高级检索+

亚热带常绿阔叶林冠层附生植物叶片形态结构及生理功能特征的适应性研究

江浩, 黄钰辉, 周国逸, 胡晓颖, 刘世忠, 唐旭利

江浩, 黄钰辉, 周国逸, 胡晓颖, 刘世忠, 唐旭利. 亚热带常绿阔叶林冠层附生植物叶片形态结构及生理功能特征的适应性研究[J]. 植物科学学报, 2012, (3): 250-260. DOI: 10.3724/SP.J.1142.2012.30250
引用本文: 江浩, 黄钰辉, 周国逸, 胡晓颖, 刘世忠, 唐旭利. 亚热带常绿阔叶林冠层附生植物叶片形态结构及生理功能特征的适应性研究[J]. 植物科学学报, 2012, (3): 250-260. DOI: 10.3724/SP.J.1142.2012.30250
JIANG Hao, HUANG Yu-Hui, ZHOU Guo-Yi, HU Xiao-Ying, LIU Shi-Zhong, TANG Xu-Li. Acclimation in Leaf Morphological and Eco-physiological Characteristics of Different Canopy-dwelling Epiphytes in a Lower Subtropical Evergreen Broad-leaved Forest[J]. Plant Science Journal, 2012, (3): 250-260. DOI: 10.3724/SP.J.1142.2012.30250
Citation: JIANG Hao, HUANG Yu-Hui, ZHOU Guo-Yi, HU Xiao-Ying, LIU Shi-Zhong, TANG Xu-Li. Acclimation in Leaf Morphological and Eco-physiological Characteristics of Different Canopy-dwelling Epiphytes in a Lower Subtropical Evergreen Broad-leaved Forest[J]. Plant Science Journal, 2012, (3): 250-260. DOI: 10.3724/SP.J.1142.2012.30250
江浩, 黄钰辉, 周国逸, 胡晓颖, 刘世忠, 唐旭利. 亚热带常绿阔叶林冠层附生植物叶片形态结构及生理功能特征的适应性研究[J]. 植物科学学报, 2012, (3): 250-260. CSTR: 32231.14.SP.J.1142.2012.30250
引用本文: 江浩, 黄钰辉, 周国逸, 胡晓颖, 刘世忠, 唐旭利. 亚热带常绿阔叶林冠层附生植物叶片形态结构及生理功能特征的适应性研究[J]. 植物科学学报, 2012, (3): 250-260. CSTR: 32231.14.SP.J.1142.2012.30250
JIANG Hao, HUANG Yu-Hui, ZHOU Guo-Yi, HU Xiao-Ying, LIU Shi-Zhong, TANG Xu-Li. Acclimation in Leaf Morphological and Eco-physiological Characteristics of Different Canopy-dwelling Epiphytes in a Lower Subtropical Evergreen Broad-leaved Forest[J]. Plant Science Journal, 2012, (3): 250-260. CSTR: 32231.14.SP.J.1142.2012.30250
Citation: JIANG Hao, HUANG Yu-Hui, ZHOU Guo-Yi, HU Xiao-Ying, LIU Shi-Zhong, TANG Xu-Li. Acclimation in Leaf Morphological and Eco-physiological Characteristics of Different Canopy-dwelling Epiphytes in a Lower Subtropical Evergreen Broad-leaved Forest[J]. Plant Science Journal, 2012, (3): 250-260. CSTR: 32231.14.SP.J.1142.2012.30250

亚热带常绿阔叶林冠层附生植物叶片形态结构及生理功能特征的适应性研究

基金项目: 国家基金青年项目(30800140); 广东省自然科学基金项目(8451065005001319); 中国科学院知识创新工程青年人才领域前沿项目。
详细信息
    通讯作者:

    唐旭利, E-mail: xltang@scib.ac.cn

  • 中图分类号: Q945.79

Acclimation in Leaf Morphological and Eco-physiological Characteristics of Different Canopy-dwelling Epiphytes in a Lower Subtropical Evergreen Broad-leaved Forest

  • 摘要: 以南亚热带常绿阔叶林林冠层不同部位的4种附生植物:瓜子金(Dischidia chinensis Champ.ex Benth.)、蔓九节(Psychotria serpens L.)、白背瓜馥木(Fissistigma glaucescens (Hance) Merr.)和山蒌(Piper hancei Maxim.)为研究对象,比较其叶片解剖结构和光合、蒸腾等生理特性,探讨附生植物叶片形态结构、生理生态功能对冠层不同部位水、热和光资源的适应以及叶片形态结构与生理生态功能的联系。结果表明:着生在冠层上部的两种附生植物瓜子金和蔓九节叶片小而厚(厚度分别为3558±63 μm和217.1±33.1 μm),气孔面积小(分别为 185.7±3.7 μm2和225.4±5.2 μm2)且覆盖角质膜,有利于降低蒸腾速率(两者分别为0.17±0.02 mmol H2O和0.34±0.05 mmol H2O),提高水分利用效率WUE(分别为11.35±0.87 μmol CO2/mmol H2O和7.88±1.31 μmol CO2/mmol H2O),更适应冠层顶部高温、低湿、强光照的生境。这些结构特征却不利于气体交换,会致使瓜子金和蔓九节的光合作用降低(二者最大净光合速率Pmax分别为2.2±0.1 μmol CO2·m-2·s-1和3.2±0.4 μmol CO2·m-2·s-1)。冠层中下部的白背瓜馥木和山蒌叶片相对较薄(厚度分别为90.8±9.9 μm和114.9±18.2 μm),气孔面积较大(分别为260.6±6.3 μm2和362.5±8.7 μm2),叶肉细胞分化明显,海绵组织排列松散,有利于提高对弱光的利用,增强光合能力(二者Pmax分别为9.5±1.3 μmol CO2·m-2·s-1和7.1±0.8 μmol CO2·m-2·s-1,是瓜子金和蔓九节Pmax的3~4倍),更适应冠层中下部低温、高湿、弱光照环境。这些结构同时会导致白背瓜馥木和山蒌蒸腾速率提高(两者分别为0.67±0.10 mmol H2O和0.74±0.13 mmol H2O),WUE下降(分别为4.4±1.0 μmol CO2/mmol H2O和3.4±0.9 μmol CO2/mmol H2O,仅为瓜子金和蔓九节WUE的30%~48%)。这表明着生在林冠层不同部位的附生植物叶片形态结构特征随着光合有效辐射、温度、湿度等微环境因子的变化表现出显著的差异,并致使各自的生理生态功能发生了相应的适应,是植物适应环境条件的重要表现。
    Abstract: Epiphytes have been well characterized in terms of the morphological and eco-physiological traits that permit them to thrive in the complex forest canopy.Our aim was to characterize and analyze the morphological and eco-physiological traits of different canopy-dwelling epiphytes in a lower subtropical evergreen broad-leaved forest in Southern China.Results showed that the differences in morphological and eco-physiological characteristics between the upper and lower canopy-dwelling epiphytes were largely explained by changes in environmental factors such as photosynthetic active radiation (PAR),temperature,and humidity within the complex forest canopy.Two epiphytes,Dischidia chinensis and Psychotria serpens located in the upper canopy had low Tr (0.17±0.02 mmol H2O and 0.34±0.05 mmol H2O,respectively) and low Pmax (2.2±0.1 μmol CO2·m-2·s-1 and 3.2±0.4 μmol CO2·m-2·s-1,respectively) associated with thick leaf (558±63 μm and 217.1±33.1 μm,respectively) and small stomata size (185.7±3.7 μm2 and 225.4±5.2 μm2,respectively) to adapt to their upper dwelling environments (high temperature,low air humidity and high PAR).At the same time,the special structures led to high WUE (11.35±0.87 μmol CO2/mmol H2O and 7.88±1.31 μmol CO2/mmol H2O,respectively).However,the lower canopy-dwelling epiphytes Fissistigma glaucescens and Piper hancei had thin leaf (90.8±9.9 μm and 114.9±18.2 μm,respectively) and large stomata size (260.6±6.3 μm2 and 362.5±8.7 μm2,respectively).The ratios of palisade to spongy tissues thickness (P/S),the thickness of leaf epidermis thickness and other structures also changed with various canopy-dwelling heights.In comparison with Dischidia chinensis and Psychotria serpens located at upper canopy-dwelling conditions, Fissistigma glaucescens and Piper hancei showed high Pmax (9.5±1.3 μmol CO2·m-2·s-1 and 7.1±0.8 μmol CO2·m-2·s-1,respectively),high Tr (0.67±0.10 mmol H2O and 0.74±0.13 mmol H2O,respectively),and low WUE (4.4±1.0 μmol CO2/mmol H2O and 3.4±0.9 μmol CO2/mmol H2O,respectively),which was 1.2-3.3 times (Pmax), 1.2-2.3 times (Tr),and 30%-48% higher (WUE).
  • [1] Basset Y,Horlyck V,Wright S J.The Conservation of Forest Canopies: Policy and Science[M].Panama: Smithsonian Tropical Research Institute and UNEP Press,2003: 37-54.
    [2] Hammond P M,Kitching R L,Stork N E.The composition and richness of the tree-crown Coleoptera assemblage in an Australian subtropical forest[J].Ecotropica,1999,2: 99.
    [3] Parker G G,Lowman M D,Nadkami N M.Structure and Microclimate of Forest Canopies[M].San Diego: Academic Press,1995: 73-106.
    [4] Nadkarni N M.Biomass and mineral capital of epiphytes in an Acer macrophullum community of a temperate moist coniferous forest,Olympic Peninsula,Washington State[J].Can J Bot,1984,62: 2223-2228.
    [5] Lowman M D,Nadkarni N M.Forest Canopy[M],San Diego: Academic Press,1995: 3-119.
    [6] 刘晓东,朱春泉,雷静品.杨树人工林冠层光合辐射分布的研究[J].林业科学,2000,36(3): 2-7.
    [7] Vierling L A,Wessman C A.Photosynthetically active radiation heterogeneity within a monodominant Congolese rain forest canopy[J].Agr Forest Meteorol,2000,103: 265-278.
    [8] Nadkarni N M,Solano R.Potential effects of climate change on canopy communities in a tropical cloud forest: an experimental approach[J].Oecologia,2002,131: 580-586.
    [9] Wolf J H D,Flamenco A.Patterns in species richness and distribution of vascular epiphytes in Chiapas,Mexico[J].J Biogeogr,2003,30: 1689-1707.
    [10] Kreft H,Kster N,Kuper W,Nieder J,et al.Diversity and biogeography of vascular epiphytes in Western Amazonian,Yasuní[J].E J Biogeogr,2004,31: 1463-1476.
    [11] 王勋陵,王静.植物形态结构与环境[M].兰州: 兰州大学出版社,1989: 1-90.
    [12] Holbrook N M,Putz F E.From epiphyte to tree: differences in leaf structure and leaf water relations associated with the transition in growth form in eight species of hemiepiphytes[J].Plant Cell Environ,1996,19: 631-642.
    [13] Givnish T J.Adaption to sun and shade: a whole-plant perspective[J].Aust J Plant Physiol,1988,15: 63-92.
    [14] Putz F E,Mooney H A.The Biology of Vines[M].London: Cambridge University Press,1991: 214-216.
    [15] Mendes M M,Gazarini L C,Rodrigures M L.Acclimation of Myrtus communis to contrasting Mediterranean light environments effects on structure and chemical composition of foliage and plant water relations[J].Environ Exp Bot,2001,45: 165-187.
    [16] 蔡永立,宋永昌.浙江天童常绿阔叶林藤本植物的适应生态学: 叶片解剖特征的比较[J].植物生态学报,2001,25(1): 90-98.
    [17] Urbas P.Adaptive and inevitable morphological of three herbaceous species in a multi-species community: field experiment with manipulated nutrients and light[J].Acta Oecologic,2000,21: 139-147.
    [18] 李芳兰,包维楷.植物叶片形态解剖结构对环境变化的响应与适应[J].植物学通报,2005,22: 118-127.
    [19] 江浩,周国逸,黄钰辉,等.南亚热带常绿阔叶林林冠不同部位藤本植物的光合生理特征及其对环境因子的适应[J].植物生态学报,2011,35(5): 567-576.
    [20] 闫俊华,周国逸,韦琴.鼎湖山季风常绿阔叶林小气候特征分析[J].武汉植物学研究,2000,18(5): 397-404.
    [21] 易俗,黄忠良,欧阳学军.鼎湖山生物圈保护区层间植物物种多样性的研究[J].生物多样性,2001,9(1): 56-61.
    [22] Putz F E,Holbrook N M.Notes on the nature history of hemiepiphytes[J].Selbyana,1986,9: 61-91.
    [23] Benavides D A M,Duque M A J,Duivenvoorden J F,et al.A first quantitative census of vascular epiphytes in rain forest of Colombian Amazonia[J].Biodivers Consevr,2005,14: 739-758.
    [24] Benzing D H,Vascular epiphytism: Taxonomic participation and adaptive diversity[J].Ann Mo Bot Gard,1987,74: 183-204.
    [25] Zotz G,Andrade J L.Water relations of two co-occurring epiphytic bromeliads[J].J Plant Physiol,1998,152: 545-554.
    [26] 胡晓颖,徐信兰,王学海.三种兰花蕉叶表皮形态特征的比较研究[J].云南农业大学学报,1999,14(4): 26-29.
    [27] 李鸣,高光跃,冯毓秀.獐牙菜属生药形态组织学的研究Ⅱ.叶片的比较微形态学研究[J].天然产物研究与开发,1994,6(4): 40-47.
    [28] Thomas S C,Bazzaz F A.Asymptotic height as a predictor of photosynthetic characteristics in Malaysian rain forest trees[J].Ecology,1999,80(5): 1607-1622.
    [29] 潘瑞炽.植物生理学[M].第4版.北京: 高等教育出版社,2001: 55-57,91-95.
    [30] 张弥,吴家兵,关德新,等.长白山阔叶红松林主要树种光合作用的光响应曲线[J].应用生态学报,2006,17(9):1575-1578.
    [31] Richardson A D,Beryln G.Spectral reflectance and photosynthetic properties of Betula papyrifera leaves along an elevational gradient on Mansfied,Vermount,USA[J].Am J Bot,2002,89(1): 88-94.
    [32] Herrick J D,Thomas R B.Effects of CO2 enrichment on the photosynthetic light response of sun and shade leaves of canopy sweetgum trees (Li-quidambar styraciflun) in a forest ecosystem[J].Tree Physiology,1999,19: 779-786.
    [33] Wu F Z,Bao W K,Li L F,Wu N.Effects of water stress and nitrogen supply on leaf gas exchange and fluorescence parameters of Sophora davidii seedlings[J].Photosynthetica,2008,46: 40-48.
    [34] 曾小平,赵平,蔡锡安,等.25种南亚热带植物耐阴性的初步研究[J].北京林业大学学报,2006,28(4): 88-95.
    [35] 冯玉龙,曹坤芳,冯志立,等.四种热带雨林树种幼苗比叶重、光合特性和暗呼吸对生长光环境的适应[J].生态学报,2002,22(6): 901-910.
    [36] 苏培玺,张立新.胡杨不同叶形光合特性、水分利用效率及其对加富CO2的响应[J].植物生态学报,2003,27: 34-40.
    [37] 高松,苏培玺,严巧娣,等.C4荒漠植物猪毛菜与本土猪毛菜的叶片解剖结构及光合生理特性[J].植物生态学报,2009,33(2): 347-354.
    [38] 贺金生,陈伟烈,王勋陵.高山栎叶的形态结构及其与生态环境的关系[J].植物生态学报,1994,18(3): 219-227.
    [39] Roscas G,Scarano F R.Leaf anatomical variation in Alchornea triplinervia(Spreng)Mull.Arg.(Euphorbiaceae)under distinct light and soil water regimes[J].Bot J Linn Soc,2001,136: 231-238.
    [40] Lambers H,Chapin Ⅲ F S,Pons T L.Plant Physiological Ecology[M].New York: Springer Press,2003: 14-16.
    [41] Chartzoulakis K,Patskas A,Kofidis G,et al.Water stress affects leaf anatomy,gas exchange,water relations and growth of two avocado cultivers[J].Scientia Horticulture,2003,95: 39-50.
    [42] Terashima L,Wong S C,Osmond C B,et al.Characteristation of non-uniform photosynthesis induced by abscisic acid in leaves having different mesophyll anatomies[J].Plant Cell Environ,1988,29: 385-394.
计量
  • 文章访问数:  4918
  • HTML全文浏览量:  0
  • PDF下载量:  1940
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-28
  • 修回日期:  2012-01-03
  • 发布日期:  2012-06-29

目录

    /

    返回文章
    返回