高级检索+

脂肪族芥子油苷侧链修饰酶基因FMOGS-OX4表达模式分析

赵宇, 孔稳稳, 沙伟, 李晶

赵宇, 孔稳稳, 沙伟, 李晶. 脂肪族芥子油苷侧链修饰酶基因FMOGS-OX4表达模式分析[J]. 植物科学学报, 2013, 31(4): 406-414. DOI: 10.3724/SP.J.1142.2013.40406
引用本文: 赵宇, 孔稳稳, 沙伟, 李晶. 脂肪族芥子油苷侧链修饰酶基因FMOGS-OX4表达模式分析[J]. 植物科学学报, 2013, 31(4): 406-414. DOI: 10.3724/SP.J.1142.2013.40406
ZHAO Yu, KONG Wen-Wen, SHA Wei, LI Jing. Expression Pattern of FMOGS-OX4, a Biosynthetic Gene Involved in Aliphatic Glucosinolate Side-chain Modification[J]. Plant Science Journal, 2013, 31(4): 406-414. DOI: 10.3724/SP.J.1142.2013.40406
Citation: ZHAO Yu, KONG Wen-Wen, SHA Wei, LI Jing. Expression Pattern of FMOGS-OX4, a Biosynthetic Gene Involved in Aliphatic Glucosinolate Side-chain Modification[J]. Plant Science Journal, 2013, 31(4): 406-414. DOI: 10.3724/SP.J.1142.2013.40406
赵宇, 孔稳稳, 沙伟, 李晶. 脂肪族芥子油苷侧链修饰酶基因FMOGS-OX4表达模式分析[J]. 植物科学学报, 2013, 31(4): 406-414. CSTR: 32231.14.SP.J.1142.2013.40406
引用本文: 赵宇, 孔稳稳, 沙伟, 李晶. 脂肪族芥子油苷侧链修饰酶基因FMOGS-OX4表达模式分析[J]. 植物科学学报, 2013, 31(4): 406-414. CSTR: 32231.14.SP.J.1142.2013.40406
ZHAO Yu, KONG Wen-Wen, SHA Wei, LI Jing. Expression Pattern of FMOGS-OX4, a Biosynthetic Gene Involved in Aliphatic Glucosinolate Side-chain Modification[J]. Plant Science Journal, 2013, 31(4): 406-414. CSTR: 32231.14.SP.J.1142.2013.40406
Citation: ZHAO Yu, KONG Wen-Wen, SHA Wei, LI Jing. Expression Pattern of FMOGS-OX4, a Biosynthetic Gene Involved in Aliphatic Glucosinolate Side-chain Modification[J]. Plant Science Journal, 2013, 31(4): 406-414. CSTR: 32231.14.SP.J.1142.2013.40406

脂肪族芥子油苷侧链修饰酶基因FMOGS-OX4表达模式分析

基金项目: 黑龙江省高等学校科技创新团队建设计划项目(2011TD005);黑龙江省留学归国科学基金项目(LC2009C31)。
详细信息
    作者简介:

    赵宇(1986-),女,硕士,研究方向为植物遗传学(E-mail:zhaoyu860125@126.om)。

    通讯作者:

    沙伟,教授,博士生导师,E-mail:shw1129@267.net

    李晶,教授,博士生导师,E-mail:lijing@neau.edu.cn

  • 中图分类号: Q946.83+9

Expression Pattern of FMOGS-OX4, a Biosynthetic Gene Involved in Aliphatic Glucosinolate Side-chain Modification

  • 摘要: 芥子油苷是一类由氨基酸衍生而来的、在植物抗生物胁迫防御性反应中起重要作用的次生代谢产物,其生物活性与侧链结构密切相关。拟南芥中有5个黄素单氧化酶FMOGS-OX1-5具有催化芥子油苷侧链上硫原子氧化的活性,使甲基硫烷芥子油苷转变为甲基亚磺酰烷芥子油苷。前期研究工作表明,在5个FMOGS-OX基因缺失突变体中,除了fmogs-ox4外均表现出芥子油苷侧链结构变化的表型。为了深入揭示FMOGS-OX4的表达特性和它对芥子油苷侧链的修饰作用,利用GFP和GUS为报告基因,系统地分析了FMOGS-OX4在不同组织中的表达情况。结果表明FMOGS-OX4主要在花梗、叶片及角果的维管组织中表达,在正常生长条件下,FMOGS-OX4表达的空间位置与芥子油苷的分布不重叠,因而,酶与底物的分离可能是fmogs-ox4没有明显表型的主要原因。
    Abstract: Glucosinolates(GSLs)are amino acid-derived secondary metabolites,which play an important role in biotic defense reactions in plants.The bioactivity of GSLs is closely related with its chain structure.There are five Flavin-containing Monooxygenase(FMO)enzymes,FMOGS-OX1-5,involved in GSL biosynthesis catalyzing the S-oxygenation from Methylthioalkyl GSLs to Methylsulfinylalkyl GSLs.Our previous work showed that all fmogs-ox mutants,except fmogs-ox4,presented altered GSLs phenotypes.To reveal the expression characteristics and functions in GSLs biosynthesis and chain structure modification,GFP and GUS were used as reporter genes,expression pattern of FMOGS-OX4 in different tissue was analyzed and results showed that FMOGS-OX4 was expressed mainly in the vascular tissue of the leaf,stem and silique.Under normal conditions,spatial distribution of FMOGS-OX4 did not overlap with the distribution of its substrates,which was considered as the reason why fmogs-ox4 lacked altered GSLs phenotype.
  • [1] Lee S,Kaminaga Y,Cooper B,Pichersky E,Dudareva N,Chapple C.Benzoylation and sinapoylation of glucosinolate R-groups in Arabidopsis[J].Plant J,2012,72(3):411-422.
    [2] Fahey J W,Zalcmann A T,Talalay P.The chemical diversity and distribution of glucosinolates and isothiocyanates among plants[J].Phytochemistry,2001,56:5-51.
    [3] Kliebenstein D J,Gershenzon J,Mitchell-Olds T.Comparative quantitative trait loci mapping of aliphatic,indolic and benzylic glucosinolate production in Arabidopsis thaliana leaves and seeds[J].Genetics,2001,159(1):359-370.
    [4] Tierens K F,Thomma B P,Brouwer M,Schmidt J,Kistner K,Porzel A,Mauch-Mani B,Cammue B P,Broekaert W F.Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens[J].Plant Physiol,2001,125(4):1688-1699.
    [5] 程坤,杨丽梅,方智远,刘玉梅,庄木,张扬勇,孙培田.十字花科植物中主要硫代葡萄糖苷合成与调节基因的研究进展[J].中国蔬菜,2010,12:1-6.
    [6] 袁高峰,陈思学,汪俏梅.芥子油苷及其代谢产物的生物学效应研究与应用[J].核农学报,2009,23(4):664-668.
    [7] Fahey J W,Haristoy X,Dolan P M,Kensler T W,Scholtus I,Stephenson K K,Talalay P,Lozniewski A.Sulforaphane inhibits extracellular,intracellular,and antibiotic-resistant strains of helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors[J].Proc Natl Acad Sci USA,2002,99(11):7610-7615.
    [8] Rose P,Huang Q,Ong C N,Whiteman M.Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells[J].Toxicology Appl Pharmacol,2005,209(2):105-113.
    [9] Talalay P,Fahey J W,Healy Z R,Wehage S L,Benedict A L,Min C,Dinkova-Kostova A T.Sulforaphane mobilizes cellular defenses that protect skin against damage by UV radiation[J].Proc Natl Acad Sci USA,2007,104(44):17500-17505.
    [10] Schlaich N L.Flavin-containing monooxygenases in plants:looking beyond detox[J].Trends Plant Sci,2007,12(9):412-418.
    [11] Li J,Hansen B G,Ober J A,Kliebenstein D J,Halkier B A.Subclade of flavin-monooxygenases involved in aliphatic glucosinolate biosynthesis[J].Plant Physiol,2008,148(3):1721-1733.
    [12] Hansen B G,Kliebenstein D J,Halkier B A.Identification of a flavin monoxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis[J].Plant J,2007,50(5):902-910.
    [13] Schuster J,Knill T,Reichelt M,Gershenzon J,Binder S.Branched-chain aminotransferase 4 is part of the chain elongation pathway in the biosynthesis of methionine-derived glucosinolates in Arabidopsis[J].Plant Cell,2006,18(10):2664-2679.
    [14] Mikkelsen M D,Hansen C H,Wittstock U,Halkier B A.Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime,a precursor of indole glucosinolates and indole-3-acetic acid[J].J Biol Chem,2000,275(43):33712-33717.
    [15] Reintanz B,Lehnen M,Reichelt M,Gershenzon J,Kowalczyk M,Sandberg G,Godde M,Uhl R,Palme K.Bus,a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates[J].Plant Cell,2001,13(2):351-367.
    [16] Tantikanjana T,Yong J W,Letham D S,Griffith M,Hussain M,Ljung K,Sandberg G,Sundaresan V.Control of axillary bud initiation and shoot architecture in Arabidopsis through the SUPERSHOOT gene[J].Gene Dev,2001,15:1577-1588.
    [17] Grubb C D,Zipp B J,Ludwig-Müller J,Masuno M N,Molinski T F,Abel S.Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis[J].Plant J,2004,40:893-908.
    [18] Levy M,Wang Q,Kaspi R,Parrella M P,Abel S.Arabidopsis IQD1,a novel calmodulin-binding nuclear protein,stimulates glucosinolate accumulation and plant defense[J].Plant J,2005,43(1):79-96.
    [19] Skirycz A,Reichelt M,Burow M,Birkemeyer C,Rolcik J,Kopka J,Zanor M I,Gershenzon J,Strnad M,Szopa J,Mueller-Roeber B,Witt I.DOF transcription factor AtDof1.1(OBP2)is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis[J].Plant J,2006,47(1):10-24.
    [20] Textor S,de Kraker J W,Hause B,Gershenzon J,Tokuhisa J G.MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis[J].Plant Physiol,2007,144:60-71.
    [21] Chen S,Glawischnig E,Jrgensen K,Naur P,Jrgensen B,Olsen C E,Hansen C H,Rasmussen H,Pickett J A,Halkier B A.CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphaticglucosinolates in Arabidopsis[J].Plant J,2003,33:923-937.
    [22] Naur P,Petersen B L,Mikkelsen M D,Bak S,Rasmussen H,Olsen C E,Halkier B A.CYP83A1 and CYP83B1,two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis[J].Plant Physiol,2003,133:63-72.
    [23] Klein M,Reichelt M,Gershenzon J,Papenbrock J.The three desulfoglucosinolate sulfotransferase proteins in Arabidopsis have different substrate specificities and are differentially expressed[J].FEBS J,2006,273:122-136.
    [24] Li J,Kristiansen K A,Hansen B G,Halkier B A.Cellular and subcellular localization of flavin-monooxygenases involved in glucosinolate biosynthesis[J].J Exp Bot,2011,62(3):1337-1346.
    [25] Nour-Eldin HH,Hansen B G, Norholm M H,Jensen J K,Halkier B A.Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments[J].Nucleic Acids Res,2006,34(18):e122.
    [26] Clough S J,Bent A F.Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J].Plant J,1998,16(6):735-743.
    [27] Jefferson R A,Kavanagh T A,Bevan M W.GUS fusions:-glucuronidase as a sensitive and versatile gene fusion marker in higher plants[J].EMBO J,1987,6(13):3901-3907.
    [28] Peleman J,Saito K,Cottyn B,Engler G,Seurinck J,Montagu M V,Inze D.Structure and expression analyses of the S-adenosyl synthetase gene family in Arabidopsis thaliana[J].Gene,1989,84:359-369.
    [29] Shroff R,Vergara F,Muck A,Svatos A,Gershenzon J.Nonuniform distribution of glucosinolates in Arabidopsisthaliana leaves has important consequences for plant defense[J].Proc Natl Acad Sci USA,2008,105(16):6196-6201.
    [30] Koroleva O A,Davies A,Deeken R,Thorpe M R,Tomos A D,Hedrich R.Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk[J].Plant Physiol,2000,124:599-608.
计量
  • 文章访问数:  1597
  • HTML全文浏览量:  4
  • PDF下载量:  2451
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-09
  • 修回日期:  2013-03-31
  • 发布日期:  2013-08-29

目录

    /

    返回文章
    返回