高级检索+

黑桫椤多器官全长转录组分析及类黄酮生物合成结构基因的挖掘

林泓, 王桢, 王艇, 苏应娟

林泓,王桢,王艇,苏应娟. 黑桫椤多器官全长转录组分析及类黄酮生物合成结构基因的挖掘[J]. 植物科学学报,2024,42(1):56−65. DOI: 10.11913/PSJ.2095-0837.23069
引用本文: 林泓,王桢,王艇,苏应娟. 黑桫椤多器官全长转录组分析及类黄酮生物合成结构基因的挖掘[J]. 植物科学学报,2024,42(1):56−65. DOI: 10.11913/PSJ.2095-0837.23069
Lin H,Wang Z,Wang T,Su YJ. Analysis of multi-organ full-length transcriptome and structural genes involved in flavonoid biosynthesis of Gymnosphaera podophylla Dalla Torre & Sarnth.[J]. Plant Science Journal,2024,42(1):56−65. DOI: 10.11913/PSJ.2095-0837.23069
Citation: Lin H,Wang Z,Wang T,Su YJ. Analysis of multi-organ full-length transcriptome and structural genes involved in flavonoid biosynthesis of Gymnosphaera podophylla Dalla Torre & Sarnth.[J]. Plant Science Journal,2024,42(1):56−65. DOI: 10.11913/PSJ.2095-0837.23069
林泓,王桢,王艇,苏应娟. 黑桫椤多器官全长转录组分析及类黄酮生物合成结构基因的挖掘[J]. 植物科学学报,2024,42(1):56−65. CSTR: 32231.14.PSJ.2095-0837.23069
引用本文: 林泓,王桢,王艇,苏应娟. 黑桫椤多器官全长转录组分析及类黄酮生物合成结构基因的挖掘[J]. 植物科学学报,2024,42(1):56−65. CSTR: 32231.14.PSJ.2095-0837.23069
Lin H,Wang Z,Wang T,Su YJ. Analysis of multi-organ full-length transcriptome and structural genes involved in flavonoid biosynthesis of Gymnosphaera podophylla Dalla Torre & Sarnth.[J]. Plant Science Journal,2024,42(1):56−65. CSTR: 32231.14.PSJ.2095-0837.23069
Citation: Lin H,Wang Z,Wang T,Su YJ. Analysis of multi-organ full-length transcriptome and structural genes involved in flavonoid biosynthesis of Gymnosphaera podophylla Dalla Torre & Sarnth.[J]. Plant Science Journal,2024,42(1):56−65. CSTR: 32231.14.PSJ.2095-0837.23069

黑桫椤多器官全长转录组分析及类黄酮生物合成结构基因的挖掘

基金项目: 国家自然科学基金项目(31872670,32071781);广东省基础与应用基础研究基金项目(2021A1515010911)。
详细信息
    作者简介:

    林泓(2000−),男,硕士研究生,研究方向为植物分子系统发育(E-mail:linh259@mail2.sysu.edu.cn

    王桢(1997−),男,硕士研究生,研究方向为生物化学与分子生物学(E-mail:wangzh535@mail2.sysu.edu.cn

    通讯作者:

    王艇: E-mail:tingwang@scau.edu.cn

    苏应娟: suyj@mail.sysu.edu.cn

    #共同第一作者。

  • 中图分类号: Q943.2

Analysis of multi-organ full-length transcriptome and structural genes involved in flavonoid biosynthesis of Gymnosphaera podophylla Dalla Torre & Sarnth.

  • 摘要:

    黑桫椤(Gymnosphaera podophylla Dalla Torre & Sarnth.)为著名的孑遗蕨类,具有很强的环境适应能力,然而其适应性机制尚不清楚。本研究采用PacBio和Illumina技术对黑桫椤的根、羽轴和羽片进行转录组测序,分别生成12 879、14 185和16 084个全长unigenes。基因表达分析结果表明,与黑桫椤抗干旱、缺水胁迫和生物胁迫相关的基因表达水平较高。根、羽轴和羽片特异性上调基因均显著富集到KEGG代谢通路中的“苯丙烷生物合成途径”,根和羽轴的器官特异性上调基因还显著富集到“类黄酮生物合成途径”。共有192个全长unigenes被注释为类黄酮生物合成途径所涉及的13个酶结构基因,其中包括112个差异表达基因(DEGs),表明黑桫椤类黄酮生物合成途径较为保守,且存在器官特异性差异表达基因。本文对黑桫椤多器官全长转录组和类黄酮生物合成途径结构基因进行了综合分析,为进一步研究其对环境的适应性提供了丰富的遗传资源。

    Abstract:

    Gymnosphaera podophylla Dalla Torre & Sarnth. is a famous relict tree fern with strong environmental adaptability. However, the mechanisms underlying its adaptability remain unclear. In this study, the PacBio and Illumina platforms were used to sequence the root, rachis, and pinna transcriptomes of G. podophylla, resulting in the generation of 12 879, 14 185, and 16 084 full-length unigenes, respectively. Transcript quantification showed that these unigenes were related to drought resistance and biological stress and were highly expressed. KEGG enrichment analysis indicated that the up-regulated genes in the roots, rachis, and pinna were enriched in the "phenylpropane biosynthesis pathway", while the up-regulated genes in the roots and rachis were enriched in the "flavonoid biosynthetic pathway". A total of 192 full-length unigenes were annotated as structural genes involving 13 enzymes in the flavonoid biosynthesis pathway, including 112 differentially expressed genes (DEGs), suggesting that the flavonoid biosynthesis pathway was conserved in G. podophylla, with organ-specific DEGs. This research is the first to perform a comprehensive analysis of the full-length transcriptome across multiple organs in G. podophylla and to investigate the structural genes of the flavonoid biosynthetic pathway. This study provides an abundance of genetic resources for further examination of environmental adaptation in this species.

  • 1如需查阅附表内容请登录《植物科学学报》网站(http://www.plantscience.cn)查看本期文章。
    21~7)如需查阅附件内容请登录《植物科学学报》网站(http://www.plantscience.cn)查看本期文章。
  • 图  1   黑桫椤3种器官的高表达和差异表达基因

    A:各器官前10个高表达基因。柱状图底部的数字代表注释为同一蛋白的FL unigenes数目。柱状图上方的数字代表注释为同一蛋白的FL unigenes的总FPKM值;B:从左至右依次为根和羽轴、羽片和羽轴、羽片和根的成对比较的差异表达基因数量;C:从左至右依次是根、羽轴、羽片相对于其他两种器官上调的基因数量。

    Figure  1.   Highly expressed genes and DEGs in three organs of Gymnosphaera podophylla

    A: The top ten highly expressed genes in three organs. Number of FL unigenes annotated as same protein is shown at the bottom of the bar. Sum of FPKM values of FL unigenes annotated for the same protein are above the bar; B: From left to right is the number of DEGs in roots versus rachis, pinna versus rachis, and pinna versus roots, respectively; C: From left to right, number of genes up-regulated in roots, rachis, and pinna relative to the other two organs, respectively.

    图  2   类黄酮生物合成通路

    热图展示了3种器官中类黄酮生物合成途径的DEG表达情况。高亮表示该酶有多个FL unigenes(>10),标红字体表示未发现FNS和F3H的FL unigenes,虚线箭头表示由多个酶参与的多步反应。

    Figure  2.   Flavonoid biosynthesis pathway

    Heatmap showing DEG expression profiles of flavonoid biosynthesis pathway in three organs. Highlighted gene contains multiple unigenes (>10) in G. podophylla. Red font indicates F3H and FNS genes were not found in transcriptome. Dotted arrows indicate multi-step reaction with multiple enzymes.

    表  1   全长转录组和组装数据

    Table  1   Full-length transcriptome and assembled data

    器官
    Organ
    基因类型
    Unigenes type
    碱基量
    Raw reads / Gb
    总数
    Total number
    GC含量
    GC content / %
    N50 / bp
    组装8.2035 92150.001838
    全长16.2612 87948.001979
    羽轴组装8.8130 75249.701938
    全长18.3914 18547.001898
    羽片组装6.7429 93849.301804
    全长21.9916 04847.001875
    下载: 导出CSV
  • [1] 苏应娟,王艇,郑博,江宇,欧阳蒲月,等. 根据cpDNA trnL-F非编码区序列变异分析黑桫椤海南和广东种群的遗传结构与系统地理[J]. 生态学报,2004,24(5):914−919. doi: 10.3321/j.issn:1000-0933.2004.05.008

    Su YJ,Wang T,Zheng B,Jiang Y,Ouyang PY,et al. Genetic structure and phylogeography of populations of Alsophila podophylla in Hainan and Guangdong,southern China,based on cpDNA trnL-F noncoding sequences[J]. Acta Ecologica Sinica,2004,24(5):914−919. doi: 10.3321/j.issn:1000-0933.2004.05.008

    [2]

    Ppg I. A community-derived classification for extant lycophytes and ferns[J]. J Syst Evol,2016,54(6):563−603. doi: 10.1111/jse.12229

    [3] 谢春平,赵柏松,刘大伟,方彦. 霸王岭自然保护区黑桫椤种群结构特征分析[J]. 四川农业大学学报,2018,36(6):765−771.

    Xie CP,Zhao BS,Liu DW,Fang Y. Study on the population structure of Alsophila podophylla Hook. in Bawangling nature reserve[J]. Journal of Sichuan Agricultural University,2018,36(6):765−771.

    [4] 赵则海. 黑桫椤叶中总黄酮含量的测定[J]. 肇庆学院学报,2014,35(5):42−44. doi: 10.3969/j.issn.1009-8445.2014.05.011

    Zhao ZH. Determination of flavonoids contents in leaves of Alsophila podophylla[J]. Journal of Zhaoqing University,2014,35(5):42−44. doi: 10.3969/j.issn.1009-8445.2014.05.011

    [5]

    Dong NQ,Lin HX. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions[J]. J Integr Plant Biol,2021,63(1):180−209. doi: 10.1111/jipb.13054

    [6] 葛诗蓓,张学宁,韩文炎,李青云,李鑫. 植物类黄酮的生物合成及其抗逆作用机制研究进展[J]. 园艺学报,2023,50(1):209−224.

    Ge SB,Zhang XN,Han WY,Li QY,Li X. Research progress on plant flavonoids biosynthesis and their anti-stress mechanism[J]. Acta Horticulturae Sinica,2023,50(1):209−224.

    [7]

    Zhang XX,Wang X,Wang ML,Cao JG,Xiao JB,Wang QX. Effects of different pretreatments on flavonoids and antioxidant activity of Dryopteris erythrosora leave[J]. PLoS One,2019,14(1):e0200174. doi: 10.1371/journal.pone.0200174

    [8]

    Rybczyński JJ,Marczak Ł,Stobiecki M,Strugała A,Mikuła A. The metabolite content of the post-culture medium of the tree fern Cyathea delgadii Sternb. cell suspension cultured in the presence of 2,4-D and BAP[J]. Int J Mol Sci,2022,23(19):11783. doi: 10.3390/ijms231911783

    [9]

    Hong YF,Wang Z,Li MH,Su YJ,Wang T. First multi-organ full-length transcriptome of tree fern Alsophila spinulosa highlights the stress-resistant and light-adapted genes[J]. Front Genet,2022,12:784546. doi: 10.3389/fgene.2021.784546

    [10]

    Sun MY,Li JY,Li D,Huang FJ,Wang D,et al. Full-length transcriptome sequencing and modular organization analysis of the naringin/neoeriocitrin-related gene expression pattern in Drynaria roosii[J]. Plant Cell Physiol,2018,59(7):1398−1414.

    [11]

    Niu M,Fu J,Ni R,Xiong RL,Zhu TT,et al. Functional and structural investigation of chalcone synthases based on integrated metabolomics and transcriptome analysis on flavonoids and anthocyanins biosynthesis of the fern Cyclosorus parasiticus[J]. Front Plant Sci,2021,12:757516. doi: 10.3389/fpls.2021.757516

    [12]

    Bolger AM,Lohse M,Usadel B. Trimmomatic:a flexible trimmer for Illumina sequence data[J]. Bioinformatics,2014,30(15):2114−2120. doi: 10.1093/bioinformatics/btu170

    [13]

    Grabherr MG,Haas BJ,Yassour M,Levin JZ,Thompson DA,et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nat Biotechnol,2011,29(7):644−652. doi: 10.1038/nbt.1883

    [14]

    Davidson NM,Oshlack A. Corset:enabling differential gene expression analysis for de novo assembled transcriptomes[J]. Genome Biol,2014,15(7):410.

    [15]

    Salmela L,Rivals E. LoRDEC:accurate and efficient long read error correction[J]. Bioinformatics,2014,30(24):3506−3514. doi: 10.1093/bioinformatics/btu538

    [16]

    Fu LM,Niu BF,Zhu ZW,Wu ST,Li WZ. CD-HIT:accelerated for clustering the next-generation sequencing data[J]. Bioinformatics,2012,28(23):3150−3152. doi: 10.1093/bioinformatics/bts565

    [17]

    Altschul SF,Gish W,Miller W,Myers EW,Lipman DJ. Basic local alignment search tool[J]. J Mol Biol,1990,215(3):403−410. doi: 10.1016/S0022-2836(05)80360-2

    [18]

    Buchfink B,Xie C,Huson DH. Fast and sensitive protein alignment using DIAMOND[J]. Nat Methods,2015,12(1):59−60. doi: 10.1038/nmeth.3176

    [19]

    Finn RD,Clements J,Eddy SR. HMMER web server:interactive sequence similarity searching[J]. Nucleic Acids Res,2011,39(S2):W29−W37.

    [20]

    Shimizu K,Adachi J,Muraoka Y. ANGLE:a sequencing errors resistant program for predicting protein coding regions in unfinished cDNA[J]. J Bioinform Comput Biol,2006,4(3):649−664. doi: 10.1142/S0219720006002260

    [21]

    Beier S,Thiel T,Münch T,Scholz U,Mascher M. MISA-web:a web server for microsatellite prediction[J]. Bioinformatics,2017,33(16):2583−2585. doi: 10.1093/bioinformatics/btx198

    [22]

    Zheng Y,Jiao C,Sun HH,Rosli HG,Pombo MA,et al. iTAK:a program for genome-wide prediction and classification of plant transcription factors,transcriptional regulators,and protein kinases[J]. Mol Plant,2016,9(12):1667−1670. doi: 10.1016/j.molp.2016.09.014

    [23]

    Sun L,Luo HT,Bu DC,Zhao GG,Yu KT,et al. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts[J]. Nucleic Acids Res,2013,41(17):e166. doi: 10.1093/nar/gkt646

    [24]

    Kong L,Zhang Y,Ye ZQ,Liu XQ,Zhao SQ,et al. CPC:assess the protein-coding potential of transcripts using sequence features and support vector machine[J]. Nucleic Acids Res,2007,35(S2):W345−W349.

    [25]

    Finn RD,Coggill P,Eberhardt RY,Eddy SR,Mistry J,et al. The Pfam protein families database:towards a more sustainable future[J]. Nucleic Acids Res,2016,44(D1):D279−D285. doi: 10.1093/nar/gkv1344

    [26]

    Li AM,Zhang JY,Zhou ZY. PLEK:a tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme[J]. BMC Bioinformatics,2014,15(1):311. doi: 10.1186/1471-2105-15-311

    [27]

    Langmead B,Salzberg SL. Fast gapped-read alignment with Bowtie 2[J]. Nat Methods,2012,9(4):357−359. doi: 10.1038/nmeth.1923

    [28]

    Li B,Dewey CN. RSEM:accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics,2011,12:323. doi: 10.1186/1471-2105-12-323

    [29]

    Anders S,Huber W. Differential expression analysis for sequence count data[J]. Genome Biol,2010,11(10):R106. doi: 10.1186/gb-2010-11-10-r106

    [30]

    Chen CJ,Chen H,Zhang Y,Thomas HR,Frank MH,et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant,2020,13(8):1194−1202. doi: 10.1016/j.molp.2020.06.009

    [31]

    Guo L,Qi YT,Mu Y,Zhou J,Lu WH,Tian ZD. Potato StLecRK-Ⅳ. 1 negatively regulates late blight resistance by affecting the stability of a positive regulator StTET8[J]. Hortic Res,2022,9:uhac010.

    [32]

    Li JJ,Li Y,Yin ZG,Jiang JH,Zhang MH,et al. OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H2O2 signalling in rice[J]. Plant Biotechnol J,2017,15(2):183−196. doi: 10.1111/pbi.12601

    [33]

    Rutter BD,Innes RW. Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins[J]. Plant Physiol,2017,173(1):728−741. doi: 10.1104/pp.16.01253

    [34]

    Maskin L,Gudesblat GE,Moreno JE,Carrari FO,Frankel N,et al. Differential expression of the members of the Asr gene family in tomato (Lycopersicon esculentum)[J]. Plant Sci,2001,161(4):739−746. doi: 10.1016/S0168-9452(01)00464-2

    [35]

    Dominguez PG,Conti G,Duffy T,Insani M,Alseekh S,et al. Multiomics analyses reveal the roles of the ASR1 transcription factor in tomato fruits[J]. J Exp Bot,2021,72(18):6490−6509. doi: 10.1093/jxb/erab269

    [36]

    Golan I,Dominguez PG,Konrad Z,Shkolnik-Inbar D,Carrari F,Bar-Zvi D. Tomato ABSCISIC ACID STRESS RIPENING (ASR) gene family revisited[J]. PLoS One,2014,9(10):e107117. doi: 10.1371/journal.pone.0107117

    [37]

    Ritenour MA,Kochhar S,Schrader LE,Hsu TP,Ku MSB. Characterization of heat shock protein expression in apple peel under field and laboratory conditions[J]. J Am Soc Hortic Sci,2001,126(5):564−570. doi: 10.21273/JASHS.126.5.564

    [38] 尹兵兵,潘凌云,付畅. 逆境下植物MAPK级联途径基因的表达调控[J]. 分子植物育种,2022,20(10):3257−3265.

    Yin BB,Pan LY,Fu C. Regulation of gene expression of plant MAPK cascade pathway under environmental[J]. Molecular Plant Breeding,2022,20(10):3257−3265.

    [39]

    Huang X,Wang WL,Gong T,Wickell D,Kuo LY,et al. The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence[J]. Nat Plants,2022,8(5):500−512. doi: 10.1038/s41477-022-01146-6

    [40]

    Wanner LA,Li GQ,Ware D,Somssich IE,Davis KR. The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana[J]. Plant Mol Biol,1995,27(2):327−338. doi: 10.1007/BF00020187

    [41]

    Shirley BW,Kubasek WL,Storz G,Bruggemann E,Koornneef M,et al. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis[J]. Plant J,1995,8(5):659−671. doi: 10.1046/j.1365-313X.1995.08050659.x

    [42]

    Ni R,Niu M,Fu J,Tan H,Zhu TT,et al. Molecular and structural characterization of a promiscuous chalcone synthase from the fern species Stenoloma chusanum[J]. J Integr Plant Biol,2022,64(10):1935−1951. doi: 10.1111/jipb.13335

    [43] 林江波,王伟英,邹晖,戴艺民. 基于转录组测序的铁皮石斛黄酮代谢途径及相关基因解析[J]. 福建农业学报,2019,34(9):1019−1025.

    Lin JB,Wang WY,Zou H,Dai YM. Transcriptome analysis on pathway of and genes Related to flavonoid synthesis in Dendrobium officinale[J]. Fujian Journal of Agricultural Sciences,2019,34(9):1019−1025.

    [44]

    Christensen AB,Gregersen PL,Schröder J,Collinge DB. A chalcone synthase with an unusual substrate preference is expressed in barley leaves in response to UV light and pathogen attack[J]. Plant Mol Biol,1998,37(5):849−857. doi: 10.1023/A:1006031822141

    [45]

    Rudrapal M,Khan J,Dukhyil AAB,Alarousy RMII,Attah EI,et al. Chalcone scaffolds,bioprecursors of flavonoids:chemistry,bioactivities,and pharmacokinetics[J]. Molecules,2021,26(23):7177. doi: 10.3390/molecules26237177

    [46]

    Van Tunen AJ,Mur LA,Recourt K,Gerats AG,Mol JN. Regulation and manipulation of flavonoid gene expression in anthers of petunia:the molecular basis of the Po mutation[J]. Plant Cell,1991,3(1):39−48.

    [47]

    Yonekura-Sakakibara K,Higashi Y,Nakabayashi R. The origin and evolution of plant flavonoid metabolism[J]. Front Plant Sci,2019,10:943. doi: 10.3389/fpls.2019.00943

    [48]

    Owens DK,Alerding AB,Crosby KC,Bandara AB,Westwood JH,Winkel BSJ. Functional analysis of a predicted flavonol synthase gene family in Arabidopsis[J]. Plant Physiol,2008,147(3):1046−1061. doi: 10.1104/pp.108.117457

    [49]

    Sudheeran PK,Ovadia R,Galsarker O,Maoz I,Sela N,et al. Glycosylated flavonoids:fruit′s concealed antifungal arsenal[J]. New Phytol,2020,225(4):1788−1798. doi: 10.1111/nph.16251

    [50] 陈雪菲,张映雪,黄贤燕,王全喜,曹建国,王幼芳. 蕨类植物花青素和原花青素成分及含量分析[J]. 植物科学学报,2020,38(6):820−830. doi: 10.11913/PSJ.2095-0837.2020.60820

    Chen XF,Zhang YX,Huang XY,Wang QX,Cao JG,Wang YF. Composition and content analysis of anthocyanidins and proanthocyanidins in ferns[J]. Plant Science Journal,2020,38(6):820−830. doi: 10.11913/PSJ.2095-0837.2020.60820

    [51] 肖珍. 黄酮醇和花青素在植物抗逆中的功能差异研究[D]. 济南: 山东大学, 2018: 1-20.
    [52]

    Taylor LP,Grotewold E. Flavonoids as developmental regulators[J]. Curr Opin Plant Biol,2005,8(3):317−323. doi: 10.1016/j.pbi.2005.03.005

  • 其他相关附件

图(2)  /  表(1)
计量
  • 文章访问数:  395
  • HTML全文浏览量:  66
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-11
  • 录用日期:  2023-08-19
  • 网络出版日期:  2023-05-11
  • 刊出日期:  2024-01-31

目录

    /

    返回文章
    返回