高级检索+

抱茎独行菜种皮粘液质相关基因TTG1的克隆、表达分析及功能鉴定

曹婧, 徐栋生, 黄代红, 袁军文, 赵娟, 王文艳, 兰海燕

曹婧, 徐栋生, 黄代红, 袁军文, 赵娟, 王文艳, 兰海燕. 抱茎独行菜种皮粘液质相关基因TTG1的克隆、表达分析及功能鉴定[J]. 植物科学学报, 2014, 32(4): 371-382. DOI: 10.3724/SP.J.1142.2014.40371
引用本文: 曹婧, 徐栋生, 黄代红, 袁军文, 赵娟, 王文艳, 兰海燕. 抱茎独行菜种皮粘液质相关基因TTG1的克隆、表达分析及功能鉴定[J]. 植物科学学报, 2014, 32(4): 371-382. DOI: 10.3724/SP.J.1142.2014.40371
CAO Jing, XU Dong-Sheng, HUANG Dai-Hong, YUAN Jun-Wen, ZHAO Juan, WANG Wen-Yan, LAN Hai-Yan. Cloning, Characterization, and Functional Analysis of Seed Coat Mucilage-related Gene TTG1 from Lepidium perfoliatum[J]. Plant Science Journal, 2014, 32(4): 371-382. DOI: 10.3724/SP.J.1142.2014.40371
Citation: CAO Jing, XU Dong-Sheng, HUANG Dai-Hong, YUAN Jun-Wen, ZHAO Juan, WANG Wen-Yan, LAN Hai-Yan. Cloning, Characterization, and Functional Analysis of Seed Coat Mucilage-related Gene TTG1 from Lepidium perfoliatum[J]. Plant Science Journal, 2014, 32(4): 371-382. DOI: 10.3724/SP.J.1142.2014.40371
曹婧, 徐栋生, 黄代红, 袁军文, 赵娟, 王文艳, 兰海燕. 抱茎独行菜种皮粘液质相关基因TTG1的克隆、表达分析及功能鉴定[J]. 植物科学学报, 2014, 32(4): 371-382. CSTR: 32231.14.SP.J.1142.2014.40371
引用本文: 曹婧, 徐栋生, 黄代红, 袁军文, 赵娟, 王文艳, 兰海燕. 抱茎独行菜种皮粘液质相关基因TTG1的克隆、表达分析及功能鉴定[J]. 植物科学学报, 2014, 32(4): 371-382. CSTR: 32231.14.SP.J.1142.2014.40371
CAO Jing, XU Dong-Sheng, HUANG Dai-Hong, YUAN Jun-Wen, ZHAO Juan, WANG Wen-Yan, LAN Hai-Yan. Cloning, Characterization, and Functional Analysis of Seed Coat Mucilage-related Gene TTG1 from Lepidium perfoliatum[J]. Plant Science Journal, 2014, 32(4): 371-382. CSTR: 32231.14.SP.J.1142.2014.40371
Citation: CAO Jing, XU Dong-Sheng, HUANG Dai-Hong, YUAN Jun-Wen, ZHAO Juan, WANG Wen-Yan, LAN Hai-Yan. Cloning, Characterization, and Functional Analysis of Seed Coat Mucilage-related Gene TTG1 from Lepidium perfoliatum[J]. Plant Science Journal, 2014, 32(4): 371-382. CSTR: 32231.14.SP.J.1142.2014.40371

抱茎独行菜种皮粘液质相关基因TTG1的克隆、表达分析及功能鉴定

基金项目: 

国家自然科学基金(30860020);中国教育部留学回国学者基金项目(2006-2008)。

详细信息
    作者简介:

    曹婧(1990-),女,硕士研究生,研究方向为植物抗逆分子生物学(E-mail:jingyu90217@163.com);徐栋生(1988-),男,博士研究生,研究方向为植物抗逆分子生物学(E-mail:xudongsheng1122@163.com)。

    通讯作者:

    兰海燕,E-mail:lanhaiyan@xju.edu.cn

  • 中图分类号: Q78

Cloning, Characterization, and Functional Analysis of Seed Coat Mucilage-related Gene TTG1 from Lepidium perfoliatum

  • 摘要: 抱茎独行菜(Lepidium perfoliatum L.)为十字花科具典型粘液质繁殖体植物,而TTG1基因(Transpa-rent testa glabra 1)所编码的蛋白是调控种皮细胞分化并影响粘液质释放的转录因子。目前关于TTG1基因在粘液质繁殖体植物中的研究报道较少,为探究TTG1基因在抱茎独行菜粘液质发育中的作用,本研究利用同源克隆技术获得抱茎独行菜TTG1基因cDNA开放阅读框(ORF)序列,命名为LpTTG1。序列分析表明,该基因ORF全长为1032 bp,编码343个氨基酸,含有WD40基序;qRT-PCR分析结果显示,该基因在抱茎独行菜各组织中均有表达,反映了该基因功能的多样性;免疫组织化学定位结果表明,LpTTG1在种子发育过程中内珠被和外珠被的表达水平变化与外珠被粘液质的合成过程相一致,推测该基因可能参与调控抱茎独行菜种皮的发育及粘液质的形成。将LpTTG1基因转化拟南芥,该基因的过量表达显著促进了粘液质合成途径下游基因AtMUM4在角果中的表达,表明该基因有可能参与粘液质合成途径调控,并促进下游产物MUM4的产生。然而,对LpTTG1转基因拟南芥与野生型植株表型的比较发现,两者种子形态及粘液质分泌与释放方式均无显著差异,这可能是因为抱茎独行菜种皮发育和粘液质形成是一个多基因调控的复杂过程,某一基因的过量表达也许不会引起明显的表型变化。
    Abstract: Lepidium perfoliatum, an annual herb plant species of Brassicaceae, has a typical myxospermy. The TTG1 (Transparent testa glabra 1) gene encodes a putative transcription factor, which has been identified to play a role in epidermal cell differentiation and mucilage release. Till now, research on the TTG1 gene in myxospermy plants has been rarely reported. To identify TTG1 gene function, mucilage related gene LpTTG1 from L. perfoliatum was cloned in the present study. The full length ORF of the TTG1 gene from L. perfoliatum was isolated by homologous cloning, and was found to be 1032 bp long, encoded 343 putative amino acids and contained WD40 motifs, named as LpTTG1. The qRT-PCR results showed that LpTTG1 was widely expressed in different tissues of L. perfoliatum, which may reflect diverse functions of LpTTG1. Moreover, immunolocalization analysis indicated that the expression of LpTTG1 changed in inner and outer integuments and corresponded to the synthesis of mucilage in outer integument cell layers, suggesting that LpTTG1 mainly regulates the development of the seed coat then applies the effect on mucilage production. Furthermore, overexpression of LpTTG1 in Arabidopsis could significantly enhance the expression of AtMUM4 (which developmentally regulates mucilage production downstream) in silique, which means LpTTG1 attends to the mucilage regulation pathway and generates more downstream product-MUM4 in promotion of mucilage synthesis. In our experiment, however, no significant difference in seed morphology and release pattern, or the secretion amount of mucilage between LpTTG1 overexpression transgenic line and WT, was observed. One possible explanation may be that mucilage synthesis and release is a complex process in Arabidopsis, and is regulated by many genes with functional redundancy, therefore increasing the transcription level with one of them during development may not result in significant phenotype change.
  • 溲疏属(Deutzia)为虎耳草科绣球花亚科落叶灌木,稀半常绿。世界范围内溲疏属植物约60种,我国是其主要分布区,有53种(其中2种为引种或已归化种)1亚种19变种,占全属种数的80%。溲疏属植物常生于沟谷、林缘及岩石缝中,耐干旱瘠薄,适应性强[1],许多种类还具有较强的耐阴性[2 - 4]。其花朵繁密,花色或素净或艳丽,多在初夏开放,观赏价值高,是优良的花灌木[1]。目前英国皇家园艺学会(Royal Horticultural Society,RHS)可查的溲疏属园艺品种近100个,主要是在19世纪末至20世纪初的欧洲,以紫花溲疏(D. purpurascens (Franchet ex L. Henry) Rehd.)和异色溲疏(D. discolor Hemsl.)等为亲本育成,而大量原种未参与杂交[5]。我国是溲疏属资源大国,但国内资源大多处于野生状态,育种工作几乎仍为空白,因此我国溲疏属资源利用和新品种培育大有潜力。

    花芽分化是植物从营养生长进入生殖生长的标志,对有花植物的生长发育十分重要,花芽分化的数量和质量直接影响来年开花与结果的数量和质量。而现阶段溲疏属植物研究内容主要在分类学[6-9] 、栽培繁殖[10- 13]和生理生态[14-17]等方面,分子生物学[18-23]也有涉及,但花芽分化相关研究尚未见报道,目前仅有其近缘植物绣球属(Hydrangea )的马桑绣球(H. aspera D. Don)[24]和茶镳子属(Ribes) 的东北茶藨子(R. mandshuricum (Maxim.) Kom. )[25]的花芽分化研究报道。

    溲疏属植物花多美丽,有圆锥花序、伞房花序和聚伞花序[1]。本研究选择的实验材料大花溲疏(Deutzia grandiflora Bunge)为聚伞花序,小花溲疏(D. parviflora Bunge)为伞房花序,溲疏(D. scabra Thunb.)和长江溲疏(D. schneideriana Rehd.)为圆锥花序,涉及3种花序类型,分析它们的花芽分化规律和特点,对了解溲疏属植物的花发育具有重要意义。本文统计了上述4种植物的花芽着生位置,对其花芽分化类型、花芽分化时期及花器官发育方式进行了研究,同时,结合花芽分化过程中的外部形态,分析其花芽分化阶段与花芽形态的对应关系,从外观上把握花芽分化阶段,研究结果旨在为溲疏属植物花量与花期调控和杂交育种等提供参考。

    供试材料均取自北京地区生长多年的健壮植株,大花溲疏和小花溲疏为北京地区乡土植物[26],溲疏和长江溲疏为引入种类。4种溲疏的凭证标本保存在北京林业大学标本馆(BJFC),材料来源和开花特性见表1

    表  1  溲疏属4种植物来源和开花特性
    Table  1.  Source and flowering characteristics of four Deutzia species
    种名
    Species
    采集地点
    Site
    采集人
    Collector
    凭证标本
    Voucher (BJFC)
    花期
    Anthesis
    花序
    Inflorescence
    大花溲疏
    Deutzia grandiflora Bunge
    北京林业大学
    汪琦BJFU0628014月上旬聚伞花序
    小花溲疏
    Deutzia parviflora Bunge
    北京林业大学汪琦BJFU0628025月上旬伞房花序
    溲疏
    Deutzia scabra Thunb.
    国家植物园汪琦ZWYBY0611015月下旬圆锥花序
    长江溲疏
    Deutzia schneideriana Rehd.
    北京市海淀区百旺茉莉园袁涛、刘秀丽BWMLY0609015月下旬圆锥花序
    下载: 导出CSV 
    | 显示表格

    2021年3月,选择生长健壮的植株3株,每株随机选取中上部一年生枝条10枝,标记顶芽、枝条中部和基部侧芽,于花期统计以上3类芽中开花数量(即花芽)及其所占比例。

    2019年6月- 2021年4月,每隔7 ~ 14 d,选取当年生枝条上芽体饱满、大小近似的芽6 ~ 8个,用游标卡尺测定花芽纵径(芽顶部至基部的距离)和横径(芽最宽处的宽度);剥除外层芽鳞,抽真空后用 FAA固定液(70%乙醇90 mL、冰醋酸5 mL、甲醛5 mL和甘油5 mL混合配制)固定48 h,4℃保存。常规石蜡制片法[27],经70%乙醇冲洗,酒精梯度脱水,二甲苯透明,石蜡浸蜡、包埋,用轮转式切片机对花芽进行纵切(厚度8 ~ 10 μm),二甲苯脱蜡后经番红-固绿对染,中性树胶封片,利用LEI-TECH CX40TRF 显微镜观察并拍照。

    实验数据采用 Excel 2010和SPSS 22软件进行统计分析。分别采用单因素(One-way ANOVA)和LSD法进行方差分析和多重比较,数据为平均值 ± 标准差。

    根据新芽在一年生枝条上的着生位置,可分为顶芽、侧芽和枝条最下部的基部芽。由表2可知,4种溲疏侧芽数量最多,基部芽数量最少;大花溲疏枝条短,单枝芽数量少,其余3种溲疏枝条长,单枝芽数量较多。从花芽比例上看,4种溲疏顶芽和侧芽的花芽比例较高,基部芽较低;大花溲疏和小花溲疏的整体花芽比例较高,长江溲疏次之,溲疏最低。

    表  2  溲疏属4种植物一年生枝条不同位置花芽数量及占比
    Table  2.  Number and proportion of flower buds at different locations on annual branches of four Deutzia species
    种名
    Species
    顶芽
    Crown bud
    侧芽
    Side bud
    基部芽
    Basal bud
    数量
    Total number
    花芽数量
    Number of
    flower buds
    花芽比例
    Flower bud
    ratio / %
    数量
    Total number
    花芽数量
    Number of
    flower buds
    花芽比例
    Flower bud
    ratio / %
    数量
    Total number
    花芽数量
    Number of
    flower buds
    花芽比例
    Flower bud
    ratio / %
    大花溲疏 1.93 ± 0.251.87 ± 0.3496.55 4.17 ± 3.45 3.80 ± 3.1591.200.03 ± 0.1800
    小花溲疏1.93 ± 1.031.90 ± 1.0498.2817.10 ± 9.3614.57 ± 7.6585.190.53 ± 0.670.36 ± 0.6068.75
    溲疏0.73 ± 0.810.63 ± 0.8486.3615.87 ± 8.487.20 ± 4.3445.380.43 ± 0.5600
    长江溲疏2.20 ± 0.082.10 ± 1.0895.4525.26 ± 4.4214.10 ± 9.6055.820.70 ± 0.780.17 ± 0.4524.29
    下载: 导出CSV 
    | 显示表格

    4种溲疏花芽分化时期不同,花芽外部形态也不同。植株处于末花期时,腋芽已肉眼可见但尚未分化,芽体较小,呈扁三角锥形(图1: A1 ~ A4);当开始分化时,腋芽由营养生长转为生殖生长,芽体依然呈扁三角锥状,但较未分化期饱满,褐色的芽鳞出现,芽体顶部变宽、增厚且较圆滑(图1:B1 ~ B4)。花序原基分化期,芽体基部变宽、增厚,芽鳞颜色加深(图1:C1 ~ C4),小花溲疏和溲疏花芽长度增长较快(图1:D2、D3)。萼片原基分化期,芽整体伸长、中上部逐渐膨大,较花序原基分化期明显,芽的长宽厚持续增加,整个芽呈较饱满的圆锥形(图1:D1、E2、E3、D4),长江溲疏的主芽外还出现了两个副芽(图1:D4)。花瓣原基分化期,芽长度增加,基部变化小,宽厚增加不明显,芽呈长圆状(图1:F2 、F3、E4);大花溲疏变化不明显(图1:E1)。雄蕊分化期,大花溲疏和小花溲疏芽变化不明显(图1:F1、G2),溲疏芽体更加饱满,芽鳞开始剥落(图1:G3),而长江溲疏主芽旁的副芽脱落,仅剩主芽(图1:F4)。 雌蕊分化期,大花溲疏的芽直到花芽分化完成其体积变化仍不明显(图1:G1、H1),小花溲疏和长江溲疏芽体饱满,芽鳞开始有松动的迹象(图1: H2、H4),而溲疏的芽在这一时期已经绽开(图1:H3)。

    图  1  溲疏属4种植物花芽外部形态变化
    A1 ~ H1:大花溲疏;A2 ~ H2:小花溲疏;A3 ~ H3:溲疏;A4 ~ H4:长江溲疏。图下的数字为拍摄时间,按年月日排列。
    Figure  1.  External morphological changes of flower buds of four Deutzia species
    A1–H1: D. grandiflora; A2–H2: D. parviflora; A3–H3: D. scabra; A4–H4: D. schneideriana. Numbers below pictures are shooting time, arranged by year, month, and day.

    比较花芽纵径和横径的变化,发现纵径在花芽分化各时期变化明显(表3表4),而横径在花序原基分化期和雌蕊分化期才有较明显变化(表4)。由表3可知,分化初期,4 种植物花芽纵径存在显著差异,溲疏花芽纵径在1.57 mm时启动花芽分化,大花溲疏、小花溲疏和长江溲疏分别在2.41、4.93和4.44 mm时启动花芽分化。溲疏花芽纵径在花序原基分化期变化最大,相对分化初期增长 3 倍左右。值得注意的是,花芽纵径和横径并非一直增长,大花溲疏花瓣原基分化期和雄蕊原基分化期的花芽纵径和横径相差不大,而小花溲疏和长江溲疏在雄蕊原基分化期的花芽纵径和横径均小于花瓣原基分化期。

    表  3  溲疏属4种植物花芽纵径变化
    Table  3.  Changes in vertical diameter of flower buds of four Deutzia species
    种名
    Species
    花芽纵径 Vertical diameter of flower buds / mm
    未分化期
    Undifferentiated period
    分化初期
    Initial differentiation
    period
    花序原基分化期
    Inflorescence primordium
    differentiation period
    萼片原基分化期
    Sepal
    primordium differentiation
    period
    花瓣原基分化期
    Petal
    primordium differentiation
    period
    雄蕊原基分化期
    Stamen
    primordium differentiation
    period
    雌蕊原基分化期
    Pistil
    primordium differentiation
    period
    大花溲疏1.63 ± 0.15b2.41 ± 0.16c3.23 ± 0.60c3.79 ± 0.76c4.95 ± 0.41c4.86 ± 0.32c5.16 ± 0.45b
    小花溲疏4.36 ± 0.74a4.96 ± 0.11a5.84 ± 0.76a6.44 ± 0.46a7.14 ± 0.90a6.55 ± 0.82b8.65 ± 2.58a
    溲疏1.40 ± 0.11b1.57 ± 0.17d4.25 ± 0.41b5.48 ± 0.33b6.15 ± 0.13b7.67 ± 0.24a9.03 ± 0.58a
    长江溲疏4.00 ± 0.41a4.44 ± 0.82b4.49 ± 1.46b5.37 ± 0.79b7.55 ± 1.15a6.55 ± 0.59b7.66 ± 0.56a
    注:同列不同小写字母代表差异显著(P < 0.05)。下同。
    Note: Different lowercase letters within same column indicate significant difference (P < 0.05). Same below.
    下载: 导出CSV 
    | 显示表格
    表  4  溲疏属4种植物花芽横径变化
    Table  4.  Changes in horizontal diameter of flower buds of four Deutzia species
    种名
    Species
    花芽横径Horizontal diameter of flower buds / mm
    未分化期
    Undifferentiated period
    分化初期
    Initial differentiation period
    花序原基分化期Inflorescence primordium differentiation period萼片原基分化期
    Sepal primordium differentiation period
    花瓣原基分化期
    Petal primordium differentiation period
    雄蕊原基分化期
    Stamen primordium differentiation period
    雌蕊原基分化期
    Pistil primordium differentiation period
    大花溲疏0.88 ± 0.15c1.06 ± 0.10c1.20 ± 0.21d1.27 ± 0.32c1.56 ± 0.18c1.50 ± 0.13c1.63 ± 0.22c
    小花溲疏2.55 ± 0.27a2.53 ± 0.40b2.72 ± 0.23b2.77 ± 0.27b2.72 ± 0.22b2.64 ± 0.24b3.34 ± 0.58b
    溲疏1.28 ± 0.17b1.26 ± 0.13c1.85 ± 0.32c2.74 ± 0.23b2.79 ± 0.17b3.27 ± 0.32a4.70 ± 0.83a
    长江溲疏2.62 ± 0.18a2.95 ± 0.41a3.16 ± 0.73a3.55 ± 0.33a3.53 ± 0.36a3.17 ± 0.28a4.68 ± 0.55a
    下载: 导出CSV 
    | 显示表格

    4种溲疏花芽分化均始于夏季(表5)。大花溲疏分化时间从6 - 9月,历时4个月,分化时间较短;小花溲疏、溲疏和长江溲疏分化时间从6月至次年3、4月,经历夏秋冬3季,分化时间长。依据各部分的 分化情况,花芽分化可划为7个时期:未分化期、分化始期、花序原基分化期、萼片原基分化期、花瓣原基分化期、雄蕊原基分化期、雌蕊原基分化期。

    表  5  溲疏属4种植物花芽分化时期
    Table  5.  Flower bud differentiation period of four Deutzia species
    种名
    Species
    花芽分化时期 Flower bud differentiation period
    未分化期
    Undifferentiated period
    分化初期
    Initial differentiation period
    花序原基分化期Inflorescence primordium differentiation period萼片原基分化期
    Sepal primordium differentiation period
    花瓣原基分化期
    Petal primordium differentiation period
    雄蕊原基分化期
    Stamen primordium differentiation period
    雌蕊原基分化期
    Pistil primordium differentiation period
    大花溲疏4月上-5月下旬6月7月8月上旬8月中旬8月下旬-9月上旬9月中下旬
    小花溲疏5月中-6月上旬6月中下旬7月-9月下旬10月上旬10月中下旬11月-12月1-3月
    溲疏5月下-6月下旬7月上-8月上旬8月中-次年1月上旬1月中-2月上旬2月中-3月中旬3月下旬4月
    长江溲疏5月下-6月中旬6月下-7月上旬7月中-9月上旬9月中-10月中旬10月下-11月中旬11月下-12月下旬1-4月
    下载: 导出CSV 
    | 显示表格

    4种溲疏未分化期、分化初期、花瓣、雄蕊和雌蕊的分化过程相似,但花序和萼片分化有较大不同。

    未分化期:花期过后,芽已形成,但未分化,此时芽体较小、生长点狭小而顶端较尖,芽体上方空间不多,纵切面呈锥形。由于生长点细胞活跃,分裂快,体积小而排列紧密,染色时生长点处颜色比其他部位略深(图2:A1 ~ A4)。

    图  2  4种溲疏花芽分化过程
    A1 ~ J1:大花溲疏;A2 ~ J2:小花溲疏;A3 ~ J3:溲疏;A4 ~ J4:长江溲疏。A1 ~ A4:未分化期;B1 ~ B4:分化初期;C1 ~ C4、D2 ~ D4、E2、E3、F3:花序原基分化期;D1、E4、F2、F4、G3:萼片原基分化期;E1、F1、G2、G4、H2、H3:花瓣原基分化期;G1、H1、H4、I1 ~ I4:雄蕊原基分化期;J1 ~ J4:雌蕊原基分化期。Le:叶片原基;Gc:生长锥;R:花序轴;In:花序原基;Si:侧花序原基;Br:苞片原基; Fl:小花原基;Se:萼片原基;Pe:花瓣原基;St1:第1轮雄蕊原基;St2:第2轮雄蕊原基;Pi.雌蕊原基。
    Figure  2.  Differentiation of flower buds of four Deutzia species
    A1–J1: D. grandiflora; A2–J2: D. parviflora; A3–J3: D. scabra; A4–J4: D. schneideriana. A1–A4: Undifferentiated period; B1–B4: Initial differentiation period; C1–C4, D2–D4, E2, E3, F3: Inflorescence primordium differentiation period; D1, E4, F2, F4, G3: Sepal primordium differentiation period; E1, F1, G2, G4, H2, H3: Petal primordium differentiation period; G1, H1, H4, I1–I4: Stamen primordium differentiation period; J1–J4: Pistil primordium differentiation period. Le: Leaf primordia; Gc: Growth cone; R: Rachis; In: Inflorescence primordium; Si: Side inflorescence primordium; Br: Bract primordium; Fl: Flower primordium; Se: Sepal primordium; Pe: Petal primordium; St1: First round stamen primordium; St2: Second round stamen primordium; Pi: Pistil primordium.

    分化初期:6月下旬芽体膨大,生长锥扁平,芽体上方的空间增大,生长锥旁侧有小的叶原基(图2:B1 ~ B4)。

    花序原基分化期:此阶段持续时间较长,芽体形态变化较大。开始时生长点伸长、膨大并隆起,逐渐分化出一个花序轴(图2:C1 ~ C4);小花溲疏和长江溲疏花序原基整体增大、伸长,生长锥周围凹陷、顶端形成多个突起(上部突起较大,下部突起较小,如图2:D2、D4所示);随着总花序轴的进一步分化,由上到下形成多个小花原基(图2:E2 ~ E4),有时下部还会形成侧花序原基(图2:D2、E2、G2、G4)。大花溲疏顶端仅分化出一个花序轴且不分枝(图2:C1),随后顶花分化萼片和花瓣原基(图2:D1、E1)。溲疏和长江溲疏除分化花序分枝外,还分化苞片原基(图2:D3、F4)。

    萼片原基分化期:小花原基的生长锥逐渐加宽,顶端的两层细胞排列平整、紧密有序,两端向上出现突起,即形成萼片原基(图2:D1、F2、G2、G3、E4、F4)。溲疏和长江溲疏在花瓣原基出现时,萼片已内弯,并位于花顶分生组织上方(图2:H3、G4)。

    花瓣原基分化期:花瓣原基与萼片原基出现时间接近,在萼片原基的内侧出现新的突起,即花瓣原基。两侧的花瓣原基以不同的速度向内伸长,形成花瓣(图2:E1、H2、H3、G4)。大花溲疏进入花瓣原基分化期时,一部分花序轴下部形成1 ~ 2个新突起,即小花原基(图2:Fl),新的小花比顶部小花分化慢(图2:H1、J1),最终形成具2或3个小花的花序;而另一部分花序轴不分化小花原基(图2:E1、G1、I1),最终只能形成单花。

    雄蕊原基分化期:随着萼片和花瓣伸长,小花原基逐渐加宽,中部平坦,而花瓣原基内侧基部发生新的突起,即雄蕊原基(图2:G1、I2、I3、H4);大花溲疏和小花溲疏到雄蕊原基出现时,花萼一直发育缓慢(图2:G1、I2)。雄蕊2轮,第1轮雄蕊发生后,第2轮雄蕊也随即开始分化(图2:I1)。

    雌蕊原基分化期:小花原基生长锥原本平坦的底部发生突起,即雌蕊原基;随着雌蕊的进一步发育,小花原基中部向内凹陷并不断伸长,最终形成下位子房(图2:J1 ~ J4)。

    花是重要的生殖器官,也是大部分园林植物的主要观赏部位,花量大是溲疏属的主要特征之一。影响花量的主要因素有芽的数量、花芽分化率(芽分化成花芽的比例)以及花/花序结构(小花数量),而芽的数量又由枝条数量和单枝芽数决定。本研究发现,溲疏属植物增加花量有两种策略:(1)单枝芽数少、小花数量少的种类,其枝条较多,花芽分化率较高,如大花溲疏;(2)枝条数量少的种类,其单枝芽数多,花芽分化率高,且花序上小花数量多,如小花溲疏、溲疏和长江溲疏。同时,本文还发现不同位置的芽成花能力不同,如顶芽和侧芽花芽分化率较高,而基部的芽花芽分化率较低,与葡萄(Vitis vinifera L.)[28, 29]中的研究结果一致。大花溲疏花序多花或单花取决于花瓣原基分化期是否分化小花原基,同‘单花’梨(Pyrus ussuriensis Maxim.)[30]一样,单花性状发生在花芽形态分化过程中,而非开花前多花花蕾发育的停止或退化。

    4种溲疏的花芽分化类型均为夏秋分化型,但也有差异。大花溲疏在夏秋季节启动并完成分化,冬季进入休眠;而小花溲疏、溲疏和长江溲疏在夏秋启动分化,但冬季不休眠,连续分化直到来年春季开花前。这种差异推测与花序结构和花期有关。大花溲疏为仅具1 ~ 3朵花的聚伞花序,结构简单,花期早,分化开始时间早且持续时间短;而其余3种溲疏花序结构复杂,花期晚,分化开始时间晚且持续时间长。这与梅树(Prunus mume Siebold & Zucc.)[31]、枣树(Ziziphus jujuba Mill.) [32]、大蒜(Allium sativum L.)[33]早花品种花芽分化持续时间短、晚花品种持续时间长的研究结果一致。

    花芽纵径结合季节能够较准确地反映花芽分化阶段,可为花量、花期调控等研究的适时取材提供科学依据。4种溲疏花芽分化过程中,花芽纵径较横径变化明显,但纵径并非线性增长,小花溲疏和长江溲疏雄蕊原基分化期(11、12月)的花芽纵径小于花瓣原基分化期(10月),可能是进入休眠期后,低温和较低的空气湿度导致芽体失水进而体积缩小;因此需要结合花芽纵径和季节综合判断花芽分化阶段。许多研究表明,花芽外部形态能够反映内部结构变化,因此,根据花芽外部形态特征可推测花芽分化状况[34, 35]。一般来说,花序轴/花梗长的植物花芽纵径变化较大,可根据纵径判断花芽发育阶段,如栝楼(Trichosanthes kirilowii Maxim.)[36]、‘大辣椒’蝴蝶兰(Phalaenopsis aphrodite ‘Big Chili’)[37]。而花序轴/花梗短的植物花芽横径变化明显,如金花茶(Camellia petelotii (Merrill) Sealy)[38] 、铁线莲属(Clematis[39]植物等。也有植物花芽纵径横径均有明显变化,如香港四照花(Dendrobenthamia hongkongensis (Hemsl.) Hutch.)[40]

    本文将溲疏花芽分化过程划分为7个时期,各轮花器官为向心式发生,与绣球属的马桑绣球[24]花器官分化方式一致,与茶藨子属的东北茶藨子[25]在雌蕊原基之后分化具有很大差异。从花器官发生方式来看,溲疏属与绣球属亲缘关系较近,与茶镳子属亲缘关系较远。4种溲疏未分化期、分化初期、花瓣、雄蕊和雌蕊分化过程相似,但花序和萼片的分化方式不同。总体上看,4种溲疏都是先分化花序(轴),再分化小花。溲疏和长江溲疏的苞片原基随花序轴一起分化,萼片原基在花顶分生组织发生的位置比其他种要高,在花瓣原基出现时,萼片已内弯并位于花顶分生组织上方;大花溲疏和小花溲疏无苞片原基,萼片原基发生位置较低,花瓣原基于圆凸花顶的周缘产生,花瓣发育速度快于花萼,这与溲疏属种子形态学观察结果一致[6],支持溲疏和长江溲疏亲缘关系较近,这两种萼片发育方式也存在于同科的绣球属中[24]。但由于虎耳草科花发育研究资料有限,依据花发育进行科内关系的界定和分类还有待进一步研究。

  • [1]

    Gutterman Y, Shem-Tov S. Structure and function of mucilaginous seed coats of Plantago coronopus inhabiting the Negev Desert of Israel[J]. Isr J Plant Sci, 1996, 44(2): 125-133.

    [2]

    Western TL, Skinner DJ, Haughn GW. Differentiation of mucilage secretary cells of Arabidopsis seed coat[J]. Plant Physiol, 2000, 122(2): 345-356.

    [3] 马君玲, 刘志民. 粘液繁殖体及其生态功能[J]. 生态学杂志, 2006, 25(11): 1400-1404.
    [4]

    Beeckman T, De Rycke R, Viane R, Inze D. Histological study of seed coat development in Arabidopsis thaliana[J]. J Plant Res, 2000, 113(2): 139-148.

    [5]

    Young JA, Evans RA. Mucilagious seed coats[J]. Weed Sci, 1973, 21: 52-54

    [6]

    Windsor JB, Symonds VV, Mendenhall J, Lloyd AL. Arabidopsis seed coat development: morphological differentiation of the outer integument[J]. Plant J, 2000, 22(6): 483-493.

    [7]

    Huang Z, Boubriak I, Osborne DJ, Dong M, Gutterman Y. Possible role of pectin-containing mucilage and dew in repairing embryo DNA of seeds adapted to desert conditions[J]. Ann Bot-London, 2008, 101(2): 277-283.

    [8]

    Smith TF, Gaitatzes C, Saxena K. The WD repea-ted: a common architecture for diverse functions[J]. Trends Biochem Sci, 1999, 24(5): 181-185.

    [9]

    Penfield S, Meissner RC, Shoue DA, Carpita NC, Bevan MW. MYB61 is required for mucilage deposition and extrusion in the Arabidopsis seed coat[J]. Plant Cell, 2001, 13(12): 2777-2791.

    [10]

    Western TL, Burn J, Tan WL, Skinner DJ. Isolation and characterization of mutants defective in seed coat mucilage secretory cell development in Arabidopsis[J]. Plant Physiol, 2001, 127(3): 998-1011.

    [11]

    Western TL, Young DS, Dean GH. MUCILAGE-MODIFIED4 encodes a putative pectin biosynthetic enzyme developmentally regulated by APETALA2, TRANSPARENT TESTA GLABRA1, and GLABRA2 in the Arabidopsis seed coat[J]. Plant Physiol, 2004, 134(1): 296-306.

    [12]

    Usadel B, Kuschinsky AM, Rosso MG. RHM2 is involved in mucilage pectin synthesis and is required for the development of the seed coat in Arabidopsis[J]. Plant Physiol, 2004, 134(1): 286-295.

    [13]

    Willats WG, McCartney L, Knox JP. In-situ analysis of pectic polysaccharides in seed mucilage and at the root surface of Arabidopsis thaliana[J]. Planta, 2001, 213(1):37-44.

    [14]

    Dean G, Zheng H, Tewari J. The Arabidopsis MUM2 gene encodes a β-galactosidase required for the production of seed coat mucilage with correct hydration properties[J]. Plant Cell, 2007, 19(12): 4007-4021.

    [15]

    Macquet A, Ralet MC, Loudet O. A naturally occurring mutation in an Arabidopsis accession affects a β-D-galactosidase that increases the hydrophilic potential of rhamnogalacturonan I in seed mucilage[J]. Plant Cell, 2007, 19(12): 3990-4006.

    [16]

    Macquet A, Ralet MC, Kronenberger J. In-situ, chemical and macromolecular study of the composition of Arabidopsis thaliana seed coat mucilage[J]. Plant Cell Physiol, 2007, 48(7): 984-999.

    [17]

    Somerville C, Bauer S, Brininstool G. Toward a systems approach to understanding plant cell walls[J]. Science, 2004, 306(5705): 2206-2211.

    [18]

    Guimil S. and Dunand C. Patterning of Arabidopsis epidermal cells: Epigenetic factors regulate the complex epidermal cell fate pathway[J]. Trends Plant Sci, 2006, 11(12): 601-609.

    [19]

    Oka T, Nemoto T, Jigami Y. Functional analysis of Arabidopsis thaliana RHM2/MUM4, a multidomain protein involved in UDP-D-glucose to UDP-L-rhamnose conversion[J]. J Biol Chem, 2007, 282(8): 5389-5403.

    [20]

    Jofuku KD, den Boer BGW, Montagu MV, Okamuro JK. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2[J]. Plant Cell, 1994, 6(9): 1211-1225.

    [21]

    Koornneef M. The complex syndrome of ttg mutants[J]. Arabidopsis Inf Serv, 1981, 18: 45-51.

    [22]

    Johnson CS, Kolevski B, Smyth DR. TRANSPA-RENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor[J]. Plant Cell, 2002, 14(6): 1359-1375.

    [23]

    Rerie WG, Feldmann KA, Marks DM. The GLABRA2 gene encodes a homeo-domain protein required for normal trichome development in Arabidopsis[J]. Gene Dev, 1994, 8(12): 1388-1399.

    [24]

    Baudry A, Caboche M, Lepiniec L. TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell-specic accumulation of avonoids in Arabidopsis thaliana[J]. Plant J, 2006, 46(5): 768-779.

    [25]

    Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques[J]. Plant Cell, 2000, 12 (10):1863-1878.

    [26]

    Ramsay NA, Glover BJ. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity[J]. Trends Plant Sci, 2005, 10(2): 63-70.

    [27]

    Galway ME, Masucci JD, Lloyd AM, Walbot V, Davis RW, Schiefelbein JW. The TTG gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root[J]. Dev Biol, 1994, 166(2): 740-754.

    [28]

    Walker AR, Davison PA, Bolognesi Winfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks DM, Gray JC. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome diffe-rentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein[J]. Plant Cell, 1999, 11(7): 1337-1349.

    [29]

    Masucci JD, Rerie WG, Foreman DR, Zhang M, Galway ME, Marks MD, Schiefelbein JW. The homeobox gene GLABRA2 is required for position-dependent cell differentiation in the root epidermis of Arabidopsis thaliana[J]. Development, 1996, 122(4): 1253-1260.

    [30]

    Gonzalez A, Mendenhall J, Huo YJ, Lloyd A. TTG1 complex MYBs, MYB5 and TT2, control ou-ter seed coat differentiation[J]. Dev Biol, 2009, 32(5): 412-421.

    [31]

    Clough SJ, Bent AF. Floral dip: a simplied me-thod for Agrobacterium mediated transformation of Arabidopsis thaliana[J]. Plant J, 1998, 16(6): 735-743.

    [32]

    Lu J, Li JN, Lei B, Wang SG, Chai YR. Molecular cloning and characterization of two Brassica napus TTG1 genes reveal genus-specific nucleotide pre-ference, extreme protein-level conservation and fast divergence of organ-specificity[J]. Genes Genom, 2009, 31(2): 129-142.

    [33]

    Zhang F, Gonzalez A, Zhao M, Payne CT, Lloyd A. A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis[J]. Development, 2003, 130(20): 4859-4869.

    [34]

    Yu LH, Gaitatzes C, Neer E, Smith TF. Thirty-plus functional families from a single motif[J]. Protein Sci, 2000, 9(12): 2470-2476.

    [35]

    Li D, Roberts R. WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases[J]. Cell Mol Life Sci, 2001, 58(14): 2085-2097.

    [36]

    Larkin JC, Oppenheimer DG, Lloyd A, Paparozzi ET, Marks MD. The roles of GLABROUS1 and TRANSPARENT TESTA GLABRA genes in Arabidopsis trichome development[J]. Plant Cell, 1994, 6(8): 1065-1076.

    [37]

    Li SF, Milliken ON, Pham H, Seyit R, Napoli R, Preston J, Koltunow AM, Parisha RW. The Arabidopsis MYB5 transcription factor regulates mucilage synthesis, seed coat development, and trichome morphogenesis[J]. Plant Cell, 2009, 21(1):72-89.

    [38]

    Szymanski DB, Jilk RA, Pollock SM, Marks MD. Control of GL2 expression in Arabidopsis leaves and trichomes[J]. Development, 1998, 125(7): 1161-1171.

    [39]

    Payne T, Zhang F, Lloyd AM. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1[J]. Genetics, 2000, 156(3): 1349-1362.

计量
  • 文章访问数:  1393
  • HTML全文浏览量:  0
  • PDF下载量:  2129
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-11
  • 修回日期:  2014-03-18
  • 网络出版日期:  2022-11-01
  • 发布日期:  2014-08-29

目录

/

返回文章
返回