Van Dongen JT, Licausi F, eds. Low-Oxygen Stress in Plants: Oxygen Sensing and Adaptive Responses to Hypoxia. Vienna: Springer, 2014: 247-265.
[20] Seago JL Jr,Marsh LC,Stevens K J,Soukup A,Votrubova O,et al. A re-examination of the root cortex in wetland flowering plants with respect to aerenchyma[J]. Ann Bot,2005,96 (4):565−579. doi: 10.1093/aob/mci211
[21] Saika H,Okamoto M,Miyoshi K,Kushiro T,Shinoda S,et al. Ethylene promotes submergence-induced expression of OsABA8ox1,a gene that encodes ABA 8′-hydroxylase in rice[J]. Plant Cell Physiol,2007,48 (2):287−298.
[22] Nishiuchi S,Yamauchi T,Takahashi H,Kotula L,Nakazono M. Mechanisms for coping with submergence and waterlogging in rice[J]. Rice,2012,5 (1):2. doi: 10.1186/1939-8433-5-2
[23] Zhang XC,Fan Y,Shabala S,Koutoulis A,Shabala L,et al. A new major-effect QTL for waterlogging tolerance in wild barley (H. spontaneum)[J]. Theor Appl Genet,2017,130 (8):1559−1568. doi: 10.1007/s00122-017-2910-8
[24] Bailey-Serres J,Voesenek LACJ. Flooding stress:a cclimations and genetic diversity[J]. Annu Rev Plant Biol,2008,59:313−339. doi: 10.1146/annurev.arplant.59.032607.092752
[25] Mühlenbock P,Plaszczyca M,Plaszczyca M,Mellerowicz E,Karpinski S. Lysigenous aerenchyma formation in Arabidopsis is controlled by LESION SIMULATING DISEASE1[J]. Plant Cell,2007,19 (11):3819−3830. doi: 10.1105/tpc.106.048843
[26] Sauter M. Root responses to flooding[J]. Curr Opin Plant Biol,2013,16 (3):282−286. doi: 10.1016/j.pbi.2013.03.013
[27] Steffens B,Kovalev A,Gorb SN,Sauter M. Emerging roots alter epidermal cell fate through mechanical and reactive oxygen species signaling[J]. Plant Cell,2012,24 (8):3296−3306. doi: 10.1105/tpc.112.101790
[28] Visser E,Cohen JD,Barendse G,Blom C,Voesenek L. An ethylene-mediated increase in sensitivity to auxin induces adventitious root formation in flooded Rumex palustris Sm[J]. Plant Physiol,1996,112 (4):1687−1692. doi: 10.1104/pp.112.4.1687
[29] Vidoz ML,Loreti E,Mensuali A,Alpi A,Perata P. Hormonal interplay during adventitious root formation in flooded tomato plants[J]. Plant J,2010,63 (4):551−562. doi: 10.1111/j.1365-313X.2010.04262.x
[30] Colmer TD. Long-distance transport of gases in plants:a perspective on internal aeration and radial oxygen loss from roots[J]. Plant,Cell Environ,2003,26 (1):17−36.
[31] Watanabe K,Takahashi H,Sato S,Nishiuchi S,Omori F,et al. A major locus involved in the formation of the radial oxygen loss barrier in adventitious roots of teosinte Zea nicaraguensis is located on the short-arm of chromosome 3[J]. Plant Cell Environ,2017,40 (2):304−316. doi: 10.1111/pce.12849
[32] Armstrong W,Cousins D,Armstrong J,Turner DW,Beckett PM. Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere:a microelectrode and modelling study with Phragmites australis[J]. Ann Bot,2000,86 (3):687−703. doi: 10.1006/anbo.2000.1236
[33] Armstrong J,Armstrong W. Rice:sulfide-induced barriers to root radial oxygen loss,Fe2 + and water uptake,and lateral root emergence[J]. Ann Bot,2005,96 (4):625−638. doi: 10.1093/aob/mci215
[34] Kotula L,Ranathunge K,Schreiber L,Steudle E. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L. ) grown in aerated or deoxygenated solution[J]. J Exp Bot,2009,60 (7):2155−2167. doi: 10.1093/jxb/erp089
[35] Shiono K,Ogawa S,Yamazaki S,Isoda H,Fujimura T,et al. Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths[J]. Ann Bot,2011,107 (1):89−99. doi: 10.1093/aob/mcq221
[36] Shiono K,Yamauchi T,Yamazaki S,Mohanty B,Malik AI,et al. Microarray analysis of laser-microdissected tissues indicates the biosynthesis of suberin in the outer part of roots during formation of a barrier to radial oxygen loss in rice (Oryza sativa)[J]. J Exp Bot,2014,65 (17):4795−4806. doi: 10.1093/jxb/eru235
[37] Xu KN,Xu X,Fukao T,Canlas P,Maghirang-Rodriguez R,et al. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice[J]. Nature,2006,442 (7103):705−708. doi: 10.1038/nature04920
[38] Hattori Y,Nagai K,Furukawa S,Song XJ,Kawano R,et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water[J]. Nature,2009,460 (7258):1026−1030. doi: 10.1038/nature08258
[39] Kretzschmar T,Pelayo MAF,Trijatmiko KR,Gabunada LFM,Alam R,et al. A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice[J]. Nat Plants,2015,1 (9):15124. doi: 10.1038/nplants.2015.124
[40] Ye NH,Wang FZ,Shi L,Chen MX,Cao YY,et al. Natural variation in the promoter of rice calcineurin B-like protein10 (OsCBL10) affects flooding tolerance during seed germination among rice subspecies[J]. Plant J,2018,94 (4):612−625. doi: 10.1111/tpj.13881
[41] Sun J,Zhang GC,Cui ZB,Kong XM,Yu XY,et al. Regain flood adaptation in rice through a 14-3-3 protein OsGF14h[J]. Nat Commun,2022,13 (1):5664. doi: 10.1038/s41467-022-33320-x
[42] He YQ,Sun S,Zhao J,Huang ZB,Peng LL,et al. UDP-glucosyltransferase OsUGT75A promotes submergence tolerance during rice seed germination[J]. Nat Commun,2023,14 (1):2296. doi: 10.1038/s41467-023-38085-5
[43] Verboven P,Pedersen O,Ho QT,Nicolai BM,Colmer TD. The mechanism of improved aeration due to gas films on leaves of submerged rice[J]. Plant,Cell Environ,2014,37 (10):2433−2452.
[44] Kurokawa Y,Nagai K,Huan PD,Shimazaki K,Qu HQ,et al. Rice leaf hydrophobicity and gas films are conferred by a wax synthesis gene (LGF1) and contribute to flood tolerance[J]. New Phytol,2018,218 (4):1558−1569. doi: 10.1111/nph.15070
[45] Bailey-Serres J,Lee SC,Brinton E. Waterproofing crops:effective flooding survival strategies[J]. Plant Physiol,2012,160 (4):1698−1709. doi: 10.1104/pp.112.208173
[46] Hebelstrup KH,van Zanten M,Mandon J,Voesenek LACJ,Harren FJM,et al. Haemoglobin modulates NO emission and hyponasty under hypoxia-related stress in Arabidopsis thaliana[J]. J Exp Bot,2012,63 (15):5581−5591. doi: 10.1093/jxb/ers210
[47] Colmer TD,Voesenek LACJ. Flooding tolerance:Suites of plant traits in variable environments[J]. Funct Plant Biol,2009,36 (8):665−681. doi: 10.1071/FP09144
[48] Sasidharan R,Hartman S,Liu ZG,Martopawiro S,Sajeev N,et al. Signal dynamics and interactions during flooding stress[J]. Plant Physiol,2018,176 (2):1106−1117. doi: 10.1104/pp.17.01232
[49] Van der Straeten D,Zhou ZY,Prinsen E,van Onckelen HA,van Montagu MC. A comparative molecular-physiological study of submergence response in lowland and deepwater rice[J]. Plant Physiol,2001,125 (2):955−968. doi: 10.1104/pp.125.2.955
[50] Lee SC,Mustroph A,Sasidharan R,Vashisht D,Pedersen O,et al. Molecular characterization of the submergence response of the Arabidopsis thaliana ecotype Columbia[J]. New Phytol,2011,190 (2):457−471. doi: 10.1111/j.1469-8137.2010.03590.x
[51] Van Veen H,Mustroph A,Barding GA,Vergeer-van Eijk M,Welschen-Evertman RAM,et al. Two Rumex species from contrasting hydrological niches regulate flooding tolerance through distinct mechanisms[J]. Plant Cell,2013,25 (11):4691−4707. doi: 10.1105/tpc.113.119016
[52] Kendrick MD,Chang CR. Ethylene signaling:new levels of complexity and regulation[J]. Curr Opin Plant Biol,2008,11 (5):479−485. doi: 10.1016/j.pbi.2008.06.011
[53] Stepanova AN,Alonso JM. Ethylene signaling and response:where different regulatory modules meet[J]. Curr Opin Plant Biol,2009,12 (5):548−555. doi: 10.1016/j.pbi.2009.07.009
[54] Blom CWPM,Voesenek LACJ. Flooding:the survival strategies of plants[J]. Trends Ecol Evol,1996,11 (7):290−295. doi: 10.1016/0169-5347(96)10034-3
[55] Panozzo A,Dal Cortivo C,Ferrari M,Vicelli B,Varotto S,Vamerali T. Morphological changes and expressions of AOX1A,CYP81D8,and putative PFP genes in a large set of commercial maize hybrids under extreme waterlogging[J]. Front Plant Sci,2019,10:62. doi: 10.3389/fpls.2019.00062
[56] Greenway H,Armstrong W,Colmer TD. Conditions leading to high CO2 (>5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism[J]. Ann Bot,2006,98 (1):9−32. doi: 10.1093/aob/mcl076
[57] Gibbs DJ,Lee SC,Md Isa N,Gramuglia S,Fukao T,et al. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants[J]. Nature,2011,479 (7373):415−418. doi: 10.1038/nature10534
[58] Licausi F,Kosmacz M,Weits DA,Giuntoli B,Giorgi FM,et al. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization[J]. Nature,2011,479 (7373):419−422. doi: 10.1038/nature10536
[59] Wei XN,Xu HJ,Rong W,Ye XG,Zhang ZY. Constitutive expression of a stabilized transcription factor group Ⅶ ethylene response factor enhances waterlogging tolerance in wheat without penalizing grain yield[J]. Plant,Cell Environ,2019,42 (5):1471−1485.
[60] Yu F,Liang K,Fang T,Zhao HL,Han XS,et al. A group Ⅶ ethylene response factor gene,ZmEREB180,coordinates waterlogging tolerance in maize seedlings[J]. Plant Biotechnol J,2019,17 (12):2286−2298. doi: 10.1111/pbi.13140
[61] Tang H,Bi H,Liu B,Lou SL,Song Y,et al. WRKY33 interacts with WRKY12 protein to up-regulate RAP2.2 during submergence induced hypoxia response in Arabidopsis thaliana[J]. New Phytol,2021,229 (1):106−125. doi: 10.1111/nph.17020
[62] Liu B,Jiang YZ,Tang H,Tong SF,Lou SL,et al. The ubiquitin E3 ligase SR1 modulates the submergence response by degrading phosphorylated WRKY33 in Arabidopsis[J]. Plant Cell,2021,33 (5):1771−1789. doi: 10.1093/plcell/koab062
[63] Schmitz AJ,Folsom JJ,Jikamaru Y,Ronald P,Walia H. SUB1A-mediated submergence tolerance response in rice involves differential regulation of the brassinosteroid pathway[J]. New Phytol,2013,198 (4):1060−1070. doi: 10.1111/nph.12202
[64] Xie ZL,Nolan TM,Jiang H,Yin YH. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis[J]. Front Plant Sci,2019,10:228. doi: 10.3389/fpls.2019.00228
[65] Uchida A,Jagendorf AT,Hibino T,Takabe T,Takabe T. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice[J]. Plant Sci,2002,163 (3):515−523. doi: 10.1016/S0168-9452(02)00159-0
[66] Laspina NV,Groppa MD,Tomaro ML,Benavides MP. Nitric oxide protects sunflower leaves against Cd-induced oxidative stress[J]. Plant Sci,2005,169 (2):323−330. doi: 10.1016/j.plantsci.2005.02.007
[67] Mugnai S,Azzarello E,Baluška F,Mancuso S. Local root apex hypoxia induces NO-mediated hypoxic acclimation of the entire root[J]. Plant Cell Physiol,2012,53 (5):912−920. doi: 10.1093/pcp/pcs034
[68] Peng RY,Bian ZY,Zhou LN,Cheng W,Hai N,et al. Hydrogen sulfide enhances nitric oxide-induced tolerance of hypoxia in maize (Zea mays L. )[J]. Plant Cell Rep,2016,35 (11):2325−2340. doi: 10.1007/s00299-016-2037-4
[69] Dordas C,Rivoal J,Hill RD. Plant haemoglobins,nitric oxide and hypoxic stress[J]. Ann Bot,2003,91 (2):173−178. doi: 10.1093/aob/mcf115
[70] Planchet E,Jagadis Gupta K,Sonoda M,Kaiser WM. Nitric oxide emission from tobacco leaves and cell suspensions:rate limiting factors and evidence for the involvement of mitochondrial electron transport[J]. Plant J,2005,41 (5):732−743. doi: 10.1111/j.1365-313X.2005.02335.x
[71] Drew MC. Oxygen deficiency and root metabolism:injury and acclimation under hypoxia and anoxia[J]. Annu Rev Plant Biol,1997,48:223−250. doi: 10.1146/annurev.arplant.48.1.223
[72] Bologa KL,Fernie AR,Leisse A,Ehlers Loureiro M,Geigenberger P. A bypass of sucrose synthase leads to low internal oxygen and impaired metabolic performance in growing potato tubers[J]. Plant Physiol,2003,132 (4):2058−2072. doi: 10.1104/pp.103.022236
[73] Lee KW,Chen PW,Lu CA,Chen S,Ho THD,et al. Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding[J]. Sci Signal,2009,2 (91):ra61.
[74] Baena-González E. Energy signaling in the regulation of gene expression during stress[J]. Mol Plant,2010,3 (2):300−313. doi: 10.1093/mp/ssp113
[75] Cho YH,Hong JW,Kim EC,Yoo SD. Regulatory functions of SnRK1 in stress-responsive gene expression and in plant growth and development[J]. Plant Physiol,2012,158 (4):1955−1964. doi: 10.1104/pp.111.189829
[76] Cho HY,Lu MYJ,Shih MC. The SnRK1-eIFiso4G1 signaling relay regulates the translation of specific mRNAs in Arabidopsis under submergence[J]. New Phytol,2019,222 (1):366−381. doi: 10.1111/nph.15589
[77] Møller IM. Plant mitochondria and oxidative stress:electron transport,NADPH turnover,and metabolism of reactive oxygen species[J]. Annu Rev Plant Biol,2001,52:561−591. doi: 10.1146/annurev.arplant.52.1.561
[78] Mignolet-Spruyt L,Xu EJ,Idänheimo N,Hoeberichts FA,Mühlenbock P,et al. Spreading the news:Subcellular and organellar reactive oxygen species production and signalling[J]. J Exp Bot,2016,67 (13):3831−3844. doi: 10.1093/jxb/erw080
[79] Yuan LB,Dai YS,Xie LJ,Yu LJ,Zhou Y,et al. Jasmonate regulates plant responses to postsubmergence reoxygenation through transcriptional activation of antioxidant synthesis[J]. Plant Physiol,2017,173 (3):1864−1880. doi: 10.1104/pp.16.01803
[80] Hossain Z,López-Climent MF,Arbona V,Pérez-Clemente RM,Gómez-Cadenas A. Modulation of the antioxidant system in citrus under waterlogging and subsequent drainage[J]. J Plant Physiol,2009,166 (13):1391−1404. doi: 10.1016/j.jplph.2009.02.012
[81] Steffens B,Steffen-Heins A,Sauter M. Reactive oxygen species mediate growth and death in submerged plants[J]. Front Plant Sci,2013,4:179.
[82] Li CW,Su JS,Zhao N,Lou L,Ou XL,et al. CmERF5-CmRAP2.3 transcriptional cascade positively regulates waterlogging tolerance in Chrysanthemum morifolium[J]. Plant Biotechnol J,2023,21 (2):270−282. doi: 10.1111/pbi.13940
[83] Foyer CH,Noctor G. Ascorbate and glutathione:the heart of the redox hub[J]. Plant Physiol,2011,155 (1):2−18. doi: 10.1104/pp.110.167569
[84] Ushimaru T,Shibasaka M,Tsuji H. Development of the O2−-detoxification system during adaptation to air of submerged rice seedlings[J]. Plant Cell Physiol,1992,33 (8):1065−1071.
[85] Yeung E,van Veen H,Vashisht D,Sobral Paiva AL,Hummel M,et al. A stress recovery signaling network for enhanced flooding tolerance in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA,2018,115 (26):E6085−E6094.
[86] Zheng XD,Zhou JZ,Tan DX,Wang N,Wang L,et al. Melatonin improves waterlogging tolerance of Malus baccata (Linn. ) Borkh. Seedlings by maintaining aerobic respiration,photosynthesis and ROS migration[J]. Front Plant Sci,2017,8:483.
[87] Cho HY,Wen TN,Wang YT,Shih MC. Quantitative phosphoproteomics of protein kinase SnRK1 regulated protein phosphorylation in Arabidopsis under submergence[J]. J Exp Bot,2016,67 (9):2745−2760. doi: 10.1093/jxb/erw107
[88] Xu XW,Ji J,Xu Q,Qi XH,Weng YQ,Chen XH. The major-effect quantitative trait locus CsARN6.1 encodes an AAA ATPase domain-containing protein that is associated with waterlogging stress tolerance by promoting adventitious root formation[J]. Plant J,2018,93 (5):917−930. doi: 10.1111/tpj.13819
[89] Mackill DJ,Ismail AM,Singh US,Labios RV,Paris TR. Development and rapid adoption of submergence-tolerant (Sub1) rice varieties[J]. Adv Agron,2012,115:299−352.
[90] Kuroha T,Nagai K,Gamuyao R,Wang DR,Furuta T,et al. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding[J]. Science,2018,361 (6398):181−186. doi: 10.1126/science.aat1577
[91] Hinz M,Wilson IW,Yang J,Buerstenbinder K,Llewellyn D,et al. Arabidopsis RAP2.2:an ethylene response transcription factor that is important for hypoxia survival[J]. Plant Physiol,2010,153 (2):757−772. doi: 10.1104/pp.110.155077
[92] Xie LJ,Yu LJ,Chen QF,Wang FZ,Huang L,et al. Arabidopsis acyl-CoA-binding protein ACBP3 participates in plant response to hypoxia by modulating very-long-chain fatty acid metabolism[J]. Plant J,2015,81 (1):53−67. doi: 10.1111/tpj.12692
[93] Tsai KJ,Lin CY,Ting CY,Shih MC. Ethylene-regulated glutamate dehydrogenase fine-tunes metabolism during anoxia-reoxygenation[J]. Plant Physiol,2016,172 (3):1548−1562. doi: 10.1104/pp.16.00985
[94] Zhou Y,Tan WJ,Xie LJ,Qi H,Yang YC,et al. Polyunsaturated linolenoyl-CoA modulates ERF-Ⅶ-mediated hypoxia signaling in Arabidopsis[J]. J Integr Plant Biol,2020,62 (3):330−348. doi: 10.1111/jipb.12875
-
期刊类型引用(0)
其他类型引用(2)