Photosynthetic limitation in soybean in response to soil water-nitrogen interactions and its relationship with leaf water use efficiency
-
摘要:
本文以我国北方旱地大豆(Glycine max (L.) Merr.)为材料,以光合限制作用为研究对象,设计土壤水-氮交互实验,探究其光合限制作用的水-氮交互响应及其与叶片瞬时水分利用效率(WUEins)和内在水分利用效率(WUEint)的相关性。结果显示:(1)大豆叶内CO2扩散性限制作用(叶肉限制,lm;气孔限制,lsc)随水分胁迫逐渐增大,生化限制(lb)逐渐减小;(2)土壤水-氮交互后,植株lm和lsc均减小,而lb显著增大;(3)lm和lb分别与WUEins及WUEint呈显著的负、正相关(P<0.05),而lsc与二者的相关性不显著;(4)相较lsc和lb,lm对植株光合碳同化与叶片水分利用效率的贡献率最大,为大豆光合与水分利用能力变化的主导限制因子。研究结果旨在揭示土壤干旱与大气氮沉降双因子交互调控作物光合碳同化的生态效应,并分析该效应与作物水分利用能力的内在关系。
Abstract:Glycine max (L.) Merr. in northern China were selected as the experimental materials, with photosynthetic limitation as the primary focus of this study. A soil water-nitrogen interaction experiment was designed to explore the relationship between photosynthetic limitation and leaf instantaneous (WUEins) and intrinsic water use efficiency (WUEint). Results showed that: (1) CO2 diffusion limitations, including mesophyll limitation (lm) and stomatal limitation (lsc), gradually increased with water stress, while biochemical limitation (lb) gradually decreased. (2) The interaction between water and nitrogen reduced lm and lsc, while lb significantly increased. (3) lm and lb were negatively and positively correlated with WUEins and WUEint, respectively (P<0.05), while lsc showed no significant correlation with either. (4) Among the limiting factors, lm contributed most to soybean photosynthetic carbon assimilation and leaf water use efficiency, making it the dominant constraint on photosynthetic and water use capacity. These findings reveal the ecological effects of soil drought and atmospheric nitrogen deposition on crop photosynthetic carbon assimilation and their intrinsic relationship with water use capacity.
-
1 如需查阅附图内容请登录《植物科学学报》网站(http://www.plantscience.cn)查看本期文章。 -
图 1 不同控水处理土壤水势(Ψsoil)变化
CK为对照,MW为轻度水分胁迫,SW为重度水分胁迫。下同。不同小写字母表示不同处理间差异显著(n=3,P<0.05)。
Figure 1. Changes in soil water potential (Ψsoil) under different water control treatments
CK: Control; MW: Moderate water stress; SW: Severe water stress. Same below. Lowercase letters indicate significant differences (n=3, P<0.05).
图 2 大豆光合相对限制作用随土壤水、氮含量的变化
MWLN为轻度水分胁迫,低氮添加;MWMN为轻度水分胁迫,中氮添加;MWHN为轻度水分胁迫,高氮添加;SWLN为重度水分胁迫,低氮添加;SWMN为重度水分胁迫,中氮添加;SWHN为重度水分胁迫,高氮添加。下同。*表示不同处理间在P<0.05水平上(n=3)差异显著,ns表示在该水平下差异不显著。
Figure 2. Changes in relative limitations of gsc, gm, and biochemical capacity with soil water and nitrogen in Glycine max seedlings
MWLN: Moderate water stress×low N addition; MWMN: Moderate water stress×medium N addition; MWHN: Moderate water stress×high N addition; SWLN: Severe water stress×low N addition; SWMN: Severe water stress×medium N addition; SWHN: Severe water stress×high N addition. Same below. * indicates significant difference between treatments at P<0.05 (n=3), ns indicates no significant difference at this level.
图 3 gsc、gm及生化能力对植株饱和光碳同化贡献率随土壤水、氮含量的变化
SCL、MCL和BL分别为gsc、gm和生化能力对叶片dAn/An的贡献率。
Figure 3. Changes in contributions of gsc, gm, and biochemical capacity to light-saturated assimilation with soil water and nitrogen in Glycine max seedlings
SCL, MCL, and BL are contributions of gsc, gm, and biochemical capacity to dAn/An, respectively.
表 1 叶片气孔形态特征值
Table 1 Anatomical morphological features of leaf stomata
处理
Treatment气孔密度
Ds / ind./mm2气孔大小
Ssize / μm2气孔开度
SS / μm2叶片厚度
Tleaf / μmCK 291.7±87.4a 141.2±34.4a 17.8±3.6a 192.7±24.1a MW 266.7±37.3a 141.4±42.2a 14.0±5.3ab 158.6±26.1b SW 250.0±96.2a 129.7±9.7a 8.6±1.5b 160.6±12.1b MWLN 208.3±45.0a 139.0±5.7a 11.3±2.2b 187.3±20.9ab MWMN 215.3±42.9a 147.6±37.5a 7.8±2.0bc 182.6±9.7ab MWHN 233.8±34.2a 103.7±10.8a 4.3±1.2d 192.2±18.8a SWLN 277.8±43.0a 130.4±15.8a 4.6±1.6cd 171.9±16.0ab SWMN 263.9±34.0a 145.3±16.4a 6.1±0.9cd 196.4±12.8a SWHN 222.2±96.2a 114.1±32.6a 2.2±0.1e 170.6±16.1ab 注:MWLN为轻度水分胁迫,低氮添加;MWMN为轻度水分胁迫,中氮添加;MWHN为轻度水分胁迫,高氮添加;SWLN为重度水分胁迫,低氮添加;SWMN为重度水分胁迫,中氮添加;SWHN为重度水分胁迫,高氮添加。同列不同小写字母表示处理间在P<0.05水平上差异显著。下同。 Notes: MWLN: Moderate water stress×low N addition; MWMN: Moderate water stress×medium N addition; MWHN: Moderate water stress×high N addition; SWLN: Severe water stress×low N addition; SWMN: Severe water stress×medium N addition; SWHN: Severe water stress×high N addition.Different lowercase letters in same column indicate significant differences at P<0.05 level. Same below. 表 2 不同水氮条件下土壤全氮、硝态氮、全磷、全钾、速效钾含量
Table 2 Key soil nutrient content of nitrate N, total P, total K, and available K under different water and nitrogen conditions
处理
Treatment全氮
Total nitrogen / g/kg硝态氮
Nitrate nitrogen / mg/kg全磷
Total P / g/kg全钾
Total K / g/kg速效钾
Available K / mg/kgCK 1.12±0.00a 12.4±0.3d 2.49±0.18b 30.3±1.9c 157.4±5.3d MW 1.06±0.15a 11.2±0.5d 2.37±0.15bc 29.5±1.2c 150.4±2.1d SW 1.02±0.14ab 11.0±0.4d 2.22±0.08c 29.0±1.8c 147.4±4.0d MWLN 1.26±0.14a 33.2±0.4c 2.92±0.06a 33.3±0.1b 200.7±30.9c MWMN 0.84±0.00bc 49.1±13.6b 2.91±0.02a 32.7±0.4b 163.3±3.8d MWHN 1.12±0.28a 58.6±4.6a 2.87±0.12a 35.3±0.7a 289.7±5.9a SWLN 1.12±0.00a 44.8±1.9b 2.79±0.29a 32.8±0.5b 239.9±13.2b SWMN 0.70±0.14c 55.3±2.4ab 2.91±0.16a 32.8±0.8b 222.9±6.3bc SWHN 1.12±0.00a 51.1±3.8ab 2.83±0.03a 33.6±0.2ab 240.3±20.0b -
[1] 刘平,刘学军,刘恩科,韩彦龙,李丽君,等. 山西省太原市旱作农区大气活性氮干湿沉降年度变化特征[J]. 中国生态农业学报,2017,25(5):625−633. Liu P,Liu XJ,Liu EK,Han YL,Li LJ,et al. Temporal variation of atmospheric wet/dry reactive nitrogen deposition in Taiyuan rainfed farming area of Shanxi Province[J]. Chinese Journal of Eco-Agriculture,2017,25(5):625−633.
[2] Flexas J,Ribas-Carbó M,Diaz-Espejo A,Galmés J,Medrano H. Mesophyll conductance to CO2:current knowledge and future prospects[J]. Plant Cell Environ,2008,31(5):602−621. doi: 10.1111/j.1365-3040.2007.01757.x
[3] Grassi G,Magnani F. Stomatal,mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees[J]. Plant Cell Environ,2005,28(7):834−849. doi: 10.1111/j.1365-3040.2005.01333.x
[4] Galmés J,Medrano H,Flexas J. Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms[J]. New Phytol,2007,175(1):81−93. doi: 10.1111/j.1469-8137.2007.02087.x
[5] Cai YF,Wang JH,Li SF,Zhang L,Peng LC,et al. Photosynthetic response of an alpine plant,Rhododendron delavayi Franch,to water stress and recovery:the role of mesophyll conductance[J]. Front Plant Sci,2015,6:1089.
[6] Flexas J,Barón M,Bota J,Ducruet JM,Gallé A,et al. Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid richter-110 (V. berlandieri × V. rupestris)[J]. J Exp Bot,2009,60(8):2361−2377. doi: 10.1093/jxb/erp069
[7] Perez-Martin A,Michelazzo C,Torres-Ruiz JM,Flexas J,Fernández JE,et al. Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees:correlation with gene expression of carbonic anhydrase and aquaporins[J]. J Exp Bot,2014,65(12):3143−3156. doi: 10.1093/jxb/eru160
[8] Zhu K,Yuan FH,Wang AZ,Wu JB,Guan DX,et al. Stomatal,mesophyll and biochemical limitations to soil drought and rewatering in relation to intrinsic water-use efficiency in Manchurian ash and Mongolian oak[J]. Photosynthetica,2021,59(1):49−60. doi: 10.32615/ps.2020.084
[9] Warren CR. The photosynthetic limitation posed by internal conductance to CO2 movement is increased by nutrient supply[J]. J Exp Bot,2004,55(406):2313−2321. doi: 10.1093/jxb/erh239
[10] Bown HE,Watt MS,Mason EG,Clinton PW,Whitehead D. The influence of nitrogen and phosphorus supply and genotype on mesophyll conductance limitations to photosynthesis in Pinus radiata[J]. Tree Physiol,2009,29(9):1143−1151. doi: 10.1093/treephys/tpp051
[11] 朱凯,左齐慧,袁凤辉,关德新,吴家兵,等. 土壤氮添加对水曲柳和蒙古栎光合限制作用的影响[J]. 植物科学学报,2023,41(4):502−512. Zhu K,Zuo QH,Yuan FH,Guan DX,Wu JB,et al. Effects of soil nitrogen addition on photosynthetic limitations in Fraxinus mandshurica Rupr. and Quercus mongolica Fish. ex Ledeb[J]. Plant Science Journal,2023,41(4):502−512.
[12] Barbour MM,Kaiser BN. The response of mesophyll conductance to nitrogen and water availability differs between wheat genotypes[J]. Plant Sci,2016,251:119−127. doi: 10.1016/j.plantsci.2016.03.012
[13] Flexas J,Niinemets Ü,Gallé A,Barbour MM,Centritto M,et al. Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency[J]. Photosynth Res,2013,117(1-3):45−59. doi: 10.1007/s11120-013-9844-z
[14] Linderson ML,Mikkelsen TN,Ibrom A,Lindroth A,Ro-Poulsen H,Pilegaard K. Up-scaling of water use efficiency from leaf to canopy as based on leaf gas exchange relationships and the modeled in-canopy light distribution[J]. Agr Forest Meteorol,2012,152:201−211. doi: 10.1016/j.agrformet.2011.09.019
[15] 赵福年,杨红燕,王润元,张凯,齐月,等. 作物内禀水分利用效率变化[J]. 核农学报,2019,33(9):1873−1881. Zhao FN,Yang HY,Wang RY,Zhang K,Qi Y,et al. Variation of intrinsic water use efficiency for crop[J]. Journal of Nuclear Agricultural Sciences,2019,33(9):1873−1881.
[16] Li YY,Liu NN,Fan H,Su JX,Fei C,et al. Effects of deficit irrigation on photosynthesis,photosynthate allocation,and water use efficiency of sugar beet[J]. Agr Water Manag,2019,223:105701. doi: 10.1016/j.agwat.2019.105701
[17] 杨建伟,梁宗锁,韩蕊莲,孙群,崔浪军. 不同干旱土壤条件下杨树的耗水规律及水分利用效率研究[J]. 植物生态学报,2004,28(5):630−636. Yang JW,Liang ZS,Han RL,Sun Q,Cui LJ. Water use efficiency and water consumption characteristics of poplar under soil drought conditions[J]. Acta Phytoecologica Sinica,2004,28(5):630−636.
[18] 王湛,李银坤,郭文忠,韩雪. 不同灌水量对温室茄子蒸腾规律及水分利用的影响[J]. 中国农村水利水电,2019(7):6−10. Wang Z,Li YK,Guo WZ,Han X. The effect of different irrigation amount on the transpiration rate and water use efficiency of autumn eggplant in greenhouses[J]. China Rural Water and Hydropower,2019(7):6−10.
[19] 胡晓创,高婉婷,孙守家,张劲松,孟平,蔡金峰. 刺槐生长和内在水分利用效率对气候因子的响应[J]. 应用生态学报,2023,34(10):2610−2618. Hu XC,Gao WT,Sun SJ,Zhang JS,Meng P,Cai JF. Responses of tree growth and intrinsic water-use efficiency of Robinia pseudoacacia to climate factors[J]. Chinese Journal of Applied Ecology,2023,34(10):2610−2618.
[20] 朱林,许兴. 植物水分利用效率的影响因子研究综述[J]. 干旱地区农业研究,2005,23(6):204−209. Zhu L,Xu X. Review on influential factors of plant water use efficiency[J]. Agricultural Research in the Arid Areas,2005,23(6):204−209.
[21] 山仑,徐萌. 节水农业及其生理生态基础[J]. 应用生态学报,1991,2(1):70−76. Shan L,Xu M. Water-saving agriculture and its physio-ecological bases[J]. Chinese Journal of Applied Ecology,1991,2(1):70−76.
[22] Han JM,Meng HF,Wang SY,Jiang CD,Liu F,et al. Variability of mesophyll conductance and its relationship with water use efficiency in cotton leaves under drought pretreatment[J]. J Plant Physiol,2016,194:61−71. doi: 10.1016/j.jplph.2016.03.014
[23] Von Caemmerer S,Farquhar GD. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves[J]. Planta,1981,153(4):376−387. doi: 10.1007/BF00384257
[24] Zhu K,Zuo QH,Liu FW,Qin JM,Wang AZ,et al. Divergences in leaf CO2 diffusion conductance and water use efficiency of soybean coping with water stress and its interaction with N addition[J]. Environ Exp Bot,2024,217:105572. doi: 10.1016/j.envexpbot.2023.105572
[25] Cano FJ,López R,Warren CR. Implications of the mesophyll conductance to CO2 for photosynthesis and water-use efficiency during long-term water stress and recovery in two contrasting Eucalyptus species[J]. Plant Cell Environ,2014,37(11):2470−2490. doi: 10.1111/pce.12325
[26] Von Caemmerer S,Evans JR,Hudson GS,Andrews TJ. The kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco[J]. Planta,1994,195(1):88−97. doi: 10.1007/BF00206296
[27] 崔兴国. 植物蒸腾作用与光合作用的关系[J]. 衡水师专学报,2002,4(3):55−56. Cui XG. Relation between the transpiration and the photosynthesis of plants[J]. Journal of Hengshui Normal College,2002,4(3):55−56.
[28] Zhu K,Yuan FH,Wang AZ,Yang H,Guan DX,et al. Effects of soil rewatering on mesophyll and stomatal conductance and the associated mechanisms involving leaf anatomy and some physiological activities in Manchurian ash and Mongolian oak in the Changbai Mountains[J]. Plant Physiol Biochem,2019,144:22−34. doi: 10.1016/j.plaphy.2019.09.025
[29] 张岁岐,李秧秧. 施肥促进作物水分利用机理及对产量影响的研究[J]. 水土保持研究,1996,3(1):185−191. Zhang SQ,Li YY. Study on effects of fertilizing on crop yield and its mechanism to raise water use efficiency[J]. Research of Soil and Water Conservation,1996,3(1):185−191.
[30] Lumactud RA,Dollete D,Liyanage DK,Szczyglowski K,Hill B,Thilakarathna MS. The effect of drought stress on nodulation,plant growth,and nitrogen fixation in soybean during early plant growth[J]. J Agron Crop Sci,2023,209(3):345−354. doi: 10.1111/jac.12627
-
其他相关附件
-
PDF格式
朱凯-附图 点击下载(178KB)
-