Processing math: 100%
高级检索+

中国特有属秤锤树属植物的潜在分布区预测

杨腾, 王世彤, 魏新增, 江明喜

杨腾, 王世彤, 魏新增, 江明喜. 中国特有属秤锤树属植物的潜在分布区预测[J]. 植物科学学报, 2020, 38(5): 627-635. DOI: 10.11913/PSJ.2095-0837.2020.50627
引用本文: 杨腾, 王世彤, 魏新增, 江明喜. 中国特有属秤锤树属植物的潜在分布区预测[J]. 植物科学学报, 2020, 38(5): 627-635. DOI: 10.11913/PSJ.2095-0837.2020.50627
Yang Teng, Wang Shi-Tong, Wei Xin-Zeng, Jiang Ming-Xi. Modeling potential distribution of an endangered genus (Sinojackia) endemic to China[J]. Plant Science Journal, 2020, 38(5): 627-635. DOI: 10.11913/PSJ.2095-0837.2020.50627
Citation: Yang Teng, Wang Shi-Tong, Wei Xin-Zeng, Jiang Ming-Xi. Modeling potential distribution of an endangered genus (Sinojackia) endemic to China[J]. Plant Science Journal, 2020, 38(5): 627-635. DOI: 10.11913/PSJ.2095-0837.2020.50627
杨腾, 王世彤, 魏新增, 江明喜. 中国特有属秤锤树属植物的潜在分布区预测[J]. 植物科学学报, 2020, 38(5): 627-635. CSTR: 32231.14.PSJ.2095-0837.2020.50627
引用本文: 杨腾, 王世彤, 魏新增, 江明喜. 中国特有属秤锤树属植物的潜在分布区预测[J]. 植物科学学报, 2020, 38(5): 627-635. CSTR: 32231.14.PSJ.2095-0837.2020.50627
Yang Teng, Wang Shi-Tong, Wei Xin-Zeng, Jiang Ming-Xi. Modeling potential distribution of an endangered genus (Sinojackia) endemic to China[J]. Plant Science Journal, 2020, 38(5): 627-635. CSTR: 32231.14.PSJ.2095-0837.2020.50627
Citation: Yang Teng, Wang Shi-Tong, Wei Xin-Zeng, Jiang Ming-Xi. Modeling potential distribution of an endangered genus (Sinojackia) endemic to China[J]. Plant Science Journal, 2020, 38(5): 627-635. CSTR: 32231.14.PSJ.2095-0837.2020.50627

中国特有属秤锤树属植物的潜在分布区预测

基金项目: 

国家重点研发计划项目(2016YFC0503105);国家自然科学基金项目(31870510)。

详细信息
    作者简介:

    杨腾(1996-),男,硕士研究生,主要从事景观遗传研究(E-mail:1042751624@qq.com)。

    通讯作者:

    魏新增,E-mail:xzwei@wbgcas.cn

  • 中图分类号: Q949.775.5

Modeling potential distribution of an endangered genus (Sinojackia) endemic to China

Funds: 

This work was supported by grants from the National Key Research and Development Project (2016YFC0503105) and National Natural Science Foundation of China (31870510).

  • 摘要: 秤锤树属(Sinojackia)是中国特有属,包括7个物种,各物种的种群及个体数量均较少,预测其潜在适宜分布区及其主要影响因素对制定保护措施至关重要。该研究在全面收集秤锤树属植物分布位点数据的基础上,结合气候、土壤和植被数据,运用物种分布模型(MaxEnt)和ArcGIS,预测该属植物当前的分布范围以及未来(2050s和2070s)潜在分布区的变化,分析影响该属植物分布的主要环境变量。预测结果显示:(1)当前秤锤树属高适宜地区主要在我国的亚热带地区,分布在长江中下游平原,包括湖南、浙江的大部分地区,河南、安徽和江苏南部地区以及湖北和江西两省交界处,四川、贵州零星分布着高适宜度位点;纬度范围为25.42°~31.84°N。(2)当前秤锤树属的高适宜性(0.665)生境面积仅为4.07×104 km2,占国土面积的4.23%,分布区极为狭窄。未来(2050s和2070s)的高适宜分布地区将大幅度缩减,其中在2070s的RCP8.5排放情景下减少最多。(3)随着温度的上升,秤锤树属植物有向高纬度迁移的趋势。研究结果可为濒危植物的就地保护提供科学依据,同时也可为其迁地保护位点的选择提供参考。
    Abstract: Sinojackia, a genus endemic to China, includes seven species with a small number of populations. To develop effective conservation measures, it is important to understand the potential distribution of endangered endemic plant species and the underlying environmental factors. Here, we collected extensive occurrence data of Sinojackia, and then extracted climate, soil, and vegetation data from several datasets. We utilized the species distribution model (MaxEnt) and ArcGIS to predict the current and future potential distributions (2050s and 2070s) of the genus, as well as changes in potential distribution areas in the future. We also analyzed the major environmental variables that affected the distribution of the genus. Results show that: (1) The current high suitability distribution areas are mainly located within the subtropical regions of China. Specifically, the Middle-Lower Yangtze River Plain, including most parts of Hunan, Zhejiang, the southern areas of Henan, Anhui, and Jiangsu, the areas around the Hubei and Jiangxi boundary, and some sporadic regions in Sichuan and Guizhou. The latitude spans 25.42° to 31.84°N. (2) In addition, the current high suitability distribution area (0.665) is extremely narrow, totaling 4.07×104 km2, accounting for 4.23% of the total area of China. Furthermore, suitable distribution will decline in the future (2050s and 2070s). Of note, the area under a RCP8.5 emissions scenario in the 2070s will be substantially reduced. (3) With the increase in temperature in the future, the genus will migrate to higher altitudes. Our results are critical for the establishment of nature reserves for in-situ conservation and for the selection of sites for ex-situ conservation.
  • 植物生态位不仅可以定量反映物种与环境的相互关系、种群对资源的利用能力,还可以反映群落的稳定性[1, 2],是群落特性的发生与发展、种间竞争与进化的动力和原因[3, 4]。自Grinnell于1917年首次提出之后,生态位的概念和内涵得到了生态学界的普遍关注[5-7]。目前,生态位理论已被广泛应用于群落演替[8]、物种维护机制[9, 10]、生物多样性维持[11, 12]、植被恢复与森林培育[2, 13]以及珍稀物种的濒危机制[14, 15]等研究领域,成为评价种内种间关系及物种在群落中地位的重要手段。植物种群生态位测度主要包括生态位宽度和生态位重叠[8, 16],其中生态位宽度是物种对环境资源的利用能力及其对所处环境的适应性,而生态位重叠则能反映生态位相似的物种在空间、营养等方面对环境资源的分享或竞争,表现为物种对某一种或多种环境资源利用上的差异[11]。开展珍稀濒危植物的生态位研究,可以正确认识物种在群落中的地位及其与伴生物种的关系,对于探讨群落中不同物种的共存机制有着重要意义,并能为目标物种的恢复、保护及群落重建提供理论依据[17-20]

    闽桦(Betula fujianensis J. Zeng, Jian H. Li & Z. D. Chen)为桦木科桦木属,2003年在福建罗卜岩自然保护区被首次发现,其幼树类似光皮桦(Betula luminifera H. Winkl),但成熟后树皮纵裂,与光皮桦区别明显。该树种自然分布稀少,且自然更新十分困难[21]。目前关于闽桦的研究报道较少,仅见分类学[21, 22]、种子萌发[23]和形态[24]等方面的报道。高伟等[25]报道了闽桦天然林的物种多样性和种间相关性,但群落中各种群的生态位特征仍不清楚,各树种的生态适应能力和资源利用能力也未见报道。因此,开展该群落优势种群的生态位特征研究将有助于了解种群对环境资源的利用状况以及物种间的关系,探明优势种群在群落中的地位、对其他种群的影响以及群落结构的稳定性,从而有利于预测种群消长动态,揭示群落演替中植物的替代机制。鉴于此,本文以福建省三明市罗卜岩自然保护区的闽桦天然林为对象,研究其主要种群的生态位宽度和生态位重叠,结果旨在揭示闽桦群落不同层次主要物种的种间关系,探讨其濒危机制,从而为闽桦群落的保护和恢复提供理论依据。

    研究区位于武夷山东侧支脉的福建省三明市罗卜岩省级自然保护区(26°25′45″ ~ 26°27′30″N,117°34′15″ ~ 117°36′00″E),森林覆盖率达97.8%,属野生植物类型自然保护区。气候为中亚热带季风气候,温和湿润,年均气温19.5 ℃;最冷月1月平均气温8.5 ℃,极端最低气温−7.1 ℃;7月平均气温28.4 ℃,最高气温40.1 ℃;年均降水量1 688 mm,全年无霜期297 d。基岩多为花岗岩,土壤为红壤和黄红壤,厚度多在80 cm以上。保护区内植物区系以泛热带分布为主,有种子植物127科,340属,595种,其中珍稀濒危植物10种。闽桦自2003年在罗卜岩首次发现以来,近20年均未见其他地区有发现,可见该物种的分布范围较小,种群数量有限。

    选择保护区内的闽桦天然林设置样地,海拔600 m,坡向东南,坡度35°。林分密度为1 100株/hm2,林龄130 a,郁闭度为0.9,分层明显,乔木层平均胸径17.4 cm,平均树高12.5 m。优势树种为闽桦和闽楠(Phoebe bournei (Hemsl.) Yang),林下植被主要为细枝柃(Eurya loquaiana var. aureopunctata Hung T. Chang)、闽粤栲(Castanopsis fissa (Champ.) Rehd.et Wils.)、榄绿粗叶木(Lasianthus japonicus var. lancilimbus (Merr.) Lo)、草珊瑚(Sarcandra glabra (Thunb.) Nakai)、华南桂(Cinnamomum austrosinense Hung T. Chang)、黑桫椤(Alsophila podophylla Hook.)、瘤足蕨(Plagiogyria adnata (Bl.) Bedd.)、瓜馥木(Fissistigma oldhamii (Hemsl.) Merr.)和菝葜(Smilax china L.)等,草本层平均盖度15%。

    于2018年8-9月开展调查,设置9个20 m × 20 m的样地,将每个样地分成4个10 m × 10 m的样方,对其乔木层(胸径 ≥ 5 cm)进行每木调查,记录树种、冠幅、胸径、树高和枝下高。之后,将每个样方分成4个5 m × 5 m的灌木小样方,沿对角线调查其中2个,每样地共调查8个灌木小样方,记录灌木层的植物种类、株数、平均地径、平均高度和冠幅。最后,在每个10 m × 10 m的样方对角线和中心位置,设置3个1 m × 1 m 的草本小样方,调查草本层的植物种类、株(丛)数、平均高度和覆盖度等,每样地共调查12个草本小样方。

    以样地为单位进行数据计算,区分乔木层、灌木层、草本层,统计样地内所有物种的科、属、种数。

    物种重要值(Importance value,IV)计算公式为:

    IV1=(RD+RP+RF)/3 (1)
    IV2=(RD+RC+RF)/3 (2)

    式中,IV1为乔木树种重要值,IV2为灌木或草本重要值,RD(Relative density)为相对多度,RP(Relative potency)为相对优势度,RF(Rela tive frequency)为相对频度,RC(Relative cove rage)为相对盖度。

    使用Levins生态位宽度指数和Shannon-Wiener生态位宽度指数计算物种的生态位宽度[26]

    Levins态位宽度指数:

    B(L)i=1rj=1(Pij)2 (3)

    Shannon-Wiener生态位宽度指数:

    B(SW)i=rj=1(PijlnPij) (4)

    式中,B(L)iB(SW)i分别为种i的Levins生态位宽度和Shannon-Wiener生态位宽度,Pij=nij/Ni,代表种i在第j个资源上的重要值占该种总重要值的比例,nij代表种i在第j个资源上的重要值,Ni代表物种i在所有资源上的重要值,r为样方数。

    使用Levins生态位重叠指数计算物种之间的生态位重叠:

    Oik=rj=1(PijPkj)rj=1(Pij)2 (5)

    式中,Oik代表种i的资源利用曲线与种k的资源利用曲线的重叠指数。

    重要值利用Excel 2003软件计算,种群生态位宽度及生态位重叠指数在R 3.6.3软件中用spaa包中的niche.width ( )和niche.overlap ( )函数计算[27]。有研究认为,以生态位重叠值为指标进行聚类分析,可以反映物种的生态相似性[28]。基于此,本研究在R 3.6.3软件中对不同层次物种生态位重叠值进行离差平方和法(Ward.D)聚类分析,采用heatmap ( )函数构建热图。

    表1可见,乔木层重要值大于1的植物有26种,其中B(L) ≥ 5的有2种, 4 ≤ B(L) 5的有5种,3 ≤ B(L) 4的有3种,2 ≤ B(L) 3的有11种,B(L)2的有5种,B(SW) ≥ 2的有1种,1 ≤ B(SW) 2的有19种,B(SW)1的有6种。闽桦的重要值和生态位宽度均最大,其次为闽楠、台湾冬青(Ilex formosana var. macropyrena S. Y. Hu)刺毛杜鹃(Rhododendron championiae Hooker)和黄枝润楠(Machilus versicolora S. K. Lee et F. N. Wei),这些树种同时具有较高的重要值和生态位宽度,枫香(Viscum liquidambaricola Hayata)的重要值虽然较高,但其生态位宽度最低,青冈(Quercus glauca Thunb.)和钩栲(Castanopsis tibetana Hance)的重要值低于枫香,但生态位宽度较高,重要值排序中等的米槠(Castanopsis carlesii (Hemsl.) Hayata.)、鹅耳栎(Carpinus turczaninowii Hance)和四照花(Cornus kousa subsp. chinensis (Osborn) Q. Y. Xiang)的生态位宽度均较低。

    表  1  闽桦群落不同层次主要植物重要值及生态位宽度
    Table  1.  Importance value (IV) and niche breadths of main plants in different layers of Betula fujianensis community
    层次Layer物种与编号Species and No.重要值IVB(L)B(SW)
    乔木层
    1. 闽桦(Betula fujianensis J. Zeng, Jian H. Li & Z. D. Chen)23.558.2582.153
    2. 闽楠(Phoebe bournei (Hemsl.) Yang)7.406.4271.979
    3. 台湾冬青(Ilex formosana var. macropyrena S. Y. Hu)4.324.9821.732
    4. 刺毛杜鹃(Rhododendron championiae Hooker)3.854.7381.644
    5. 黄枝润楠(Machilus versicolora S. K. Lee et F. N. Wei)3.144.9191.742
    6. 矩圆叶鼠刺(Itea chinensis Hook et Am.)2.683.8901.451
    7. 枫香(Viscum liquidambaricola Hayata)2.491.0000.000
    8. 木荷(Schima superba Gardn. et Champ.)2.343.9441.463
    9. 青冈(Quercus glauca Thunb.)2.314.5511.561
    10. 钩栲(Castanopsis tibetana Hance)2.304.3421.533
    11. 米槠(Castanopsis carlesii (Hemsl.) Hayata.)2.261.9560.913
    12. 椤木石楠(Photinia davidsoniae Rehd. et Wils.)2.012.5671.143
    13. 薯豆(Elaeocarpus japonicus Sieb. et Zucc.)1.992.8351.176
    14. 笔罗子(Meliosma rigida Siebold & Zucc.)1.993.0331.246
    15. 鹅耳栎(Carpinus turczaninowii Hance)1.941.9550.682
    16. 四照花(Cornus kousa subsp. chinensis (Osborn) Q. Y. Xiang)1.701.3780.537
    17. 多毛茜草树(Aidia pycnantha (Drake) Tirveng.)1.652.7171.156
    18. 南岭栲(Castanopsis fordii Hance)1.532.9841.096
    19. 细枝柃(Eurya loquaiana Dunn)1.532.3301.079
    20. 虎皮楠(Daphniphyllum oldhamii (Hemsl.) K.Rosenthal)1.512.5981.011
    21. 鹿角栲(Castanopsis lamontii Hance)1.352.5000.991
    22. 五裂槭(Acer oliverianum Pax)1.312.8081.062
    23. 栲树(Castanopsis fargesii Franch.)1.292.5521.015
    24. 凹叶冬青(Ilex championii Loes.)1.251.9440.847
    25. 刨花楠(Machilus pauhoi Kanehira)1.162.5931.023
    26. 树参(Dendropanax dentiger (Harms) Merr.)1.102.6991.036
    灌木层 1. 草珊瑚(Sarcandra glabra (Thunb.) Nakai)10.238.7152.179
    2. 细枝柃(Eurya loquaiana Dunn)7.358.3102.149
    3. 单耳柃(Eurya weissiae Chun)5.317.4812.086
    4. 闽粤栲(Castanopsis fissa (Champ.) Rehd. et Wils.)5.095.0001.804
    5. 闽楠(Phoebe bournei (Hemsl.) Yang)4.768.2212.138
    6. 矩圆叶鼠刺(Itea chinensis Hook et Am.)4.695.7141.904
    7. 杜茎山(Maesa japonica (Thunb.) Moritzi)4.617.4202.079
    8. 多毛茜草树(Aidia pycnantha (Drake) Tirveng.)2.504.8461.662
    9. 台湾冬青(Ilex formosana var. macropyrena S. Y. Hu)2.385.5311.811
    10. 笔罗子(Meliosma rigida Siebold & Zucc.)2.226.5372.015
    11. 华南桂(Cinnamomum austrosinense H. T. Chang)2.188.5262.171
    12. 薯豆(Elaeocarpus japonicus Sieb. et Zucc.)1.823.0851.352
    13. 木荚红豆(Ormosia xylocarpa Chun ex L. Chen)1.736.0951.927
    14. 木荷(Schima superba Gardn. et Champ.)1.655.5861.817
    15. 刺毛杜鹃(Rhododendron championiae Hooker)1.623.9031.468
    16. 栲树(Castanopsis fargesii Franch.)1.574.7381.732
    17. 沉水樟(Cinnamomum micranthum (Hay.) Hay)1.487.0492.007
    18. 毛花连蕊茶(Camellia fraterna Hance)1.332.6831.119
    19. 密花山矾(Symplocos congesta Benth.)1.306.2311.879
    20. 红皮树(Styrax suberifolius Hook. et Arn.)1.277.7592.119
    21. 钩栲(Castanopsis tibetana Hance)1.245.4001.735
    22. 桂北木姜子(Litsea subcoriacea Yang et P. H. Huang)1.215.1211.778
    23. 黄枝润楠(Machilus versicolora S. K. Lee et F. N. Wei)1.204.5681.631
    24. 鹿角栲(Castanopsis lamontii Hance)1.082.3140.937
    25. 凹叶冬青(Ilex championii Loes.)1.064.4551.550
    26. 猴欢喜(Sloanea sinensis (Hance) Hemsl.)1.052.2460.882
    27. 四照花(Cornus kousa subsp. chinensis (Osborn) Q. Y. Xiang)1.022.4620.974
    草本层
    1. 瘤足蕨(Plagiogyria adnata (Blume) Bedd.)14.807.4722.089
    2. 肾蕨(Nephrolepis cordifolia (L.) C. Presl)10.517.1182.062
    3. 狗脊蕨(Woodwardia japonica (L. f.) Sm.)17.247.0382.046
    4. 福建莲座蕨(Angiopteris fokiensis Hieron.)6.823.2701.367
    5. 深绿卷柏(Selaginella doederleinii Hieron.)6.674.2471.749
    6. 凤丫蕨(Coniogramme japonica (Thunb.) Diels)5.133.5711.332
    7. 阔片鳞毛蕨(Dryopteris championii (Benth.) C. Chr.)4.523.1081.253
    8. 阔叶麦冬(Liriope muscari (Decne.) L. H. Bailey)4.374.3331.525
    9. 黑桫椤(Alsophila podophylla Hook.)3.491.9910.691
    10. 砂仁(Amomum villosum Lour.)2.603.6001.330
    11. 单叶双盖蕨(Diplazium subsinuatum (Wall. ex Hook. & Grev.) Tagawa)2.562.5791.154
    12. 锦香草(Phyllagathis cavaleriei (H. Lév. & Vaniot) Guillaumin)2.161.2460.349
    13. 黑莎草(Gahnia tristis Nees in Hooker & Arnott)2.022.5711.011
    14. 湿生蹄盖蕨(Athyrium devolii Ching)1.601.0000.000
    15. 日本蛇根草(Ophiorrhiza japonica Blume)1.601.3850.451
    16. 花葶苔草(Carex scaposa C. B. Clare)1.542.7781.055
    17. 赤车(Pellionia radicans (Sieb. et Zucc.) Wedd.)1.391.6000.562
    18. 淡竹叶(Lophatherum gracile Brongn.)1.091.8000.637
    19. 线蕨(Colysis elliptica (Thunb.) Ching)1.071.8000.637
    20. 华南毛蕨(Cyclosorus parasiticus (L.) Farw.)1.012.0000.693
    下载: 导出CSV 
    | 显示表格

    灌木层重要值大于1的植物有27种,其中B(L) ≥ 5的有17种,4 ≤ B(L) 5的有4种,3 ≤ B(L) 4的有2种,2 ≤ B(L) 3的有4种,B(SW) ≥ 2的有8种,1 ≤ B(SW)2的有15种,B(SW)1的有3种。草珊瑚的重要值和生态位宽度均最大,重要值排第2位的细枝柃生态位宽度小于重要值较小的华南桂,生态位宽度较大的灌木种还有单耳柃(Eurya weissiae Chun)、闽楠、杜茎山(Maesa japonica (Thunb.) Moritzi)、笔罗子(Meliosma rigida Siebold & Zucc.)、木荚红豆(Ormosia xylocarpa Chun ex L. Chen)、沉水樟(Cinnamomum micranthum (Hay.) Hay)、密花山矾(Symplocos congesta Benth.)和红皮树(Styrax suberifolius Hook. et Arn.),鹿角栲(Castanopsis lamontii Hance)、猴欢喜(Sloanea sinensis (Hance) Hemsl.)和四照花的重要值和生态位宽度均较小。

    草本层重要值大于1的植物有20种,其中B(L) ≥ 5的有3种, 4 ≤ B(L)5的有2种,3 ≤ B(L) 4的有4种,2 ≤ B(L) 3的有4种,B(L)2的有7种,B(SW) ≥ 2的有3种,1 ≤ B(SW) 2的有9种,B(SW)1的有8种。瘤足蕨、肾蕨(Nephrolepis cordifolia (L.) C. Presl) 和狗脊蕨(Woodwardia japonica (L. f.) Sm.)的重要值和生态位宽度均较高,福建莲座蕨(Angiopteris fokiensis Hieron.)的重要值排第3位,但其生态位宽度小于阔叶麦冬(Liriope muscari (Decne.) L. H. Bailey)、深绿卷柏(Selaginella doederleinii Hieron.)、砂仁(Amomum villosum Lour.)和凤丫蕨(Coniogramme japonica (Thunb.) Diels),华南毛蕨(Cyclosorus parasiticus (L.) Farw.)的重要值最小,但生态位宽度仍高于日本蛇根草(Ophiorrhiza japonica Blume)和湿生蹄盖蕨(Athyrium devolii Ching)。

    表2可知,26种乔木形成的325个种对中,O ≥ 1的有11对,占该层总对数的3.4%,0.8 ≤ O < 1的有10对,占3.1%,0.6 ≤ O <0.8的有41对,占12.6%,0.4 ≤ O < 0.6的有56对,占17.2%,0.2 ≤ O < 0.4的有76对,占23.4%,0 < O <0.2的有91对,占28%,O = 0的有40对,占12.3%。乔木层中枫香的生态位宽度最低,但其与笔罗子、凹叶冬青(Ilex championii Loes.)和刺毛杜鹃(Rhododendron championiae Hooker)等均具有较高的生态位重叠。此外,闽桦与细枝柃、闽楠与四照花、刺毛杜鹃与南岭栲、刺毛杜鹃与虎皮楠(Daphniphyllum oldhamii (Hemsl.) K.Rosenthal)、矩圆叶鼠刺(Itea chinensis Hook et Am.)与细枝柃、钩栲与树参(Dendropanax dentiger (Harms) Merr.)、华南桂与薯豆(Elaeocarpus japonicus Sieb. et Zucc.)、栲树与钩栲之间也存在较高的生态位重叠。

    表  2  闽桦群落乔木层主要植物生态位重叠
    Table  2.  Niche overlap of main plants in tree layer of Betula fujianensis community
    种号Species No.12345678910111213141516171819202122232425
    20.738
    30.6030.861
    40.4620.3700.308
    50.4840.4630.3610.670
    60.4020.3910.1010.6280.747
    70.0940.0240.0241.3100.3130.136
    80.3890.7720.2680.5610.5150.8820.000
    90.4090.6070.2340.9010.6590.7090.1870.745
    100.4890.5890.6290.4280.2750.2050.0920.3390.337
    110.1790.1990.1470.3340.5380.3040.0480.1320.1140.997
    120.2640.2010.3200.4560.3860.0780.0980.0710.1290.9921.029
    130.2940.6310.2790.5910.7720.1710.3230.0000.2750.9010.6660.779
    140.2910.1710.2230.6150.6260.2331.4900.0430.4170.2930.4320.5040.754
    150.1430.2980.0950.4550.2830.5200.0000.6060.4430.1630.2330.0000.0000.000
    160.2171.3250.2410.0730.0180.0120.0000.0510.0650.8510.0080.0680.2160.0410.000
    170.3460.7920.4370.3620.6840.3460.0000.2810.0930.2140.1350.1940.2850.2770.0000.023
    180.2520.4580.1831.1760.7420.4670.3670.4740.7010.4110.0760.2130.3530.7500.2570.0620.000
    191.0520.5620.0910.6430.5051.0590.0000.9030.7210.0990.0830.0360.0000.0600.2940.0090.4800.199
    200.2080.2920.1601.0050.4720.4780.3960.4930.6200.5460.1300.1000.3320.5900.5450.0000.0000.7420.205
    210.3610.3650.4930.1640.0400.0270.0000.1060.0800.7220.0240.2150.1150.0920.0001.1790.0810.1180.0350.000
    220.3140.3840.1100.7170.4930.7960.0000.6830.7780.0000.1400.1550.0000.2610.2390.0370.2910.4010.8570.0830.151
    230.2680.1730.3880.6650.4170.0970.0000.1400.2960.1470.0890.2940.0750.4510.0000.1340.4020.4350.1290.0000.3760.559
    240.1690.1300.0700.4420.4930.3341.3230.1930.3990.1880.1220.1290.4270.6500.3060.0000.0000.5900.0890.7200.0000.0600.000
    250.3040.4080.4660.4310.5070.1500.2840.1920.1380.7740.2950.6140.4880.5180.0000.1210.1790.3110.0000.2920.4420.0000.2680.375
    260.3390.7300.5250.1200.1430.0000.0000.1530.0001.0540.5510.8030.6070.1950.0000.5010.2200.0000.0000.0000.5770.0000.2140.0000.763
    注:种号同表1乔木层。
    Note: Species numbers are the same as those of the tree layer in Table 1.
    下载: 导出CSV 
    | 显示表格

    表3可见,27种灌木优势种共组成351个种对,其中O ≥ 1的有45对,占该层总对数的12.8%,0.8 ≤ O <1的有101对,占28.7%,0.6 ≤ O < 0.8的有90对,占25.6%,0.4 ≤ O < 0.6的有61对,占17.4%,0.2 ≤ O <0.4的有38对,占10.8%,0 < O <0.2的有13对,占3.7%,O = 0的有4对,占1.1%。灌木层建群种草珊瑚与闽粤栲等12种灌木的生态位重叠值高于1,与细枝柃等10种灌木的生态位重叠值高于0.9。此外,生态位宽度较小的鹿角栲、凹叶冬青、猴欢喜和四照花也分别与笔罗子、沉水樟、钩栲和桂北木姜子(Litsea subcoriacea Yang et P. H. Huang)具有较高的生态位重叠,重叠值在0.8以上。

    表  3  闽桦群落灌木层主要植物生态位重叠
    Table  3.  Niche overlap of main plants in shrub layer of Betula fujianensis community
    种号Species No. 1234567891011121314151617181920212223242526
    20.956
    30.9790.860
    41.0240.4820.849
    50.9530.8940.8261.005
    60.9670.6270.8290.8000.678
    70.9460.8390.8500.7230.7940.770
    81.0180.4520.6260.7240.8950.8710.743
    90.9860.5730.7440.7281.0150.8110.6620.757
    100.7780.6990.6730.9030.7590.8220.6430.8740.784
    110.9720.8960.7981.0990.9740.9590.8191.0491.0230.750
    120.9600.2550.5640.4740.9520.5710.7010.9230.5260.6331.060
    131.0210.6200.7710.6880.8520.4820.8090.7980.7620.7251.0360.882
    140.9760.6510.8870.5890.9790.9520.7190.7390.8190.7970.8950.5720.427
    150.8670.4940.5470.4260.4160.5850.4820.3040.3260.4790.3940.0750.2660.552
    161.0090.4860.8800.8810.5571.0080.7500.7560.6690.8931.0310.3520.5050.7280.605
    171.0010.7640.7170.8290.7110.8290.8721.0070.7800.7570.8060.8070.9070.7370.7160.878
    181.0790.2671.0420.1900.2590.5051.0830.3050.2310.6330.8930.4450.3220.2870.2460.3640.957
    191.0060.6790.8650.6920.6820.8100.6760.8900.8720.7620.9080.9110.6270.9620.4530.6350.7600.355
    200.9900.8520.9031.0140.8280.9570.8500.9360.9100.6890.8760.7620.9380.9200.5201.0650.8570.9950.920
    211.0740.5060.7860.8880.6170.6900.7820.8570.6721.0080.6670.6630.7120.6000.2370.8470.9210.7850.6330.640
    220.9950.5950.8710.8350.5850.8470.7760.6750.6300.9080.5800.1450.4920.7660.6280.9730.8610.2420.6130.6570.738
    231.0160.4480.7470.4080.4920.4390.8930.6860.6460.6650.9841.0170.6370.4880.1360.3510.9251.0540.5860.8750.6920.273
    241.0740.2420.5170.4630.2870.9210.7400.4290.3291.3591.1050.1080.2890.2860.1580.9291.0600.0000.2000.8051.1331.0940.312
    250.5370.5240.5680.6870.4910.5090.5710.4240.5090.5750.5130.1000.5970.4950.4630.6360.5990.6360.3890.5940.6360.6850.4900.848
    261.0810.2200.5690.5110.2890.2950.7490.3680.3261.3050.3120.1110.3510.2030.0890.4211.0110.0000.1400.8411.1631.0090.1620.9360.955
    271.0720.2530.5561.0501.0280.8930.7370.8650.3571.3181.1250.1420.8100.6590.1770.9411.0370.0000.5190.8411.1251.0830.3070.9640.8750.930
    注:种号同表1灌木层。
    Note: Species numbers are the same as those of the shrub layer in Table 1.
    下载: 导出CSV 
    | 显示表格

    表4可见,20种草本优势种组成190个种对,其中O ≥ 1的有12对,占该层主要植物总对数的6.3%,0.8 ≤ O <1的有9对,占4.7%,0.6 ≤ O < 0.8的有22对,占11.6%,0.4 ≤ O < 0.6的有23对,占12.1%,0.2 ≤ O < 0.4的有55对,占28.9%,0 < O <0.2的有30对,占15.8%,O = 0的有39对,占20.5%。生态位宽度较大的瘤足蕨、肾蕨和狗脊蕨与其他种群的生态位重叠值普遍较低,但生态位宽度最小的湿生蹄盖蕨分别与瘤足蕨、肾蕨、砂仁、锦香草(Phyllagathis cavaleriei (H. Lév. & Vaniot) Guillaumin)、黑莎草(Gahnia tristis Nees in Hooker & Arnott)等5种植物的生态位重叠值却大于1,此外,生态位宽度较小的日本蛇根草(Ophiorrhiza japonica Blume)、赤车(Pellionia radicans (Sieb. et Zucc.) Wedd.)和淡竹叶(Lophatherum gracile Brongn.)间也存在较高的生态位重叠。

    表  4  闽桦群落草本层主要植物生态位重叠
    Table  4.  Niche overlap of main plants in herb layer of Betula fujianensis community
    种号Species No.12345678910111213141516171819
    20.936
    30.7060.717
    40.3170.2970.241
    50.9260.6300.6960.313
    60.3170.3250.2710.6490.226
    70.3010.3320.7210.7870.2890.336
    80.4220.3230.6530.7090.3160.6040.619
    90.2480.1770.2430.6140.2171.0480.0000.388
    100.9690.5270.6470.3470.7580.1190.3050.2220.177
    110.2700.4020.2160.4350.6980.2950.3470.2550.3680.553
    120.2180.2100.3510.3630.1380.0790.1950.0320.1180.3920.041
    130.4100.4030.7480.1490.2030.1190.2270.0000.0000.4290.0001.143
    141.3281.2940.3640.2970.4470.0000.5480.0000.0001.2000.0001.1081.286
    150.9130.2870.6670.2970.5100.0000.3960.0000.0000.4621.2280.1850.2140.231
    160.1480.1851.0680.5950.0880.5710.5230.3850.0000.0930.1470.0000.1710.0000.000
    170.2040.3270.1450.1450.5470.0000.2120.0000.0000.5330.6860.3560.2000.4001.0670.000
    180.1730.3090.2280.1090.5370.1200.1410.0000.0000.4000.9820.0000.1000.0001.0000.2400.800
    190.8300.7190.2430.4950.3731.1900.0000.7780.9730.2000.3680.0460.0000.0000.0000.0000.0000.000
    200.1780.1520.8490.7430.1050.3570.7060.5380.0000.0000.1840.0000.0000.0000.0000.4000.0000.0000.000
    注:种号同表1草本层。
    Note: Species numbers are the same as those of the herb layer in Table 1.
    下载: 导出CSV 
    | 显示表格

    基于不同层次优势种群的生态位重叠值进行聚类分析,结果显示,闽桦群落乔木层26种优势树种可以划分为4组(图1:A),第1组为四照花、台湾冬青、树参、钩栲、椤木石楠(Photinia davidsoniae Rehd. et Wils.)、薯豆、刨花楠(Machilus pauhoi Kanehira)、米槠、闽楠和鹿角栲,第2组为细枝柃、鹅耳栎、五裂槭(Acer oliverianum Pax)、木荷(Schima superba Gardn. et Champ.)、青冈、矩圆叶鼠刺、闽桦和多毛茜草树(Aidia pycnantha (Drake) Tirveng.),第3组为凹叶冬青、刺毛杜鹃和笔罗子,第4组为栲树、黄枝润楠、虎皮楠、南岭栲和枫香。

    图  1  基于生态位重叠的植物物种聚类分析
    种号同表1。颜色越浅代表生态相似性越高。
    Figure  1.  Species cluster analysis based on niche overlap
    Species numbers are the same as those in Table 1. Lighter color indicates higher ecological similarity.

    灌木层27种优势树种也可以划分为4组(图1:B),第1组为单耳柃、杜茎山、红皮树、沉水樟、草珊瑚、华南桂、笔罗子、凹叶冬青、钩栲和桂北木姜子,第2组为猴欢喜、鹿角栲和四照花,第3组为黄枝润楠、密花山矾、闽楠、矩圆叶鼠刺、栲树、木荚红豆、木荷、闽粤栲和多毛茜草树,第4组为刺毛杜鹃、细枝柃、台湾冬青、薯豆和毛花连蕊茶(Camellia fraterna Hance)。

    草本层19种优势树种则可以划分为3组(图1:C),第1组为华南毛蕨、花葶苔草(Carex scaposa C. B. Clare)、阔片鳞毛蕨(Dryopteris championii (Benth.) C. Chr.)、狗脊蕨、福建莲座蕨、凤丫蕨、阔叶麦冬、黑桫椤和线蕨,第2组为单叶双盖蕨(Diplazium subsinuatum (Wall. ex Hook. & Grev.) Tagawa)、赤车、淡竹叶、日本蛇根草、深绿卷柏和湿生蹄盖蕨,第3组为黑莎草、瘤足蕨、肾蕨、砂仁和锦香草。

    有研究认为,重要值大的物种,其生态位宽度一般较大[29];但也有研究表明,物种的生态位宽度与其重要值大小没有绝对线性关系[16, 30, 31],其反映的是该物种利用资源的均匀程度[32]。本研究中,重要值较高的物种,其生态位宽度一般较大,但两者排序也不完全一致,如乔木层矩圆叶鼠刺、枫香和木荷的重要值高于青冈和钩栲,但其生态位宽度却较低,枫香的生态位宽度还是乔木层中最低的。野外调查发现,枫香在群落中仅有一株大径阶老树,重要值虽高,但频度较低。灌木层重要值较低的华南桂、木荚红豆、木荷、密花山矾、红皮树、钩栲和桂北木姜子,其生态位宽度也较高,这些植物拥有较高的分布频度,对环境资源的利用比较充分。草本层重要值最高的狗脊蕨,其生态位宽度低于瘤足蕨和肾蕨。此外,重要值排序中等的阔叶麦冬和砂仁也拥有较高的生态位宽度,而重要值排序中等的黑桫椤,其生态位宽度却低于重要值最小的华南毛蕨。可见,除重要值外,物种分布的均匀性也是影响物种生态位宽度的重要原因[33]

    通常,物种的生态位宽度越大,其对资源的利用能力越强,在生境中的地位越重要,且分布也越均匀[16, 28]。在天然林中,一个种群须具有较大的生态位宽度,较好地利用有限的资源,才能成为群落的优势种群[32]。本研究中,乔木层闽桦和闽楠的重要值和生态位宽度均最高,对资源的利用能力最强,是群落的优势种群,对维护群落结构稳定性和物种多样性保护起着重要作用,其次为台湾冬青、刺毛杜鹃、黄枝润楠,是群落的亚优势种。灌木层中草珊瑚、细枝柃、单耳柃具有较高的生态位宽度,其中草珊瑚为灌木层建群种,分布最广,重要值最大,对环境的适应能力最强。草本层瘤足蕨、肾蕨和狗脊蕨的重要值和生态位宽度均较大,为草本层优势种。

    生态位重叠值越大说明物种间对环境资源的生态需求越相似[28, 34]。本研究中,乔木层主要物种间生态位重叠较为普遍,但重叠程度较高的种对仅占19.1%,说明乔木层树种对资源的共享比较充分,没有产生激烈竞争,群落处于相对稳定状态。乔木层中枫香的生态位宽度最低,但其分别与笔罗子、凹叶冬青和刺毛杜鹃等具有较高的生态位重叠,反映出它们在资源利用上的相似性,同时由于较高的种间竞争,枫香有退出演替的可能。灌木层生态位重叠值较高的种对占67.2%,说明灌木层植物大多具有相似或共同的资源需求。草珊瑚在灌木层中分布范围广,资源利用能力强,与多数种群甚至是生态位较窄的种群也能发生较高的生态位重叠。草本层生态位重叠值较高的种对占22.6%,有39对发生生态位分离,可见草本层植物都拥有各自的资源位,种间关系协调。

    研究表明,生态位重叠并不意味着绝对的种间竞争,当环境资源丰富时,物种可以共同享用资源[32]。本研究结果显示,闽桦群落乔木层和草本层种群的生态位重叠值普遍较低,种间竞争不激烈,灌木层种群的生态位重叠较高,表明多数物种具有相似或共同的资源需求。但在自然演替过程中,灌木层不同物种可以长期共存,说明不同物种在对资源的利用上可能存在差异和互补,物种间可以相互适应且协同进化,在竞争条件下共享资源,从而达到物种与环境的和谐统一。基于物种生态位重叠值进行聚类,乔木层和灌木层均可划分为4组,而草本层可划分为3组,同组内各物种大多具有相似的生态习性和生境特征,可利用群落中相同的资源,物种间相互依赖共存。

    本研究结果表明,闽桦群落不同层次种间关系较为协调,群落整体具有较高的稳定性。但在野外调查中发现,闽桦作为乔木层的优势树种,其更新不良,随着群落郁闭度的提高,林下的闽桦幼树和幼苗获得光资源的机会逐渐减少,生长困难。此外,同为乔木优势树种,闽桦和闽楠、台湾冬青的生态位重叠值较高,在演替过程中闽桦可能面临着较大的竞争压力。因此,针对濒危树种闽桦的保护,应加强育苗、栽培和林分培育技术研究,通过培育人工林扩大其种群数量。在对闽桦群落进行恢复和重建的过程中,应充分考虑群落内各种群的生态位特征,将生物学、生态学特性相似、对生境具有相似要求的物种搭配在一起,对生态位重叠值较高的树种,合理优化空间,充分利用资源。同时,本研究还发现,天然林中闽桦和细枝柃、鹅耳栎、五裂槭、木荷、青冈、矩圆叶鼠刺、多毛茜草树等具有相似的生态习性,因此在闽桦群落的恢复和重建中,可适当搭配此类树种营造混交林。在人工林培育过程中,可适当清除林分中的枯死木和风倒木,并通过修枝间伐,增加林内光强,以促进闽桦幼苗幼树的生长和发育。

  • [1]

    Hu HH. Sinojackia, a new genus of Styracaceae from southeastern China[J]. J Arnold Arbor, 1928, 9(2/3):130-131.

    [2]

    Hu HH. Notulae systematicae ad floram sinensem[J]. J Arnold Arbor, 1930, 11(1):48-50.

    [3]

    Merrill ED. Miscellanea sinensia[J]. Sunyatsenia, 1937(3):246-262.

    [4] 罗利群. 四川秤锤树属一新种[J]. 中山大学学报(自然科学版), 1992, 31(4):78-79.

    Luo LQ. A new species of Sinojackia from Sichuan[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1992, 31(4):78-79.

    [5]

    Chen T, Li GY. A new species of Sinojackia Hu (Styracaceae) from Zhejiang, east China[J]. Novon, 1997, 7(4):350.

    [6]

    Chen T, Cao TR. A new species of Sinojackia Hu (Styracaceae) from Hunan, south central China[J]. Edinburgh Journal of Botany, 1998, 55(2):235-238.

    [7]

    Yao XH, Ye QG, Ge JW, et al. A new species of Sinojackia (Styracaceae) from Hubei, central China[J]. Novon, 2007, 17(1):138-140.

    [8] 吴容芬, 黄淑美. 中国植物志:第60卷:第2分册[M]. 北京:科学出版社, 1987:143-147.
    [9]

    Hwang SM, Grimes J. Styracaceae[M]//Wu ZY, Raven PH, Hong DY, eds. Flora of China. Beijing:Science Press, St. Louis:Missouri Botanical Garden Press, 1996, Vol. 15:253-271.

    [10] 祁承经. 湖南安息香科一新种[J]. 植物分类学报, 1981, 19(4):526-528.

    Qi CJ. A new species of Styracaceae from Hunan[J]. Acta Phytotaxonomica Sinica, 1981, 19(4):526-528.

    [11]

    Yao X, Ye Q, Fritsch PW. Phylogeny of Sinojackia (Styracaceae) based on DNA sequence and microsatellite data:implications for taxonomy and conservation[J]. Ann Bot, 2008, 101(5):651-659.

    [12] 姚小洪, 叶其刚, 康明, 黄宏文. 秤锤树属与长果安息香属植物的地理分布及其濒危现状[J]. 生物多样性, 2005, 13(4):339-346.

    Yao XH, Ye QG, Kang M, Huang HW. Geographic distribution and current status of the endangered genera Sinojackia and Changiostyrax[J]. Biodiversity Science, 2005, 13(4):339-346.

    [13] 陈涛, 张宏达. 亚洲安息香科植物地理分布研究[J]. 中山大学学报(自然科学版), 1996(1):97-103.

    Chen T, Chang HT. The geographical distribution of Styracaceae in Asia[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1996(1):97-103.

    [14] 王世彤, 吴浩, 刘梦婷, 张佳鑫,刘检明,孟红杰,等. 极小种群野生植物黄梅秤锤树群落结构与动态[J]. 生物多样性, 2018, 26(7):749-759.

    Wang ST, Wu H, Liu MT, Zhang JX, Liu JM, Meng HJ, et al. Community structure and dynamics of a remnant forest dominated by a plant species with extremely small population (Sinojackia huangmeiensis) in central China[J]. Biodiversity Science, 2018, 26(7):749-759.

    [15] 高锦伟. 江西秤锤树花果主要形态变异及其遗传多样性分析[D]. 广州:广州大学, 2016.
    [16] 张金菊, 叶其刚, 姚小洪, 张胜菊,黄宏文. 片断化生境中濒危植物黄梅秤锤树的开花生物学、繁育系统与生殖成功的因素[J]. 植物生态学报, 2008(4):743-750.

    Zhang JJ, Ye QG, Yao XH, Zhang SJ, Huang HW. Preliminary studies on the floral biology, breeding system and reproductive success of Sinojackia huangmeiensis, an endangered plant in a fragmented habitat in Hubei Province, China[J]. Journal of Plant Ecology, 2008(4):743-750.

    [17] 刘梦婷, 魏新增, 江明喜. 濒危植物黄梅秤锤树野生与迁地保护种群的果实性状比较[J]. 植物科学学报, 2018, 36(3):354-361.

    Liu MT, Wei XZ, Jiang MX. Comparison of fruit traits between wild and ex situ populations of Sinojackia huangmeiensis[J]. Plant Science Journal, 2018, 36(3):354-361.

    [18]

    Wei XZ, Liu MT, Wang ST, Jiang MX. Seed morphological traits and seed element concentrations of an endangered tree species displayed contrasting responses to waterlogging induced by extreme precipitation[J]. Flora, 2018, 246-247:19-25.

    [19]

    Wang HC, Meng AP, Chu HJ, Li XW, Li JQ. Floral ontogeny of Sinojackia xylocarpa (Styracaceae), with special reference to the development of the androecium[J]. Nord J Bot, 2010, 28(3):371-375.

    [20]

    Yao X, Zhang J, Ye Q, Huang H. Fine-scale spatial genetic structure and gene flow in a small, fragmented population of Sinojackia rehderiana (Styracaceae), an endangered tree species endemic to China[J]. Plant Biol, 2011, 13(2):401-410.

    [21]

    Zhang JJ, Ye QG, Gao PX, Yao XH. Genetic footprints of habitat fragmentation in the extant populations of Sinojackia (Styracaceae):implications for conservation[J]. Bot J Linn Soc, 2012, 170(2):232-242.

    [22] 阮咏梅, 张金菊, 姚小洪, 叶其刚. 黄梅秤锤树孤立居群的遗传多样性及其小尺度空间遗传结构[J]. 生物多样性, 2012, 20(4):460-469.

    Ruan YM, Zhang JJ, Yao XH, Ye QG. Genetic diversity and fine-scale spatial genetic structure of different lifehistory stages in a small, isolated population of Sinojackia huangmeiensis (Styracaceae)[J]. Biodiversity Science, 2012, 20(4):460-469.

    [23]

    Ye QG, Yao XH, Zhang SJ, Kang M, Huang HW. Potential risk of hybridization in ex situ collections of two endangered species of Sinojackia Hu (Styracaceae)[J]. J Integr Plant Biol, 2006, 48(7):867-872.

    [24] 环境保护部, 中国科学院. 中国生物多样性红色名录:高等植物卷[DB/OL]. (2013-09-02). http://www.iplant.cn/rep/protlist/4.
    [25] 国家林业局, 国家发改委. 全国极小种群野生植物拯救保护工程规划(2011-2015年)[EB/OL]. (2012-04-18). http://www.forestry.gov.cn/.
    [26]

    Graham CH, Ferrier S, Huettman F. New developments in museum-based informatics and applications in biodiversity analysis[J]. Trends Ecol Evol, 2004, 19(9):497-503.

    [27]

    Corlett RT, Westcott DA. Will plant movements keep up with climate change?[J]. Trends Ecol Evol, 2013, 28(8):482-488.

    [28]

    Huntley B, Collingham YC, Singarayer JS. Explaining patterns of avian diversity and endemicity:climate and biomes of southern Africa over the last 140000 years[J]. J Biogeogr, 2016, 43(5):874-886.

    [29]

    Van der Putten WH, Macel M, Visser ME. Predicting species distribution and abundance responses to climate change:why it is essential to include biotic interactions across trophic levels[J]. Philos Trans R Soc, B, 2010, 365(1549):2025-2034.

    [30]

    Yu JH, Wang CJ, Wan JZ, Han SJ, Wang QG, Nie SM. A model-based method to evaluate the ability of nature reserves to protect endangered tree species in the context of climate change[J]. For Ecol Manag, 2014, 327:48-54.

    [31]

    Adhikari D, Barik SK, Upadhaya K. Habitat distribution modelling for reintroduction of Ilex khasiana Purk., a critically endangered tree species of northeastern India[J]. Ecol Eng, 2012, 40:37-43.

    [32]

    Tojibaev K, Beshko N, Volis S. Translocation of Otostegia bucharica, a highly threatened narrowly distributed relict shrub[J]. Plant Divers, 2019, 41(2):105-108.

    [33]

    Tulowiecki SJ. Modeling the historical distribution of American chestnut (Castanea dentata) for potential restoration in western New York State, US[J]. For Ecol Manag, 2020, 462:118003.

    [34] 苏小菱, 马丹丹, 李根有, 刘西. 浙江省珍稀濒危植物细果秤锤树的种群数量监测报告[J]. 浙江林学院学报, 2009, 26(1):142-144.

    Su XL, Ma DD, Li GY, Li X. Population quantity surveillance of the rare and endangered plant in Zhejiang Province:Sinojackia microcarpa[J]. Journal of Zhejiang Forestry University, 2009, 26(1):142-144.

    [35] 徐惠明. 濒危植物狭果秤锤树的生态学初步研究[D]. 广州:广州大学, 2017.
    [36] 杨国栋, 张开文, 陈水飞, 伊贤贵. 南京重点保护野生植物资源调查初报[J]. 南京林业大学学报(自然科学版), 2014, 38(S1):62-64.

    Yang GD, Zhang KW, Chen SF, Yi XG. A preliminary survey of the key wild plant resources protection of Nanjing city of Jiangsu Province[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2014, 38(S1):62-64.

    [37]

    Hernandez PA, Graham CH, Master LL. The effect of sample size and species characteristics on performance of different species distribution modeling methods[J]. Ecography, 2006, 29(5):773-785.

    [38] 田芝平, 姜大膀. 不同分辨率CCSM4对东亚和中国气候模拟能力分析[J]. 大气科学, 2013, 37(1):171-186.

    Tian ZP, Jiang DB. Evaluation of the performance of low-to high-resolution CCSM4 over East Asia and China[J]. Chinese Journal of Atmospheric Sciences, 2013, 37(1):171-186.

    [39] 朱莹莹, 徐晓婷. 气候变化对我国特有濒危物种水杉野生种群分布的影响[J]. 生态学杂志, 2019, 38(6):1629-1636.

    Zhu YY, Xu XT. Effects of climate change on the distribution of wild population of Metasequoia glyptostroboides, an endangered and endemic species in China[J]. Chinese Journal of Ecology, 2019, 38(6):1629-1636.

    [40] 孔维尧, 李欣海, 邹红菲. 最大熵模型在物种分布预测中的优化[J]. 应用生态学报, 2019, 30(6):2116-2128.

    Kong WY, Li XH, Zhou HF. Optimizing MaxEnt model in the prediction of species distribution[J]. Chinese Journal of Applied Ecology, 30(6):2116-2128.

    [41]

    Anderson RP, Gonzalez JI. Species-specific tuning increases robustness to sampling bias in models of species distributions:an implementation with MaxEnt[J]. Ecol Modell, 2011, 222(15):2796-2811.

    [42] 崔相艳, 王文娟, 杨小强, 李述,秦声远,戎俊. 基于生态位模型预测野生油茶的潜在分布[J]. 生物多样性, 2016, 24(10):1117-1128.

    Cui XY, Wang WJ, Yang XQ, Li S, Qin SY, Rong J. Potential distribution of wild Camellia oleifera based on ecological niche modeling[J]. Biodiversity Science, 2016, 24(10):1117-1128.

    [43] 王运生, 谢丙炎, 万方浩, 肖启明,戴良英. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007, 15(4):365-372.

    Wang YS, Xie BY, Wan FH, Xiao QM, Dai LY. Application of ROC curve analysis in evaluating the performance of alien species' potential distribution models[J]. Biodiversity Science, 2007, 15(4):365-372.

    [44] 邵慧, 田佳倩, 郭柯, 孙建新. 样本容量和物种特征对BIOCLIM模型模拟物种分布准确度的影响:以12个中国特有落叶栎树种为例[J]. 植物生态学报, 2009, 33(5):870-877.

    Shao H, Tian JQ, Guo K, Sun JX. Effects of sample size and species traits on performance of BIOCLIM in predicting geographical distribution of tree species:A case study with 12 deciduous Quercus species indigenous to China[J]. Chinese Journal of Plant Ecology, 2009, 33(5):870-877.

    [45]

    Pearson RG, Raxworthy CJ, Nakamura M. Predicting species distributions from small numbers of occurrence records:a test case using cryptic geckos in Madagascar[J]. J Biogeogr, 2007, 34(1):102-117.

    [46]

    Qiao H, Peterson AT, Ji L. Using data from related species to overcome spatial sampling bias and associated limitations in ecological niche modelling[J]. Methods Ecol Evol, 2017, 8(12):1804-1812.

    [47]

    Liu F, McShea WJ, Li D. Correlating habitat suitability with landscape connectivity:A case study of Sichuan golden monkey in China[J]. Ecol Model, 2017, 353:37-46.

    [48]

    Carranza ML, Saura S, Loy A. Connectivity providers for semi-aquatic vertebrates:the case of the endangered otter in Italy[J]. Landscape Ecol, 2012, 27(2):281-290.

    [49] 朱耿平, 刘国卿,卜文俊, 高玉葆. 生态位模型的基本原理及其在生物多样性保护中的应用[J]. 生物多样性, 2013, 21(1):90-98.

    Zhu GP, Liu GQ, B WJ, Gao YB. Ecological niche mode-ling and its applications in biodiversity conservation[J]. Biodiversity Science, 2013, 21(1):90-98.

  • 期刊类型引用(2)

    1. 郭昊,赵厚本,高亿波,冯慧芳,周光益,李兆佳,宝音满达,皮志豪,王旭. 南岭中段森林优势树种及其生态位随海拔梯度变化特征. 植物科学学报. 2024(05): 582-594 . 本站查看
    2. 钟荔荔. 闽桦与杉木混交林林分生长及结构特征. 林业勘察设计. 2024(04): 26-29 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  710
  • HTML全文浏览量:  3
  • PDF下载量:  535
  • 被引次数: 4
出版历程
  • 收稿日期:  2020-02-15
  • 修回日期:  2020-03-07
  • 网络出版日期:  2022-10-31
  • 发布日期:  2020-10-27

目录

/

返回文章
返回