高级检索+

MeJA对薰衣草细胞中抗氧化物质合成影响的代谢组学分析

周笑如, 周昱成, 刘学, 刘春环, 杨成

周笑如,周昱成,刘学,刘春环,杨成. MeJA对薰衣草细胞中抗氧化物质合成影响的代谢组学分析[J]. 植物科学学报,2025,43(2):230−241. DOI: 10.11913/PSJ.2095-0837.24104
引用本文: 周笑如,周昱成,刘学,刘春环,杨成. MeJA对薰衣草细胞中抗氧化物质合成影响的代谢组学分析[J]. 植物科学学报,2025,43(2):230−241. DOI: 10.11913/PSJ.2095-0837.24104
Zhou XR,Zhou YC,Liu X,Liu CH,Yang C. Metabolomic analysis of the effects of MeJA on antioxidant compound synthesis in Lavandula angustifolia Mill. cells[J]. Plant Science Journal,2025,43(2):230−241. DOI: 10.11913/PSJ.2095-0837.24104
Citation: Zhou XR,Zhou YC,Liu X,Liu CH,Yang C. Metabolomic analysis of the effects of MeJA on antioxidant compound synthesis in Lavandula angustifolia Mill. cells[J]. Plant Science Journal,2025,43(2):230−241. DOI: 10.11913/PSJ.2095-0837.24104
周笑如,周昱成,刘学,刘春环,杨成. MeJA对薰衣草细胞中抗氧化物质合成影响的代谢组学分析[J]. 植物科学学报,2025,43(2):230−241. CSTR: 32231.14.PSJ.2095-0837.24104
引用本文: 周笑如,周昱成,刘学,刘春环,杨成. MeJA对薰衣草细胞中抗氧化物质合成影响的代谢组学分析[J]. 植物科学学报,2025,43(2):230−241. CSTR: 32231.14.PSJ.2095-0837.24104
Zhou XR,Zhou YC,Liu X,Liu CH,Yang C. Metabolomic analysis of the effects of MeJA on antioxidant compound synthesis in Lavandula angustifolia Mill. cells[J]. Plant Science Journal,2025,43(2):230−241. CSTR: 32231.14.PSJ.2095-0837.24104
Citation: Zhou XR,Zhou YC,Liu X,Liu CH,Yang C. Metabolomic analysis of the effects of MeJA on antioxidant compound synthesis in Lavandula angustifolia Mill. cells[J]. Plant Science Journal,2025,43(2):230−241. CSTR: 32231.14.PSJ.2095-0837.24104

MeJA对薰衣草细胞中抗氧化物质合成影响的代谢组学分析

基金项目: 

江苏省自然科学基金项目(BK20221069)。

详细信息
    作者简介:

    周笑如(1999−),女,硕士研究生,研究方向为植物组培活性成分(E-mail:xiaoru0901@163.com

    通讯作者:

    刘学: E-mail:xueliu@jiangnan.edu.cn

  • 中图分类号: Q942.6

Metabolomic analysis of the effects of MeJA on antioxidant compound synthesis in Lavandula angustifolia Mill. cells

  • 摘要:

    为了探究茉莉酸甲酯(MeJA)对薰衣草(Lavandula angustifolia Mill.)叶片悬浮细胞中抗氧化活性物质合成的影响,采用不同浓度的MeJA处理悬浮细胞,筛选出能够促进抗氧化物质合成的最佳条件,并通过非靶向代谢组学技术分析了MeJA对细胞代谢物合成的作用。结果显示:8 mg/L的MeJA显著抑制了薰衣草叶片悬浮细胞的生长和抗氧化活性;而2 mg/L的MeJA显著促进了抗氧化活性物的合成;与对照组相比,ABTS自由基清除率和FRAP值分别提高了1.30和2.56倍,总酚、总黄酮和总三萜含量分别增加了1.45、1.59和1.24倍。利用超高效液相色谱-四极杆飞行时间质谱(UHPLC-Q-TOF-MS)技术,对未处理组(CK)和2 mg/L MeJA处理组(MJ)进行代谢组学分析,共鉴定出1 403种代谢物,其中151种在两组间有显著差异。差异代谢物涉及177条代谢通路,主要富集于代谢信号转导通路和ABC转运蛋白通路。因此,MeJA可能主要通过影响代谢信号转导和调节ABC转运蛋白的功能影响薰衣草悬浮细胞中抗氧化活性物质的合成。

    Abstract:

    The effects of methyl jasmonate (MeJA) on the synthesis of antioxidant compounds in Lavandula angustifolia Mill. leaf suspension cells were investigated by introducing varying concentrations of MeJA into the culture medium. The optimal conditions for enhancing antioxidant synthesis were determined, and non-targeted metabolomics was employed to analyze the impact of MeJA on metabolite production. Results demonstrated that 8 mg/L MeJA inhibited both cell growth and antioxidant activity, whereas 2 mg/L MeJA significantly promoted the biosynthesis of antioxidant compounds. Compared with the untreated group, cells treated with 2 mg/L MeJA exhibited a 1.30-fold increase in ABTS radical scavenging activity and a 2.56-fold increase in ferric reducing antioxidant power (FRAP). Additionally, total phenol, flavonoid, and triterpene contents were elevated by 1.45-fold, 1.59-fold, and 1.24-fold, respectively. Metabolomic profiling using UHPLC-Q-TOF-MS identified 1 403 metabolites, with 151 showing significant differences between untreated and MeJA-treated cells. These differential metabolites were associated with 177 metabolic pathways, predominantly enriched in metabolic pathways and ABC transporter pathways. These findings suggest that MeJA modulates antioxidant biosynthesis in L. angustifolia suspension cells primarily by influencing metabolic signal transduction and regulating ABC transporter activity.

  • 图  1   MeJA对于叶片悬浮细胞生长状态的影响

    Figure  1.   Effects of MeJA on growth status of leaf suspension cells

    图  2   MeJA对叶片悬浮细胞鲜质量(A)和干质量(B)的影响

    Figure  2.   Effects of MeJA on fresh (A) and dry weight (B) of leaf suspension cells

    图  3   MeJA对叶片悬浮细胞抗氧化活性的影响

    Figure  3.   Effects of MeJA on antioxidant activity of leaf suspension cells

    *: P<0.05; **: P<0.01; ***: P<0.001.

    图  4   CK和MJ的PCA和OPLS-DA分析

    A:CK和MJ的PCA得分散点图;B:CK和MJ的OPLS-DA得分散点图;C:CK和MJ的OPLS-DA模型的置换检验结果。

    Figure  4.   PCA and OPLS-DA results for CK and MJ

    A: Scatterplot of PCA scores of CK and MJ; B: Scatterplot of OPLS-DA scores of CK and MJ; C: Permutation test results of OPLS-DA models for CK and MJ.

    图  5   典型差异代谢物的化学结构

    A:倒捻子素;B:槲皮素-3-甲基醚;C:紫丁香苷;D:紫罗兰酮。

    Figure  5.   Chemical structure of typical differential metabolites

    A: Mangostin; B: Quercetin-3-methyl ether; C: Syringin; D: α-Ionone.

    图  6   CK和MJ差异代谢物的含量变化(前20)

    红色表示含量上调,蓝色表示含量下降,柱形长度越大,表示差异倍数越大。

    Figure  6.   Differential metabolite content changes in CK and MJ (top 20)

    Red indicates upregulation, blue indicates downregulation, and greater bar length indicates greater multiplicity of variance.

    图  7   CK和MJ的差异代谢物KEGG通路富集

    气泡越大,表示该通路中富集到的差异代谢物数量越多;颜色越红,表示差异代谢物在该通路上的富集越显著。

    Figure  7.   KEGG pathway enrichment analysis of differential metabolites in CK and MJ

    Larger bubbles indicate greater amount of differential metabolite enriched in the pathway; redder color indicates more significant enrichment of differential metabolite in the pathway.

    表  1   MeJA对叶片悬浮细胞总酚、总黄酮、总三萜含量的影响

    Table  1   Effects of MeJA on total phenol, flavonoid, and triterpene contents in leaf suspension cells

    MeJA浓度
    Concentration of MeJA / mg/L
    总酚含量
    Phenol content / mg/g
    总黄酮含量
    Flavonoid content / mg/g
    总三萜含量
    Terpenoid content / mg/g
    0 54.60±1.08 240.07±32.53 133.45±12.29
    0.125 53.05±1.69 284.23±29.26 161.11±15.42
    0.25 63.10±1.36** 324.46±16.54* 166.90±4.57*
    0.5 59.35±2.48* 277.01±12.29 147.61±1.71
    1 63.31±1.59*** 330.00±8.41** 188.54±7.08**
    2 79.41±1.48*** 380.77±0.65** 165.63±10.92*
    4 69.59±1.43*** 415.46±4.03** 151.95±17.95
    8 57.11±0.58* 245.64±19.39 110.19±9.39
    Notes: *, P<0.05; **, P<0.01; ***, P<0.001.
    下载: 导出CSV

    表  2   CK和MJ的生物活性差异代谢物

    Table  2   Bioactive differential metabolites of CK and MJ

    类别
    Category
    化合物名称
    Compound name
    化学式
    Chemical formula
    加合离子
    Adduct
    P
    P value
    VIP值
    VIP value
    差异倍数
    Fold change
    黄酮类表儿茶素C15H14O6[M+H]+7.10×10−42.412.04
    3,4,6-三甲氧基异黄酮-7-O-β-D-吡喃葡萄糖苷C24H26O11[M+Na]+9.54×10−41.111.74
    丁香亭C17H14O8[M+H]+1.58×10−31.161.80
    栀子黄素BC19H18O7[M+H]+1.04×10−21.010.93
    次野鸢尾黄素C20H18O8[M+Na]+1.06×10−51.652.47
    根皮苷C21H24O10[M+H]+3.08×10−51.252.84
    补骨脂定C20H16O5[M+H]+7.56×10−51.031.84
    槲皮素-3-甲基醚C17H14O7[M+H]+1.31×10−41.692.97
    大豆苷C21H20O9[M+Cl]6.64×10−31.280.16
    酚酸类
    倒捻子素C24H26O6[M+H]+4.62×10−74.01359.35
    蛇床子素C15H16O3[M+H]+2.49×10−31.192.52
    胡黄连苷IIC23H28O13[M+H-H2O]+4.02×10−51.300.07
    佛手酚C11H6O4[M+H]+7.26×10−45.381.50
    紫丁香苷C17H24O9[M+Na]+1.48×10−31.284.85
    依托泊苷C29H32O13[M+H]+4.96×10−31.143.57
    阿魏酸C10H10O4[M-H]2.89×10−23.032.53
    凯林C14H12O5[M+H]+6.88×10−51.092.09
    状芸香素C16H14O3[M-H]5.07×10−51.251.56
    对香豆酸C9H8O3[M-H-H2O]4.34×10−21.030.43
    奎尼酸C11H9NO3[M-H]2.52×10−41.491.34
    萜类紫罗兰酮C13H20O[M+H-H2O]+1.87×10−21.081.69
    儿茶酚C6H6O2[M+H-3H2O]+6.89×10−41.472.18
    球姜酮C15H22O[M+H-H2O]+1.88×10−22.831.86
    18β-甘草次酸C30H46O4[M-H]1.89×10−44.852.15
    刺囊酸-3-O-葡萄糖苷C36H58O9[M-H]4.75×10−52.241.93
    人参皂苷F3C41H70O13[M+FA-H]1.72×10−25.130.68
    苜蓿酸+o-hexC35H54O11[M-H]9.41×10−41.823.35
    罗莎白素C36H58O10[M+Cl-]4.35×10−32.211.99
    生物碱类
    14-氨基喜树碱C20H17N3O4[M+H]+8.18×10−74.403.45
    托品酮C8H13NO[M+H]+1.43×10−22.242.46
    长春胺C21H26N2O3[M+H]+4.03×10−61.298.23
    醌类
    恩贝灵C17H26O4[M-H]3.60×10−33.401.40
    芪类
    紫檀芪C16H16O3[M+H]+7.51×10−41.371.55
    下载: 导出CSV
  • [1]

    Habán M,Korczyk-szabó J,Čerteková S,Ražná K. Lavandula species,their bioactive phytochemicals,and their biosynthetic regulation[J]. Int J Mol Sci,2023,24(10):8831. doi: 10.3390/ijms24108831

    [2]

    Dobros N,Zawada KD,Paradowska K. Phytochemical profiling,antioxidant and anti-inflammatory activity of plants belonging to the Lavandula genus[J]. Molecules,2022,28(1):256. doi: 10.3390/molecules28010256

    [3]

    Diass K,Merzouki M,Elfazazi K,Azzouzi H,Challioui A,et al. Essential oil of Lavandula officinalis:Chemical composition and antibacterial activities[J]. Plants (Basel),2023,12(7):1571. doi: 10.3390/plants12071571

    [4] 陈日道,段瑞刚,邹建华,李军伟,刘晓月,等. 八角莲愈伤组织中黄酮苷类化学成分研究[J]. 中国中药杂志,2016,41(1):87−91.

    Chen RD,Duan RG,Zou JH,Li JW,Liu XY,et al. Flavonoid glycosides from callus cultures of Dysosma versipellis[J]. China Journal of Chinese Materia Medica,2016,41(1):87−91.

    [5]

    Guerriero G,Berni R,Armando Muñoz-Sanchez J,Apone F,Abdel-Salam EM,et al. Production of plant secondary metabolites:examples,tips and suggestions for biotechnologists[J]. Genes (Basel),2018,9(6):309. doi: 10.3390/genes9060309

    [6] 冯晓晖,闫学彤,郑珂媛,周强,张伟中,等. 富含紫杉烷类红豆杉的离体培养[J]. 植物学报,2023,58(6):917−925. doi: 10.11983/CBB22228

    Feng XH,Yan XT,Zhen KY,Zhou Q,Zhang WZ,et al. In vitro culture of Taxus rich in taxanes[J]. Chinese Bulletin of Botany,2023,58(6):917−925. doi: 10.11983/CBB22228

    [7]

    Xu F,Valappil AK,Mathiyalagan R,Tran TNA,Ramadhania ZM,et al. In vitro cultivation and ginsenosides accumulation in Panax ginseng:a review[J]. Plants (Basel),2023,12(17):3165. doi: 10.3390/plants12173165

    [8]

    Luo C,Qiu JF,Zhang Y,Li MY,Liu P. Jasmonates coordinate secondary with primary metabolism[J]. Metabolites,2023,13(9):1008. doi: 10.3390/metabo13091008

    [9]

    Serna-escolano V,Valverde JM,García-pastor ME,Valero D,Castillo S,et al. Pre-harvest methyl jasmonate treatments increase antioxidant systems in lemon fruit without affecting yield or other fruit quality parameters[J]. J Sci Food Agric,2019,99(11):5035−5043. doi: 10.1002/jsfa.9746

    [10]

    Durand M,Besseau S,Papon N,Courdavault V. Unlocking plant bioactive pathways:omics data harnessing and machine learning assisting[J]. Curr Opin Biotechnol,2024,87:103135. doi: 10.1016/j.copbio.2024.103135

    [11]

    Durmaz G. Freeze-dried ABTS+ method:a ready-to-use radical powder to assess antioxidant capacity of vegetable oils[J]. Food Chem,2012,133(4):1658−1663. doi: 10.1016/j.foodchem.2012.02.064

    [12]

    Benzie IF,Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”:The FRAP assay[J]. Anal Biochem,1996,239(1):70−76. doi: 10.1006/abio.1996.0292

    [13] 林月乔,张子桦,续文丽,李楠,刘辉,陈鑫. 莽吉柿果壳不同萃取物中总黄酮、总酚含量及抗菌活性[J]. 食品工业,2022,43(12):130−133.

    Lin YQ,Zhang ZH,Xu WL,Li N,Liu H,Chen X. Content of total flavonoids,phenols and its antibacterial activities of different extracts from Garcinia mangostana[J]. The Food Industry,2022,43(12):130−133.

    [14] 黄梅桂,徐云巧,张忠明,应瑞峰,王耀松,王强. 薰衣草残渣中黄酮的超声辅助提取工艺及其抗氧化活性[J]. 食品工业科技,2018,39(1):214−220.

    Huang MG,Xu YQ,Zhang ZM,Ying RF,Wang YS,Wang Q. Flavonoids extracted by ultrasonic assisted method from lavender residue and its antioxidant activity[J]. Science and Technology of Food Industry,2018,39(1):214−220.

    [15] 陈楠,吴潇霞,白冰瑶,陈计峦. 响应面法优化枣渣总三萜提取工艺及其抗氧化、抗增殖活性[J]. 食品研究与开发,2022,43(10):147−155. doi: 10.12161/j.issn.1005-6521.2022.10.020

    Chen N,Wu XX,Bai BY,Chen JL. Optimization of extraction process of total triterpenoids from jujube residue by response surface methodology and the antioxidant and anti-proliferation activity[J]. Food Research and Development,2022,43(10):147−155. doi: 10.12161/j.issn.1005-6521.2022.10.020

    [16]

    Nyamundanda G,Brennan L,Gormley IC. Probabilistic principal component analysis for metabolomic data[J]. BMC Bioinformatics,2010,11(1):571. doi: 10.1186/1471-2105-11-571

    [17]

    Worley B,Powers R. Multivariate analysis in metabolomics[J]. Curr Metabolomics,2013,1(1):92−107.

    [18]

    Wishart DS,Feunang YD,Marcu A,Guo AC,Liang K,et al. HMDB 4.0:the human metabolome database for 2018[J]. Nucleic Acids Res,2018,46(D1):D608−D617. doi: 10.1093/nar/gkx1089

    [19]

    Kanehisa M,Furumichi M,Sato K,Kawashima M,Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes[J]. Nucleic Acids Res,2023,51(D1):D587−D592. doi: 10.1093/nar/gkac963

    [20]

    Świątek A,Lenjou M,van Bockstaele D,Inzé D,van Onckelen HA. Differential effect of jasmonic acid and abscisic acid on cell cycle progression in tobacco BY-2 cells[J]. Plant Physiol,2002,128(1):201−211. doi: 10.1104/pp.010592

    [21]

    Munteanu IG,Apetrei C. Analytical methods used in determining antioxidant activity:a review[J]. Int J Mol Sci,2021,22(7):3380. doi: 10.3390/ijms22073380

    [22]

    Tjahjani S,Widowati W,Khiong K,Suhendra A,Tjokropranoto R. Antioxidant properties of Garcinia mangostana L. (mangosteen) rind[J]. Procedia Chemistry,2014(13):198−203.

    [23] 杨东沛,张媛媛,叶火春,辜柳霜,冯岗,张静. α-倒捻子素对10种植物病原细菌的杀菌活性[J]. 热带农业科学,2023,43(6):45−50.

    Yang DP,Zhang YY,Ye HC,Gu LS,Feng G,Zhang J. Bactericidal activity of α-mangostin against ten kinds of plant pathogenic bacteria[J]. Chinese Journal of Tropical Agriculture,2023,43(6):45−50.

    [24] 马林伟,徐红涛,戴小丽,韩中保. α-倒捻子素对MCF-7乳腺癌增殖、生长和侵袭的影响及其作用机制[J]. 中国现代医学杂志,2018,28(1):30−36. doi: 10.3969/j.issn.1005-8982.2018.01.007

    Ma LW,Xu HT,Dai XL,Han ZB. Effect of α-mangostin on proliferation,growth and invasion of MCF-7 breast cancer and its mechanism[J]. China Journal of Modern Medicine,2018,28(1):30−36. doi: 10.3969/j.issn.1005-8982.2018.01.007

    [25]

    Huang YQ,Cai SG,Ye LZ,Hu HL,Li CD,et al. The effects of GA and ABA treatments on metabolite profile of germinating barley[J]. Food Chem,2016(192):928−933.

    [26]

    Dong YJ,Wu YX,Zhang ZX,Wang SC,Cheng J,et al. Transcriptomic analysis reveals GA3 is involved in regulating flavonoid metabolism in grape development for facility cultivation[J]. Mol Genet Genomics,2023,298(4):845−855. doi: 10.1007/s00438-023-02019-z

    [27]

    Yao XH,Nie J,Bai RX,Sui XL. Amino acid transporters in plants:identification and function[J]. Plants (Basel),2020,9(8):972. doi: 10.3390/plants9080972

    [28]

    Arruda P,Barreto P. Lysine catabolism through the saccharopine pathway:Enzymes and intermediates involved in plant responses to abiotic and biotic stress[J]. Front Plant Sci,2020,11:587. doi: 10.3389/fpls.2020.00587

    [29]

    Galili G,Amir R,Fernie AR. The regulation of essential amino acid synthesis and accumulation in plants[J]. Annu Rev Plant Biol,2016,67:153−178. doi: 10.1146/annurev-arplant-043015-112213

    [30]

    Yang QQ,Zhao DS,Zhang CQ,Wu HY,Li QF,et al. A connection between lysine and serotonin metabolism in rice endosperm[J]. Plant Physiol,2018,176(3):1965−1980. doi: 10.1104/pp.17.01283

    [31]

    Forde BG,Lea PJ. Glutamate in plants:metabolism,regulation,and signalling[J]. J Exp Bot,2007,58(9):2339−2358. doi: 10.1093/jxb/erm121

    [32]

    Van den Ende W,El-esawe SK. Sucrose signaling pathways leading to fructan and anthocyanin accumulation:a dual function in abiotic and biotic stress responses?[J]. Environ Exp Bot,2014,108:4−13. doi: 10.1016/j.envexpbot.2013.09.017

    [33]

    Emanuelle S,Doblin MS,Stapleton DI,Bacic A,Gooley PR. Molecular insights into the enigmatic metabolic regulator,SnRK1[J]. Trends Plant Sci,2016,21(4):341−353. doi: 10.1016/j.tplants.2015.11.001

    [34]

    Yu SM,Lo SF,Ho THD. Source-sink communication:regulated by hormone,nutrient,and stress cross-signaling[J]. Trends Plant Sci,2015,20(12):844−857. doi: 10.1016/j.tplants.2015.10.009

    [35]

    Wurtzel ET,Kutchan TM. Plant metabolism,the diverse chemistry set of the future[J]. Science,2016,353(6305):1232−1236. doi: 10.1126/science.aad2062

    [36]

    Do THT,Martinoia E,Lee Y,Hwang JU. 2021 update on ATP-binding cassette (ABC) transporters:how they meet the needs of plants[J]. Plant Physiol,2021,187(4):1876−1892. doi: 10.1093/plphys/kiab193

    [37]

    Shitan N,Bazin I,Dan K,Obata K,Kigawa K,et al. Involvement of CjMDR1,a plant multidrug-resistance-type ATP-binding cassette protein,in alkaloid transport in Coptis japonica[J]. Proc Natl Acad Sci USA,2003,100(2):751−756. doi: 10.1073/pnas.0134257100

    [38]

    Goodman CD,Casati P,Walbot V. A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays[J]. Plant Cell,2004,16(7):1812−1826. doi: 10.1105/tpc.022574

    [39]

    Sagharyan M,Sharifi M,Samari E. Methyl jasmonate redirects the dynamics of carbohydrates and amino acids toward the lignans accumulation in Linum album cells[J]. Plant Physiol Biochem,2023,198:107677. doi: 10.1016/j.plaphy.2023.107677

图(7)  /  表(2)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  30
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-18
  • 录用日期:  2024-06-21
  • 刊出日期:  2025-04-29

目录

    /

    返回文章
    返回