高级检索+

莲的花色研究进展

胡佳诺, 余梓萌, 张心怡, 张平, 杨平仿

胡佳诺,余梓萌,张心怡,张平,杨平仿. 莲的花色研究进展[J]. 植物科学学报,2023,41(6):800−808. DOI: 10.11913/PSJ.2095-0837.23255
引用本文: 胡佳诺,余梓萌,张心怡,张平,杨平仿. 莲的花色研究进展[J]. 植物科学学报,2023,41(6):800−808. DOI: 10.11913/PSJ.2095-0837.23255
Hu JN,Yu ZM,Zhang XY,Zhang P,Yang PF. Studies on flower pigmentation in Nelumbo nucifera Gaertn.[J]. Plant Science Journal,2023,41(6):800−808. DOI: 10.11913/PSJ.2095-0837.23255
Citation: Hu JN,Yu ZM,Zhang XY,Zhang P,Yang PF. Studies on flower pigmentation in Nelumbo nucifera Gaertn.[J]. Plant Science Journal,2023,41(6):800−808. DOI: 10.11913/PSJ.2095-0837.23255

莲的花色研究进展

基金项目: 武汉市园林局项目(武园林发[2022]16号)。
详细信息
    作者简介:

    胡佳诺(1975-),男,高级工程师,研究方向为荷花种质资源保护与开发利用(E-mail:471976927@qq.com

    通讯作者:

    杨平仿: E-mail: yangpf@hubu.edu.cn

  • 中图分类号: S682.32

Studies on flower pigmentation in Nelumbo nucifera Gaertn.

Funds: This work was supported by a grant from the Wuhan Municipal Landscape Gardens and Forestry Bureau (2022-16)
  • 摘要:

    莲(Nelumbo nucifera Gaertn.)是我国十大名花之一,其观赏价值在很大程度上取决于花色的多样性。植物的花色形成主要由花青素决定,然而,目前对莲花色形成的相关报道较少,其具体分子机制仍有待完善。本文综述了莲花色形成的相关研究,归纳了莲花瓣中主要色素成分的研究进展,并对参与花青素合成通路的结构基因和调控基因进行了梳理与总结,旨在为今后进一步探索莲花色形成的分子机制提供参考,为莲的花色育种提供理论基础。

    Abstract:

    The lotus (Nelumbo nucifera Gaertn.) ranks among the 10 most eminent flowers in China, with its ornamental value primarily attributed to the color diversity of its petals. In general, color formation in plants is largely influenced by anthocyanins. However, few studies have been conducted on the lotus and the molecular mechanisms underlying petal color formation remain incompletely understood. This review focuses on studies related to lotus petal coloration, summarizing advances in our understanding of the pigment constituents, as well as structural and regulatory genes involved in the anthocyanin biosynthesis pathway. The primary objective of this review is to provide a reference for further study of the mechanisms governing lotus color formation and propose directions for future lotus breeding.

  • 花色苷(Anthocyanin),又称花色素苷,是普遍存在于自然界中的一类天然水溶性色素,广泛分布于高等植物各种组织和器官中,如种子、叶、花和果实等,赋予其丰富的色彩。花色苷在结构上由花色素(Anthocyanidin)通过糖苷键与同一个或多个糖基团(阿拉伯糖、葡萄糖、鼠李糖、半乳糖、木糖等)结合形成。在自然环境下,游离状态的花色素极不稳定,糖基化后可转化为稳定的花色苷存在于植物体内[1]。目前自然界中已知的花色素约20余种,以矢车菊花色素、矮牵牛花色素、芍药花色素、飞燕草花色素、锦葵花色素和天竺葵花色素最为常见,其中,矢车菊花色素(花青素)与葡萄糖形成的矢车菊花色素3’-O-葡萄糖苷(即花青苷)为植物界分布最广泛的花色苷[2]

    花色苷作为植物体内重要的次生代谢产物,在植物繁衍、响应生物和非生物逆境中具有重要的生物学功能[3],如防御病菌感染、抵御低温和干旱等外界环境胁迫[4]。在人体健康方面,具有改善血糖平衡、降低血脂和预防心血管疾病等功能[5],近年来已经开展了许多花色苷的人类营养学和生物活性研究[6]。研究发现,花色苷可与MAPK和Akt信号传导相互作用,防止细胞凋亡[7];抑制皮肤表皮中环氧合酶2的表达,降低促炎细胞因子的产生[8];有效预防紫外辐射在哺乳动物皮肤中引发的炎症和癌变[9]。在健康饮食的大背景下,花色苷以其安全性高、天然、几乎无毒副作用、具有潜在医疗价值和营养价值的特点,成为果品健康品质的重要标志之一。因此,研究花色苷积累机制对于改善果实外观品质、提高营养保健价值具有重要意义。

    随着花色苷在果实品质和营养保健中的重要性逐渐被认可,有关果实花色苷合成、转运积累及其调控方面的研究受到了广泛关注。目前,植物花色苷生物合成途径已十分清晰,且在不同物种中高度保守。花色苷是类黄酮途径的终产物,由位于内质网膜上的一系列酶催化合成,主要包括查尔酮合成酶(Chalcone synthase,CHS)、查尔酮异构酶(Chalcone isomerase,CHI)、黄烷酮3-羟化酶(Flavanone 3-hydroxylase,F3H)、类黄酮3’-羟化酶(Flavonoid 3’-hydroxylase,F3’H)、类黄酮3’5’-羟化酶(Flavonoid 3’, 5’-hydroxylase,F3’5’H)、二氢黄酮醇4-还原酶(Dihydroflavonol 4-reductase,DFR)、花色素合成酶(Anthocyanidin synthase,ANS)和UDP葡萄糖-类黄酮3-O-葡糖基转移酶(UDP-glucose: flavonoid 3-O-glucosyltransferase,UFGT)[2,10]。花色苷合成相关的结构基因受转录水平上的调控。MYB转录因子是最先被证实参与花色苷合成调控的关键基因,它与bHLH和WD40转录因子形成MBW复合体,协同调控结构基因的转录[11-13]

    花色苷在细胞内质网膜上合成后稳定地储存于液泡中,这一过程依赖于植物体内高效的转运机制[14]。花色苷转运至液泡中储存对植物自身而言有着重要的生物学意义[15],低pH值的液泡条件是花色苷呈现鲜艳色彩的必要先决条件,此外,花色苷作为活性代谢物,液泡隔离可有效减少细胞损伤。花色苷转运过程极大程度地影响其积累,然而其胞内运输机制仍不清晰。目前,关于花色苷转运有3类主要模型,分别为谷胱甘肽S-转移酶(Glutathione S-transferases,GST)、膜转运蛋白(Membrane transporters)以及囊泡运输(Vesicle trafficking)介导的转运(图1[16-18]

    图  1  花色苷转运机制模型[16-18]
    花色苷主要通过GST、膜转运蛋白(ABC、MATE、BTL-homologue等)以及自噬作用、内质网和高尔基体的囊泡运输系统转运至液泡。ABC:ATP-结合框;BTL-homologue:胆红素易位酶同族体;GST:谷胱甘肽S-转移酶;MATE:多药和毒性化合物外排。
    Figure  1.  Proposed models for vacuolar sequestration of anthocyanins[16-18]
    Anthocyanins are primarily transported to the vacuole by GST, membrane transporters (e.g., ABC, MATE, BTL-homologue), and vesicle transport system of autophagy, endoplasmic reticulum, and Golgi apparatus. ABC: ATP-binding cassette; BTL-homologue: Bilitranslocase-homologue; GST: Glutathione S-transferase; MATE: Multidrug and toxic compound extrusion.

    谷胱甘肽S-转移酶,即谷胱甘肽转移酶,是一类广泛存在于生物体中的酶类,可催化还原型谷胱甘肽与代谢产物上电子亲和度较高的官能团发生结合反应,形成较为稳定的结构,从而起到解毒和代谢作用[19]。GST对于维持细胞内外环境平衡、促进化学物质代谢和区域性隔离具有重要的生理意义。此外,GST也可作为非酶配体蛋白发挥其功能。在高等植物中,GST为一类具有多成员的超家族,包括Phi、TAU、THETA、ZETA、LAMBDA、DHAR和TCHQD等7个亚家族。由于各亚家族成员在底物特异性和转运靶向上存在差异,使其在植物体内具有丰富的功能,如参与类黄酮代谢及生物和非生物胁迫响应等[20-22]

    花色苷被认为是GST关键内源底物之一[23]。大量GST突变体,如玉米(Zea mays L.)bz2(Bronze 2)[24]、矮牵牛(Petunia hybrida (Hook.) E. Vilm.)an9(Anthocyanin 9)[25, 26]、康乃馨(Dianthus caryophyllus L.)fl3(Flavonoids 3)[27]和拟南芥(Arabidopsis thaliana (L.) Heynh.)tt19(Transparent testa 19)[28]等,均呈现出花色苷含量显著降低的表型,说明GST在花色苷积累中有着至关重要的作用。参与花色苷转运的GSTs主要来源于Phi亚家族,已在紫苏(Perilla frutescens (L.) Britt.)[29]、仙客来(Cyclamen persicum Mill.)[30]、茶(Camellia sinensis (L.) Kuntze)[31]和菊花(Chrysanthemum morifolium Ramat.)[32]等多种植物中相继被分离与鉴定。曾有人提出GST通过其酶活性介导花色苷转运过程的假说[33],但目前仍未发现关于GST催化亲核性的谷胱甘肽与花色苷发生反应的直接证据。近年来的研究表明,GST在花色苷转运过程中可能仅扮演着运输媒介,通过直接与花色苷物理结合形成谷胱甘肽交联复合物,促进它们从细胞质向液泡传递[26, 34]

    果树中参与花色苷转运的GST基因及其相应的转录调控机制逐渐被揭示。LcGST4参与了荔枝(Litchi chinensis Sonn.)的花色苷积累,并响应外界光照和ABA的调控[35]。苹果(Malus × domestica Borkh.)果实发育过程中MdGSTF6的表达水平与花色苷含量呈显著正相关[36]。类似的研究在中华猕猴桃(Actinidia chinensis Planch.)、梨(Pyrus pyrifolia (Burm. f.) Nakai)和杨梅(Morella rubra Lour.)中也有报道[37-39]。除果实着色外,GST也参与了其他器官中花色苷的积累。草莓(Fragaria × ananassa Duch.)RAP编码的谷胱甘肽转移酶蛋白,在叶片和茎段着色中起关键作用[40, 41]PpGST1先后被发现与桃(Prunus persica (L.) Batsch)花色形成和果实着色密切相关,参与花色苷从内质网膜上转出的过程[42, 43]。GST在不同物种中存在功能分化,一些GST具有较强的底物特异性,只特定参与花色苷积累,而有些GST除了介导花色苷转运外,还参与其他次生代谢物的转运[44]。例如,葡萄(Vitis vinifera L.)中VviGST3特异性介导原花青素的积累,而VviGST4同时参与花色苷和原花青素的转运[45]。在多种植物中均发现,花色苷生物合成过程中关键MYB转录因子可通过调控GST的表达水平参与花色苷转运,从而影响其花色苷的积累[46, 47]。上述研究为GST介导花色苷的积累提供了重要生物学证据,但关于其作为配体蛋白参与花色苷转运的作用机制,以及花色苷与GST结合后如何跨膜运输转至液泡内的分子机制尚不清晰。此外,除已报道的参与花色苷转运的主要GST成员,是否存在其他功能冗余的GST成员?参与花色苷转运的GST基因是否具备转运其他类黄酮物质的功能?GST对不同花色苷单体是否表现出底物特异性和转运活性差异?这些问题仍有待解决。相关研究的深入开展将有助于更加全面地了解GST在植物花色苷转运中的作用。

    越来越多的遗传、生物化学和分子生物学证据表明,ATP-结合框(ATP-binding cassette,ABC)及多药和毒性化合物外排(Multidrug and toxic compound extrusion,MATE)两类膜转运蛋白参与花色苷的跨膜转运过程[48]

    ABC是一类广泛存在于真核生物和原核生物中的转运蛋白,可通过ATP水解产生的能量来驱动底物跨膜运输,是目前已知数量和功能最丰富的一类家族。ABC蛋白通过转运不同底物而参与植物体的一系列生理过程,如次生代谢产物与激素转运、脂质代谢、重金属解毒和器官形成与发育等。

    植物体内ABC转运蛋白包含8大亚家族(ABCA-ABCG和ABCI),其中ABCC亚家族即多药耐药相关蛋白(Multidrug resistance-associated protein,MRP)被证实在花色苷跨膜转运中发挥重要作用,相关工作在拟南芥、水稻(Oryza sativa L.)、玉米、葡萄及桃中均已有报道。拟南芥AtMRP1AtMRP2与有毒异源和内源性物质(如除草剂和花色苷)的含量密切相关[49, 50]。玉米ZmMRP3定位于液泡膜,其表达水平与花色苷合成基因具有一定的相关性,敲除ZmMRP3后的突变体与bz2有着相似的表型,呈现花色苷转运至液泡过程受阻而保留在细胞质中的现象,但该突变体糊粉层组织表型未受到影响。ZmMrp3同源基因ZmMrp4可能在糊粉层花色苷的积累中起到了关键作用[51]。在不同品种桃果实中,PpABCC1的转录水平与花色苷含量显著正相关,过表达PpABCC1可促进果肉和果皮着色[52]。ABCC以花色苷单体为特异转运底物仅在葡萄和拟南芥中有直接的证据:体外转运实验表明,VvABCC1靶向转运葡萄中锦葵色素3’-O-葡萄糖苷,且这一过程依赖谷胱甘肽[53];拟南芥中AtABCC2特异参与矢车菊花色素3’-O-葡萄糖苷的积累[54]

    MATE是广泛存在于各种生物体中的一种跨膜转运蛋白,其作用机制是以膜两侧质子浓度梯度作为驱动力介导底物的跨膜转运[55]。MATE转运蛋白通过识别并结合不同大小、结构和化学性质的底物,选择性地对其进行跨膜运输。MATE蛋白在植物中执行着相对保守、基础的转运功能,在拟南芥和葡萄中已有报道其介导花色苷的积累。TT12TRANSPARENT TESTA 12)编码的MATE转运蛋白定位于液泡膜上,作为质子逆向转运蛋白,调节拟南芥种皮中原花青素和花色苷向液泡内的跨膜转运过程。tt12突变体中积累的花色苷含量显著低于野生型,且种皮呈浅棕色或透明色[56, 57]FFT编码的MATE转运蛋白参与拟南芥未成熟种子中的花色苷积累[58]。葡萄中AM1和AM3特异性介导酰基花色苷的跨膜转运[59]。多个MATE转运蛋白对酰基花色苷表现出特异的偏好性或较高的转运活性,但有关花色苷修饰(如酰基化和糖基化)对MATE蛋白转运活性的影响机制还需要进一步探究。研究表明,除在花色苷转运中起重要作用,MATE还参与其他类黄酮物质的积累过程。在蒺藜苜蓿(Medicago truncatula Gaertn.)中,表儿茶素3’-O-葡萄糖苷和酰化黄酮醇分别为MtMATE1和MtMATE2的靶向转运底物[60, 61]VvMATE1VvMATE2参与葡萄果实发育过程中原花青素的积累[62]。草莓中TT12的同源基因FaTT12-1不参与花色苷的转运,仅特异在原花青素的跨膜转运过程发挥重要作用,并能响应外界红光的调控[63]

    膜转运蛋白在花色苷跨膜转运过程中发挥着关键作用,但相关的机制研究仍较为缺乏,关于其底物识别与结合机制、跨膜方式、水解机制等转运机理知之甚少。有研究推测,膜转运蛋白与GST协同参与花色苷跨膜运输至液泡的过程,GST可能作为载体蛋白与花色苷共价结合,形成谷胱甘肽交联复合物以标记花色苷,并将其传递至液泡膜上,使其被液泡膜上的膜转运蛋白识别,进而实现花色苷的跨膜转运[55]。目前已经初步鉴别了多种在植物中参与花色苷转运的膜转运蛋白。除上述ABC和MATE两类蛋白外,康乃馨和葡萄中还发现了与花色苷积累水平显著相关的胆红素易位酶同族体BTL-homologue(Bilitranslocase-homologue)[17, 23],但目前仍缺乏其介导花色苷跨膜转运的直接生物学证据。不同类型膜转运蛋白在介导花色苷转运过程中的相互关系,如是否存在底物竞争关系、协作和整合效应等,尚需深入探讨。

    囊泡运输是一种高效、稳定的胞内底物转运方式,主要包含形成、运输和融合3个步骤。囊泡运输是花色苷从细胞质转至液泡中的另一种转运模型,有关囊泡运输介导的花色苷转运少有报道,该模型的提出源于显微镜观察结果[64]。花色苷被报道可通过自噬作用(Autophagy)、内质网和高尔基体的囊泡运输系统转运至液泡(图1),这些囊泡运输网络之间相互独立[55]。花色苷合成后,在细胞质中聚集形成有膜包裹的花色苷泡状体(Anthocyanoplast),该泡状体逐渐融合,继而被前液泡组成体(Pre-vacuolar compartments)所包裹,并运输至中央大液泡,最终在液泡中形成不规则、动态的花色苷液泡内涵体(Anthocyanic vacuolar inclusions,AVIs)[65]。AVIs的形成不仅可使花瓣颜色加深及出现蓝移现象,而且能优先选择聚集酰基化花色苷[66-68]。对诱导大量产生花色苷的拟南芥表皮进行镜检观察,发现了花色苷泡状体和液泡内涵体,类似的结构在葡萄中也存在[69, 70],这一现象为囊泡运输介导花色苷的积累提供了理论支撑。在拟南芥未成熟种子和葡萄毛状根中进一步观察到了包含花色苷和原花青素的囊泡从内质网向中央液泡动态移动的过程,证实了类黄酮物质也可通过囊泡运输从内质网转出至液泡[71, 72]。拟南芥囊泡运输因子GFS9GREEN FLUORESCENTSEED9)被认为是液泡内类黄酮物质积累的关键因子[73]。尽管已经发现了多种囊泡运输方式,但有关囊泡参与花色苷积累过程的分子和生化证据仍十分缺乏。

    色泽是影响果实外观和营养品质性状的重要指标,花色苷作为果实核心色素组分,研究其积累机制对完善花色苷从合成到积累这一完整代谢通路的理论具有重要意义。当前人们对果实中花色苷含量、分布和组成、生物合成的了解日益清晰,在花色苷合成及转录调控分子机制等方面已取得一系列成果,并对后续的转运过程开展了研究。解析胞内花色苷实时传递和跨膜动态运输已成为花色苷研究的难点。花色苷属于类黄酮合成途径的分支产物之一,与原花青素和黄酮醇等物质在生物合成上密切关联。鉴于其他类黄酮物质与花色苷属于同一代谢途径的不同产物,且其分子结构具有相似性,它们是否共享相似的转运机制及载体蛋白也是值得深思的问题。虽然还缺乏对类黄酮物质转运机制的系统研究,但深入理解花色苷转运可为进一步解析类黄酮物质在果实中的积累机制奠定基础。

    为适应复杂多变的外界环境,植物体内转运机制具有多样化、高效性和冗余性等特点,不同转运机制在底物特异性、定位及转运效率上各异[18],而在果实上有关多种转运模型协调转运花色苷的研究较为缺乏。近年来,GST、膜转运蛋白以及囊泡运输介导的果实花色苷转运相关研究已取得了初步进展,但不同转运模型的分子生物学证据仍不充足。以下方面的研究亟待进一步深入开展,以全面明晰果实花色苷的转运机制:(1)不同转运蛋白的转运活性差异及其底物特异性,花色苷修饰差异是否会影响其跨膜转运效率;(2)转运蛋白响应内在激素和外界环境因子参与花色苷积累的分子机制,以及表观调控对花色苷转运的影响;(3)GST如何与花色苷结合并促发其转运,GST-花色苷复合物如何在膜转运蛋白的协助下实现跨膜运输;(4)GST与囊泡动态移动间的关系,GST-花色苷复合物是否参与花色苷装载至囊泡及囊泡裂变和动态融合的过程;(5)多种转运机制如何分工协同参与胞内花色苷的转运过程。

  • 图  1   花青素合成代谢通路

    PAL:苯丙氨酸解氨酶;C4H:肉桂酸-4-羟化酶;4CL:4-香豆酸辅酶A连接酶;CHS:查尔酮合酶;CHI:查尔酮异构酶;F3’H:类黄酮3’-羟化酶;F3’5’H:类黄酮3’,5’-羟化酶;DFR:二氢黄酮醇4-还原酶;ANS/LDOX:花青素合成酶/无色花青素双加氧酶;UFGT:类黄酮葡萄糖基转移酶;MT:甲基转移酶;AT:酰基转移酶;GST:谷胱甘肽巯基转移酶;CCR:肉桂酰辅酶A还原酶;FLS:黄酮醇合成酶;LAR:无色花青素还原酶;ANR:花青素还原酶。

    Figure  1.   Anthocyanin biosynthesis pathway

    PAL: Phenylalanine ammonia lyase; C4H: Cinnamate 4-hydroxylase; 4CL: 4-Coumarate coenzyme A ligase; CHS: Chalcone synthase; CHI: Chalcone isomerase; F3’H: Flavonoid 3’-hydroxylase; F3’5’H: Flavonoid 3’,5’-hydroxylase; DFR: Dihydroflavonol 4-reductase; ANS/LDOX: Anthocyanidinsynthase/ Leucoanthocyanidindioxygenase; UFGT: UDP-glycose flavonoid glycosyltransferase; MT: Methyltransferase; AT: Acyltransferase; GST: Glutathione S-transferase; CCR: Cinnamoyl-CoA reductase; FLS: Flavonol synthase; LAR: Leucoanthocyantin reductase; ANR: Anthocyanidin reductase.

  • [1]

    The Angiosperm Phylogeny Group,Chase MW,Christenhusz MJM,Fay MF,Byng JW,et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants:APG Ⅳ[J]. Botan J Linn Soc,2016,181 (1):1−20. doi: 10.1111/boj.12385

    [2]

    Guo HB. Cultivation of lotus (Nelumbo nucifera Gaertn. ssp. nucifera) and its utilization in China[J]. Genet Resour Crop Evol,2009,56 (3):323−330. doi: 10.1007/s10722-008-9366-2

    [3]

    Kuo YC,Lin YL,Liu CP,Tsai WJ. Herpes simplex virus type 1 propagation in HeLa cells interrupted by Nelumbo nucifera[J]. J Biomed Sci,2005,12 (6):1021−1034. doi: 10.1007/s11373-005-9001-6

    [4]

    Ohkoshi E,Miyazaki H,Shindo K,Watanabe H,Yoshida A,Yajima H. Constituents from the leaves of Nelumbo nucifera stimulate lipolysis in the white adipose tissue of mice[J]. Planta Med,2007,73 (12):1255−1259. doi: 10.1055/s-2007-990223

    [5]

    Moghaddam AH,Nabavi SM,Nabavi SF,Bigdellou R,Mohammadzadeh S,Ebrahimzadeh MA. Antioxidant,antihemolytic and nephroprotective activity of aqueous extract of Diospyros lotus seeds[J]. Acta Pol Pharm,2012,69 (4):687−692.

    [6]

    Lin TY,Hung CY,Chiu KM,Lee MY,Lu CW,Wang SJ. Neferine,an alkaloid from lotus seed embryos,exerts antiseizure and neuroprotective effects in a kainic acid-induced seizure model in rats[J]. Int J Mol Sci,2022,23 (8):4130. doi: 10.3390/ijms23084130

    [7]

    Lin ZY,Zhang C,Cao DD,Damaris RN,Yang PF. The latest studies on lotus (Nelumbo nucifera)-an emerging horticultural model plant[J]. Int J Mol Sci,2019,20 (15):3680. doi: 10.3390/ijms20153680

    [8] 刘凤栾,费俞颉,俞洁. 洒锦荷花的彩斑特性及起源探讨[J]. 中国花卉园艺,2020(18):38−40.
    [9]

    Liu J,Wang YX,Zhang MH,Wang YM,Deng XB,et al. Color fading in lotus (Nelumbo nucifera) petals is manipulated both by anthocyanin biosynthesis reduction and active degradation[J]. Plant Physiol Biochem,2022,179:100−107. doi: 10.1016/j.plaphy.2022.03.021

    [10]

    Deng J,Chen S,Yin XJ,Wang K,Liu YL,et al. Systematic qualitative and quantitative assessment of anthocyanins,flavones and flavonols in the petals of 108 lotus (Nelumbo nucifera) cultivars[J]. Food Chem,2013,139 (1-4):307−312. doi: 10.1016/j.foodchem.2013.02.010

    [11]

    Cappellini F,Marinelli A,Toccaceli M,Tonelli C,Petroni K. Anthocyanins:from mechanisms of regulation in plants to health benefits in foods[J]. Front Plant Sci,2021,12:748049. doi: 10.3389/fpls.2021.748049

    [12]

    Zhang HY,Xu ZL,Zhao HW,Wang X,Pang J,et al. Anthocyanin supplementation improves anti-oxidative and anti-inflammatory capacity in a dose-response manner in subjects with dyslipidemia[J]. Redox Biol,2020,32:101474. doi: 10.1016/j.redox.2020.101474

    [13]

    Sunil L,Shetty NP. Biosynthesis and regulation of anthocyanin pathway genes[J]. Appl Microbiol Biotechnol,2022,106 (5):1783−1798.

    [14]

    Jaakola L. New insights into the regulation of anthocyanin biosynthesis in fruits[J]. Trends Plant Sci,2013,18 (9):477−483. doi: 10.1016/j.tplants.2013.06.003

    [15]

    Tanaka Y,Brugliera F. Flower colour and cytochromes P450[J]. Philos Trans Roy Soc B:Biol Sci,2013,368 (1612):20120432. doi: 10.1098/rstb.2012.0432

    [16]

    Tanaka Y,Sasaki N,Ohmiya A. Biosynthesis of plant pigments:anthocyanins,betalains and carotenoids[J]. Plant J,2008,54 (4):733−749. doi: 10.1111/j.1365-313X.2008.03447.x

    [17]

    Zhang HL,Zhang SY,Zhang H,Chen X,Liang F,et al. Carotenoid metabolite and transcriptome dynamics underlying flower color in marigold (Tagetes erecta L.)[J]. Sci Rep,2020,10 (1):16835. doi: 10.1038/s41598-020-73859-7

    [18]

    Pu XD,Li Z,Tian Y,Gao RR,Hao LJ,et al. The honeysuckle genome provides insight into the molecular mechanism of carotenoid metabolism underlying dynamic flower coloration[J]. New Phytol,2020,227 (3):930−943. doi: 10.1111/nph.16552

    [19]

    Zhang LN,Zhang QY,Li WH,Zhang SK,Xi WP. Identification of key genes and regulators associated with carotenoid metabolism in apricot (Prunus armeniaca) fruit using weighted gene coexpression network analysis[J]. BMC Genomics,2019,20 (1):876. doi: 10.1186/s12864-019-6261-5

    [20]

    Polturak G,Aharoni A. “La Vie en Rose”:biosynthesis,sources,and applications of betalain pigments[J]. Mol Plant,2018,11 (1):7−22. doi: 10.1016/j.molp.2017.10.008

    [21]

    Saito K,Yonekura-Sakakibara K,Nakabayashi R,Higashi Y,Yamazaki M,et al. The flavonoid biosynthetic pathway in Arabidopsis:structural and genetic diversity[J]. Plant Physiol Biochem,2013,72:21−34. doi: 10.1016/j.plaphy.2013.02.001

    [22]

    Nishihara M,Nakatsuka T. Genetic engineering of flavonoid pigments to modify flower color in floricultural plants[J]. Biotechnol Lett,2011,33 (3):433−441. doi: 10.1007/s10529-010-0461-z

    [23]

    Thill J,Miosic S,Ahmed R,Schlangen K,Muster G,et al. ‘Le Rouge et le Noir’:a decline in flavone formation correlates with the rare color of black dahlia (Dahlia variabilis hort.) flowers[J]. BMC Plant Biol,2012,12:225. doi: 10.1186/1471-2229-12-225

    [24]

    Katori M,Watanabe K,Nomura K,Yoneda K. Cultivar differences in anthocyanin and carotenoid pigments in the petals of the flowering lotus (Nelumbo spp.)[J]. J Jpn Soc Hortic Sci,2002,71 (6):812−817. doi: 10.2503/jjshs.71.812

    [25]

    Yang RZ,Wei XL,Gao FF,Wang LS,Zhang HJ,et al. Simultaneous analysis of anthocyanins and flavonols in petals of lotus (Nelumbo) cultivars by high-performance liquid chromatography-photodiode array detection/electrospray ionization mass spectrometry[J]. J Chromatogr A,2009,1216 (1):106−112. doi: 10.1016/j.chroma.2008.11.046

    [26]

    Chen S,Fang LC,Xi HF,Guan L,Fang JB,et al. Simultaneous qualitative assessment and quantitative analysis of flavonoids in various tissues of lotus (Nelumbo nucifera) using high performance liquid chromatography coupled with triple quad mass spectrometry[J]. Anal Chim Acta,2012,724:127−135. doi: 10.1016/j.aca.2012.02.051

    [27]

    Chen S,Xiang Y,Deng J,Liu YL,Li SH. Simultaneous analysis of anthocyanin and non-anthocyanin flavonoid in various tissues of different lotus (Nelumbo) cultivars by HPLC-DAD-ESI-MSn[J]. PLoS One,2013,8 (4):e62291. doi: 10.1371/journal.pone.0062291

    [28] 吴倩. 荷花花瓣和花粉类黄酮成分分析[D]. 南京: 南京农业大学, 2015: 15-49.
    [29] 刘青青,张大生,刘凤栾,蔡栋,王晓晗,等. 荷花花色研究进展[J]. 园艺学报,2021,48(10):2100−2112. doi: 10.16420/j.issn.0513-353x.2021-0602

    Liu QQ,Zhang DS,Liu FL,Cai D,Wang XH,et al. Advances in flower color research on lotus (Nelumbo)[J]. Acta Hortic Sin,2021,48 (10):2100−2112. doi: 10.16420/j.issn.0513-353x.2021-0602

    [30]

    Tohge T,de Souza LP,Fernie AR. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants[J]. J Exp Bot,2017,68 (15):4013−4028. doi: 10.1093/jxb/erx177

    [31]

    Morita Y,Hoshino A. Recent advances in flower color variation and patterning of Japanese morning glory and petunia[J]. Breed Sci,2018,68 (1):128−138. doi: 10.1270/jsbbs.17107

    [32]

    Martin C,Prescott A,Mackay S,Bartlett J,Vrijlandt E. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus[J]. Plant J,1991,1 (1):37−49. doi: 10.1111/j.1365-313X.1991.00037.x

    [33]

    Austin MB,Noel JP. The chalcone synthase superfamily of type Ⅲ polyketide synthases[J]. Nat Prod Rep,2003,20 (1):79−110. doi: 10.1039/b100917f

    [34]

    Dong C,Yu AQ,Wang ML,Zheng XW,Diao Y,et al. Identification and characterization of chalcone synthase cDNAs (NnCHS) from Nelumbo nucifera[J]. Cell Mol Biol (Noisy-Le-Grand),2015,61 (8):112−117.

    [35]

    Li YK,Cui W,Qi XJ,Qiao CK,Lin MM,et al. Chalcone synthase-encoding AeCHS is involved in normal petal coloration in Actinidia eriantha[J]. Genes (Basel),2019,10 (12):949. doi: 10.3390/genes10120949

    [36]

    Tai DQ,Tian J,Zhang J,Song TT,Yao YC. A Malus crabapple chalcone synthase gene,McCHS,regulates red petal color and flavonoid biosynthesis[J]. PLoS One,2014,9 (10):e110570. doi: 10.1371/journal.pone.0110570

    [37]

    McKhann HI,Paiva NL,Dixon RA,Hirsch AM. Expression of genes for enzymes of the flavonoid biosynthetic pathway in the early stages of the Rhizobium-legume symbiosis[J]. Adv Exp Med Biol,1998,439:45−54.

    [38]

    Zhao DQ,Tao J,Han CX,Ge JT. Flower color diversity revealed by differential expression of flavonoid biosynthetic genes and flavonoid accumulation in herbaceous peony (Paeonia lactiflora Pall.)[J]. Mol Biol Rep,2012,39 (12):11263−11275. doi: 10.1007/s11033-012-2036-7

    [39]

    Wang LX,Lui ACW,Lam PY,Liu GQ,Godwin ID,Lo C. Transgenic expression of flavanone 3-hydroxylase redirects flavonoid biosynthesis and alleviates anthracnose susceptibility in sorghum[J]. Plant Biotechnol J,2020,18 (11):2170−2172. doi: 10.1111/pbi.13397

    [40]

    Tu YH,Liu F,Guo DD,Fan LJ,Zhu ZX,et al. Molecular characterization of flavanone 3-hydroxylase gene and flavonoid accumulation in two chemotyped safflower lines in response to methyl jasmonate stimulation[J]. BMC Plant Biol,2016,16 (1):132. doi: 10.1186/s12870-016-0813-5

    [41]

    Deng J,Fu ZY,Chen S,Damaris RN,Wang K,et al. Proteomic and epigenetic analyses of lotus (Nelumbo nucifera) petals between red and white cultivars[J]. Plant Cell Physiol,2015,56 (8):1546−1555. doi: 10.1093/pcp/pcv077

    [42]

    Kim EY,Kim CW,Kim S. Identification of two novel mutant ANS alleles responsible for inactivation of anthocyanidin synthase and failure of anthocyanin production in onion (Allium cepa L.)[J]. Euphytica,2016,212 (3):427−437. doi: 10.1007/s10681-016-1774-3

    [43]

    Deng J,Su MY,Zhang XY,Liu XL,Damaris RN,et al. Proteomic and metabolomic analyses showing the differentially accumulation of NnUFGT2 is involved in the petal red-white bicolor pigmentation in lotus (Nelumbo nucifera)[J]. Plant Physiol Biochem,2023,198:107675. doi: 10.1016/j.plaphy.2023.107675

    [44]

    Quattrocchio F,Wing JF,van der Woude K,Mol JNM,Koes R. Analysis of bHLH and MYB domain proteins:species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes[J]. Plant J,1998,13 (4):475−488. doi: 10.1046/j.1365-313X.1998.00046.x

    [45]

    Stracke R,Ishihara H,Huep G,Barsch A,Mehrtens F,et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling[J]. Plant J,2007,50 (4):660−677. doi: 10.1111/j.1365-313X.2007.03078.x

    [46]

    Baudry A,Heim MA,Dubreucq B,Caboche M,Weisshaar B,Lepiniec L. TT2,TT8,and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana[J]. Plant J,2004,39 (3):366−380. doi: 10.1111/j.1365-313X.2004.02138.x

    [47]

    Cai TY,Ge-Zhang SJ,Song MB. Anthocyanins in metabolites of purple corn[J]. Front Plant Sci,2023,14:1154535. doi: 10.3389/fpls.2023.1154535

    [48]

    Zhang Y,Butelli E,Martin C. Engineering anthocyanin biosynthesis in plants[J]. Curr Opin Plant Biol,2014,19:81−90. doi: 10.1016/j.pbi.2014.05.011

    [49]

    Petroni K,Tonelli C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs[J]. Plant Sci,2011,181 (3):219−229. doi: 10.1016/j.plantsci.2011.05.009

    [50]

    Chen YB,Wu PZ,Zhang C,Guo YL,Liao BB,et al. Ectopic expression of JcCPL1,2,and 4 affects epidermal cell differentiation,anthocyanin biosynthesis and leaf senescence in Arabidopsis thaliana[J]. Int J Mol Sci,2022,23 (4):1924. doi: 10.3390/ijms23041924

    [51] 高国应,伍小方,张大为,周定港,张凯旋,严明理. MBW复合体在植物花青素合成途径中的研究进展[J]. 生物技术通报,2020,36(1):126−134. doi: 10.13560/j.cnki.biotech.bull.1985.2019-0738

    Gao GY,Wu XF,Zhang DW,Zhou DG,Zhang KX,Yan ML. Research progress on the MBW complexes in plant anthocyanin biosynthesis pathway[J]. Biotechnol Bull,2020,36 (1):126−134. doi: 10.13560/j.cnki.biotech.bull.1985.2019-0738

    [52]

    Zhao XC,Zhang YR,Long T,Wang SC,Yang J. Regulation mechanism of plant pigments biosynthesis:anthocyanins,carotenoids,and betalains[J]. Metabolites,2022,12 (9):871. doi: 10.3390/metabo12090871

    [53]

    Lai B,Li XJ,Hu B,Qin YH,Huang XM,et al. LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes,tissues,developmental phases and ABA and light stimuli in Litchi chinensis[J]. PLoS One,2014,9 (1):e86293. doi: 10.1371/journal.pone.0086293

    [54]

    Nesi N,Jond C,Debeaujon I,Caboche M,Lepiniec L. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed[J]. Plant Cell,2001,13 (9):2099−2114. doi: 10.1105/TPC.010098

    [55]

    Dubos C,Stracke R,Grotewold E,Weisshaar B,Martin C,Lepiniec L. MYB transcription factors in Arabidopsis[J]. Trends Plant Sci,2010,15 (10):573−581. doi: 10.1016/j.tplants.2010.06.005

    [56]

    Si ZZ,Wang LJ,Ji ZX,Zhao MM,Zhang K,Qiao YK. Comparative analysis of the MYB gene family in seven Ipomoea species[J]. Front Plant Sci,2023,14:1155018. doi: 10.3389/fpls.2023.1155018

    [57]

    Liu JY,Osbourn A,Ma PD. MYB transcription factors as regulators of phenylpropanoid metabolism in plants[J]. Mol Plant,2015,8 (5):689−708. doi: 10.1016/j.molp.2015.03.012

    [58]

    Stracke R,Werber M,Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana[J]. Curr Opin Plant Biol,2001,4 (5):447−456. doi: 10.1016/S1369-5266(00)00199-0

    [59]

    Hichri I,Barrieu F,Bogs J,Kappel C,Delrot S,Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway[J]. J Exp Bot,2011,62 (8):2465−2483. doi: 10.1093/jxb/erq442

    [60]

    Naing AH,Kim CK. Roles of R2R3-MYB transcription factors in transcriptional regulation of anthocyanin biosynthesis in horticultural plants[J]. Plant Mol Biol,2018,98 (1):1−18.

    [61]

    Haga N,Kato K,Murase M,Araki S,Kubo M,et al. R1R2R3-Myb proteins positively regulate cytokinesis through activation of KNOLLE transcription in Arabidopsis thaliana[J]. Development,2007,134 (6):1101−1110. doi: 10.1242/dev.02801

    [62]

    Sun SS,Gugger PF,Wang QF,Chen JM. Identification of a R2R3-MYB gene regulating anthocyanin biosynthesis and relationships between its variation and flower color difference in lotus (Nelumbo Adans.)[J]. PeerJ,2016,4:e2369. doi: 10.7717/peerj.2369

    [63]

    Liu J, Wang YX, Deng XB, Zhang MH, Sun H, et al. Transcription factor NnMYB5 controls petal color by regulating GLUTATHIONE S-TRANSFERASE2 in Nelumbo nucifera[J]. Plant Physiol, 2023, kiad363.

    [64]

    Hao YQ,Zong XM,Ren P,Qian YQ,Fu AG. Basic helix-loop-helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis[J]. Int J Mol Sci,2021,22 (13):7152. doi: 10.3390/ijms22137152

    [65]

    Qiu ZK,Wang XX,Gao JC,Guo YM,Huang ZJ,Du YC. The tomato Hoffman’s anthocyaninless gene encodes a bHLH transcription factor involved in anthocyanin biosynthesis that is developmentally regulated and induced by low temperatures[J]. PLoS One,2016,11 (3):e0151067. doi: 10.1371/journal.pone.0151067

    [66]

    Wang LH,Tang W,Hu YW,Zhang YB,Sun JQ,et al. A MYB/bHLH complex regulates tissue-specific anthocyanin biosynthesis in the inner pericarp of red-centered kiwifruit Actinidia chinensis cv. Hongyang[J]. Plant J,2019,99 (2):359−378. doi: 10.1111/tpj.14330

    [67]

    Gao C,Guo Y,Wang J,Li D,Liu K,et al. Brassica napusGLABRA3-1 promotes anthocyanin biosynthesis and trichome formation in true leaves when expressed in Arabidopsis thaliana[J]. Plant Biol,2018,20 (1):3−9. doi: 10.1111/plb.12633

    [68]

    Deng J,Li JJ,Su MY,Lin ZY,Chen L,Yang PF. A bHLH gene NnTT8 of Nelumbo nucifera regulates anthocyanin biosynthesis[J]. Plant Physiol Biochem,2021,158:518−523. doi: 10.1016/j.plaphy.2020.11.038

    [69]

    Lefebvre V,North H,Frey A,Sotta B,Seo M,et al. Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy[J]. Plant J,2006,45 (3):309−319. doi: 10.1111/j.1365-313X.2005.02622.x

    [70]

    Ito S,Song YH,Josephson-Day AR,Miller RJ,Breton G,et al. FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis[J]. Proc Natl Acad Sci USA,2012,109 (9):3582−3587. doi: 10.1073/pnas.1118876109

    [71]

    Oh E,Yamaguchi S,Kamiya Y,Bae G,Chung WI,Choi G. Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis[J]. Plant J,2006,47 (1):124−139. doi: 10.1111/j.1365-313X.2006.02773.x

    [72]

    Xu C,Min JR. Structure and function of WD40 domain proteins[J]. Protein Cell,2011,2 (3):202−214. doi: 10.1007/s13238-011-1018-1

    [73]

    Chen L,Cui YM,Yao YH,An LK,Bai YX,et al. Genome-wide identification of WD40 transcription factors and their regulation of the MYB-bHLH-WD40 (MBW) complex related to anthocyanin synthesis in Qingke (Hordeum vulgare L. var. nudum Hook. f.)[J]. BMC Genomics,2023,24 (1):166. doi: 10.1186/s12864-023-09240-5

    [74]

    De Vetten N,Quattrocchio F,Mol J,Koes R. The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast,plants,and animals[J]. Genes Dev,1997,11 (11):1422−1434. doi: 10.1101/gad.11.11.1422

    [75]

    Carey CC,Strahle JT,Selinger DA,Chandler VL. Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana[J]. Plant Cell,2004,16 (2):450−464. doi: 10.1105/tpc.018796

    [76]

    Walker AR,Davison PA,Bolognesi-Winfield AC,James CM,Srinivasan N,et al. The TRANSPARENT TESTA GLABRA1 locus,which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis,encodes a WD40 repeat protein[J]. Plant Cell,1999,11 (7):1337−1349. doi: 10.1105/tpc.11.7.1337

    [77]

    Yang XH,Wang JR,Xia XZ,Zhang ZQ,He J,et al. OsTTG1,a WD40 repeat gene,regulates anthocyanin biosynthesis in rice[J]. Plant J,2021,107 (1):198−214. doi: 10.1111/tpj.15285

    [78]

    Zhao MR,Li J,Zhu L,Chang P,Li LL,Zhang LY. Identification and characterization of MYB-bHLH-WD40 regulatory complex members controlling anthocyanidin biosynthesis in blueberry fruits development[J]. Genes,2019,10 (7):496. doi: 10.3390/genes10070496

    [79]

    González-Villagra J,Cohen JD,Reyes-Díaz MM. Abscisic acid is involved in phenolic compounds biosynthesis,mainly anthocyanins,in leaves of Aristotelia chilensis plants (Mol.) subjected to drought stress[J]. Physiol Plant,2019,165 (4):855−866. doi: 10.1111/ppl.12789

    [80]

    Li Z,Ahammed GJ. Hormonal regulation of anthocyanin biosynthesis for improved stress tolerance in plants[J]. Plant Physiol Biochem,2023,201:107835. doi: 10.1016/j.plaphy.2023.107835

    [81] 王峰,王秀杰,赵胜男,闫家榕,卜鑫,等. 光对园艺植物花青素生物合成的调控作用[J]. 中国农业科学,2020,53(23):4904−4917. doi: 10.3864/j.issn.0578-1752.2020.23.015

    Wang F,Wang XJ,Zhao SN,Yan JR,Bu X,et al. Light regulation of anthocyanin biosynthesis in horticultural crops[J]. Sci Agric Sin,2020,53 (23):4904−4917. doi: 10.3864/j.issn.0578-1752.2020.23.015

  • 期刊类型引用(0)

    其他类型引用(2)

图(1)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  47
  • PDF下载量:  103
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-09-01
  • 修回日期:  2023-09-19
  • 刊出日期:  2024-01-04

目录

/

返回文章
返回