Effects of rocky desertification on growth and biomass accumulation and distribution of terminal twigs in Viburnum chinshanense Graebn.
-
摘要: 以金山荚蒾(Viburnum chinshanense Graebn.)末端小枝为研究对象,通过野外调查,研究不同程度(轻度、中度、重度)石漠化生境对金山荚蒾小枝的生长形态、生物量积累及分配的影响。结果表明,在石漠化地区,金山荚蒾的小枝生物量积累受到抑制,且随石漠化程度的加剧而增大,其中,小枝花的生物量相比茎、叶下降幅度最小。与无石漠化地区相比,金山荚蒾小枝的形态指标(叶片数、叶面积、比叶面积、茎长、茎径)均显著降低,且石漠化对植物小枝茎长的抑制作用大于茎径,而叶面积受到的抑制程度最大。金山荚蒾在轻度、中度石漠化地区尽可能通过提高叶生物量比、降低茎生物量比来适应石漠化生境;但金山荚蒾在3种不同程度石漠化生境中均以提高花生物量比来增加生殖投入,从而保证其繁殖能力和种群延续;其通过减小茎、叶等营养器官投资的策略来适应严苛生境,最大程度维持生态系统的格局和稳定。Abstract: Karst rocky desertification is a serious geological disaster in southwestern China. Viburnum chinshanense Graebn. shrubs were selected to study how growth of its terminal twigs responded to different degrees of rocky desertification by assessing its biomass accumulation and allocation and morphological plasticity. Results showed that in the rocky desertification area, twig biomass accumulation was significantly restrained, and the degree of restraint increased with the degree of rocky desertification. Compared with leaf and stem biomass, the decrease in flower biomass was minimal. Compared with non-rocky desertification, the morphological growth indexes (leaf number, leaf area, specific leaf area, stem length, and stem diameter) of V. chinshanense significantly decreased, and the inhibition of rocky desertification on stem length was greater than that of stem diameter, whereas leaf area was the most inhibited. Leaf biomass and stem biomass ratios in the slight and moderate rocky desertification habitats increased as an adaptation to such habitats. However, in three of the habitats with different degrees of rocky desertification, the reproductive investment of V. chinshanense increased by increasing the flower biomass ratio to ensure reproductive capacity and population continuity. V. chinshanense uses strategies to reduce the investment of vegetative organs, such as leaves and stems, to adapt to harsh habitats and maintain ecosystem structure and stability at the maximum degree.
-
-
[1] 宋同清, 彭晚霞, 杜虎, 王克林, 曾馥平. 中国西南喀斯特石漠化时空演变特征、发生机制与调控对策[J]. 生态学报, 2014, 34(18):5328-5341. Song TQ, Peng WX, Du H, Wang KL, Zeng FP. Occurrence, spatital-temporai dynamics and regulation strategies of karst rocky desertification in Southwest China[J]. Acta Ecologica Sinica, 2014, 34(18):5328-5341.
[2] 赵丽苹. 基于MODIS数据的喀斯特地区石漠化时空演变特征研究[D].北京:中国地质大学, 2015:68. [3] 覃小群, 朱明秋, 蒋忠诚. 近年来我国西南岩溶石漠化研究进展[J]. 中国岩溶, 2006, 25(3):234-238. Qin XQ, Zhu MQ, Jiang ZC. A review on recent advances in rocky desertification in Southwest China karst region[J]. Carsologica Sinica, 2006, 25(3):234-238.
[4] 郭柯, 刘长成, 董鸣. 我国西南喀斯特植物生态适应性与石漠化治理[J]. 植物生态学报, 2011, 35(10):991-999. Guo K, Liu CC, Dong M. Ecological adaptation of plants and control of rocky-desertification on karst region of Southwest China[J]. Chinese Journal of Plant Ecology, 2011, 35(10):991-999.
[5] 张军以, 戴明宏, 王腊春, 苏维词, 曹立国. 西南喀斯特石漠化治理植物选择与生态适应性[J]. 地球与环境, 2015,43(3):269-278. Zhang JY, Dai MH, Wang LC, Su WC, Cao LG. Plant selection and their ecological adaptation for rocky desertification control in karst region in the Southwest of China[J]. Earth and Environment, 2015, 43(3):269-278.
[6] 彭熙, 黄英, 车家骧, 卢兰. 不同石漠化等级条件下土壤性状变化规律研究——以贵州喀斯特中心普定站为例[J]. 中国岩溶, 2009, 28(4):402-405. Peng X, Huang Y, Che JX, Lu L. Changing rule of soil physicochemical features under different grade of desertification-A case study at Puding station of Guizhou karst center[J]. Carsologica Sinica, 2009, 28(4):402-405.
[7] 冯大兰, 黄小辉, 刘芸, 朱恒星, 向仲怀. 4种木本植物在石漠化地区的生长状况及光合特性[J]. 北京林业大学学报, 2015, 37(5):62-69. Feng DL, Huang XH, Liu Y, Zhu HX, Xiang ZH. Growth and photosynthetic characteristics of four woody plants in the rocky and desertified area[J]. Beijing Forestry University, 2015, 37(5):62-69.
[8] 秦平书. 石漠化对马尾松幼林生长的影响[J]. 湖南林业科技, 2015, 42(6):82-85. Qing PS. The effects of rocky desertification on sapling forest growth of Pinus massoniana[J]. Hunan Forestry Science & Technology, 2015, 42(6):82-85.
[9] 李志波, 李平衡, 王权, 徐璐. 梭梭和多枝柽柳的末端小枝异速生长特征研究[J]. 植物研究, 2013, 33(3):274-281. Li ZB, Li PH, Wang Q, Xu L. Allometric characteristics of terminal twigs of Tamarix ramosissima and Haloxylon ammodendron[J]. Bulletin of Botanical Research, 2013, 33(3):274-281.
[10] Osada N. Crown development in a pioneer tree, Rhus trichocarpa, in relation to the structure and growth of indivi-dual branches[J]. New Phytologist, 2006, 172(4):667-678.
[11] David K, Lonniew A. The leaf size/number trade-off in trees[J]. J Ecol, 2007, 95(2):376-382.
[12] 罗长维, 李昆, 孙永玉, 刘方炎, 唐国勇, 陈友. 部分砍伐干扰下麻疯树繁殖特征的研究[J]. 西南大学学报:自然科学版, 2010, 32(12):50-55. Luo CW, Li K, Sun YY, Liu FY, Tang GY, Chen Y. Changes on propagation characteristics of Jatropha curcas under continuing cutting-off[J]. Journal of Southwest University:Natural Science Edition, 2010, 32(12):50-55.
[13] 张艳茹, 陈红, 王海洋. 低海拔常绿杜鹃小枝繁殖分配与异速生长关系研究[J]. 西南大学学报:自然科学版, 2016, 38(3):77-82. Zhang YR, Chen H, Wang HY. The relationships between within-twig reproductive allocation and allometric scaling in evergreen phododendron at low altitude[J]. Journal of Southwest University:Natural Science Edition, 2016, 38(3):77-82.
[14] 张显强. 贵州石生藓类对石漠化干旱环境的生态适应性研究[D]. 重庆:西南大学, 2012. [15] 杨冬梅, 毛林灿, 彭国全. 常绿和落叶阔叶木本植物小枝内生物量分配关系研究:异速生长分析[J]. 植物研究, 2011, 31(4):472-477. Yang DM, Mao LC, Peng GQ. Within-twig biomass allocation in evergreen and deciduous broad-leaved species:allometric scaling analyses[J]. Bulletin of Botanical Research, 2011, 31(4):472-477.
[16] 周旭, 齐代华, 蒋宣斌, 贺丽, 闵鹏,等. 不同程度石漠化生境中矛叶荩草Arthraxon prionodes茎形态适应性研究[J]. 西南大学学报:自然科学版, 2016, 38(11):40-49. Zhou X, Qi DH, Jiang XB, He L, Min P, et al. Study on the adaptation of Arthraxon hispidus stems to different degrees rocky desertification habitats[J]. Journal of Southwest University:Natural Science Edition, 2016, 38(11):40-49.
[17] 范文武, 陈晓德, 李加海, 张淑琴, 李艳霞. 重庆中梁山海石公园石灰岩山地植物多样性研究[J]. 西南大学学报:自然科学版, 2009, 31(5):106-110. Fan WW, Chen XD, Li JH, Zhang SQ, Li YX. A study on the species diversity of plants on the Haishi Park limestone shrubland in the Zhongliang Mountains of Chongqing[J]. Journal of Southwest University:Natural Science Edition, 2009, 31(5):106-110.
[18] 卢高峰. 重庆中梁山海石公园九种野生观赏植物物候分析及野生植物观赏价值等级评价体系研究[D]. 重庆:西南大学, 2011:59. [19] 曾嘉庆, 祝佳杏, 王微, 陶建平. 重庆喀斯特地区不同干扰生境中山麻杆种群的结构与格局[J]. 生态学杂志, 2016, 35(9):2313-2320. Zeng JQ, Zhu JX, Wang W, Tao JP. Population structure and spatial pattern of Alchornea davidii in different disturbed Karst habitats in Chongqing[J]. Chinese Journal of Ecology, 2016, 35(9):2313-2320.
[20] 苏维词. 喀斯特土地石漠化类型划分及其生态治理模式探讨[J]. 中国土地科学, 2008, 22(4):32-37. Su WC. Types division of karst rocky desertification and a tentative survey of its ecological treatment mode[J]. China Land Science, 2008, 22(4):32-37.
[21] 李森, 董玉祥, 王金华. 土地石漠化概念与分级问题再探讨[J]. 中国岩溶, 2007, 26(4):279-284. Li S, Dong YX, Wang JH. Re-discussion on the concept and classification of rocky desertification[J]. Carsologica Sinica, 2007, 26(4):279-284.
[22] Hester MW, Mendelssohn IA, McKee KL. Species and population variation to salinity stress in Panicum hemitomon, Spartina patens, and Spartina alterniflora:morphological and physiological constraints[J]. Environ Exp Bot, 2001, 46(3):277-297.
[23] 李芳兰. 三种豆科灌木对干旱胁迫的响应与适应[D]. 成都:中国科学院研究生院(成都生物研究所), 2007. [24] 李周, 高凯敏, 刘锦春, 梁千慧, 陶建平. 西南喀斯特地区两种草本对干湿交替和N添加的生长响应[J]. 生态学报, 2016, 36(11):3372-3380. Li Z, Gao KM, Liu JC, Liang QH, Tao JP. Growth response of two annual herb species to alternating drying-wetting and nitrogen addition in the karst area of Southwest China[J]. Acta Ecologica Sinica, 2016, 36(11):3372-3380.
[25] 程杰, 刘永辉, 田瑛. 宁夏半干旱区柠条锦鸡儿灌木林生长特征[J]. 水土保持通报, 2016, 36(1):332-336. Cheng J, Liu YH, Tian Y. Growth characteristics of Caragana korshinshii shrubbery in semi-arid regions of Ningxia Hui Autonomous Region[J]. Bulletin of Soil and Water Conservation, 2016, 36(1):332-336.
[26] 高成杰. 滇重楼生物量分配与环境调控机制研究[D]. 北京:中国林业科学研究院, 2015. [27] 赵彬彬, 牛克昌, 杜国祯. 放牧对青藏高原东缘高寒草甸群落27种植物地上生物量分配的影响[J]. 生态学报, 2009, 29(3):1596-1606. Zhao BB, Niu KC, Du GZ. The effect of grazing on above-ground biomass allocation of 27 plant species in an alpine meadow plant community in Qinghai-Tibetan Plateau[J]. Acta Ecologica Sinica, 2009, 29(3):1596-1606.
[28] 李鹏, 刘济明, 颜强, 池馨, 廖小锋, 王军才. 干旱胁迫对小蓬竹繁殖和某些生理特性的影响[J]. 江苏农业科学, 2014, 42(8):181-184. [29] 杨帅, 王碧霞, 胥晓, 郇慧慧, 秦芳, 陈梦华. 葎草雌雄植株开花物候和花器官对干旱的响应差异[J]. 植物分类与资源学报, 2014, 36(5):653-660. Yang S, Wang BX, Xu X, Huan HH, Qin F, Chen MH. Sex-specific responses of flowering phenology and floral morphology of Humulus scandens to drought[J]. Plant Diversity and Resources, 2014, 36(5):653-660.
[30] England JR, Attiwill PM. Changes in sapwood permeability and anatomy with tree age and height in the broad-leaved evergreen species Eucalyptus regnans[J]. Tree Physiol, 2007, 27(8):1113-1124.
[31] Luo T, Luo J, Pan Y. Leaf traits and associated ecosystem characteristics across subtropical and timberline forests in the Gongga Mountains, Eastern Tibetan Plateau[J]. Oecologia, 2005, 142(2):261-273.
[32] 王晨阳. 土壤水分胁迫对小麦形态及生理影响的研究[J]. 河南农业大学学报, 1992, 26(1):89-98. Wang CY. The effects of soil water stress on morphological and physiological of wheat[J]. Journal of Henan Agricultural University, 1992, 26(1):89-98.
[33] 向苹苇. 5种灌木的抗旱性研究[D]. 成都:四川农业大学, 2013. [34] 高小锋. 干旱胁迫对刺槐幼树水分特性及干物质积累与分配的影响[D]. 杨凌:西北农林科技大学, 2010. [35] 高春娟, 夏晓剑, 师恺, 周艳虹, 喻景权. 植物气孔对全球环境变化的响应及其调控防御机制[J]. 植物生理学报, 2012, 48(1):19-28. Gao CJ, Xia XJ, Shi K, Zhou YH, Yu JQ. Response of stomata to global climate changes and the underlying regulation mechanism of stress responses[J]. Plant Phy-siology Journal, 2012, 48(1):19-28.
[36] 王睿芳, 马剑, 潘耕耘, 陈国松, 赵万里. 小粒咖啡叶片解剖结构和综合抗旱性评[J]. 热带作物学报, 2017, 38(2):246-251. Wang RF, Ma J, Pan GY, Chen GS, Zhao WL. Leaf antomical structures and drought resistance evaluation of Coffea arabica[J]. Chinese Journal of Tropical Crops, 2017, 38(2):246-251.
[37] Hetherington AM, Woodward FI. The role of stomata in sensing and driving environmental change[J]. Nature, 2003, 424(6951):901.
[38] Meziane D, Shipley B. Interacting determinants of specific leaf area in 22 herbaceous species:effects of irradiance and nutrient availability[J]. Plant Cell Environ, 1999, 22(5):447-459.
[39] Wilson PJ, Thompson P, Hodgson JG. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies[J]. New Phytologist, 2010, 143(1):155-162.
[40] Lambers H, Poorter H. Inherent variation in growth rate between higher plants-a search for physiological causes and ecological consequences[J]. Adv Ecol Res, 1992, 23(6):187-261.
-
期刊类型引用(10)
1. 林协全,王宁,汪其双,陈春锦,刘锦航,邹双全,邹小兴. 福建金线莲的环境因子分析及生境适宜性评价. 山东农业大学学报(自然科学版). 2023(02): 201-207 . 百度学术
2. 林志强,马铁成. 新疆灌溉定额空间分布规律浅析. 水资源开发与管理. 2023(09): 69-74 . 百度学术
3. 艾拉努尔·卡哈尔,王鹏军,逯永满,袁祯燕,买买提明·苏来曼. 基于MaxEnt生态位模型预测木灵藓科三属植物在新疆的潜在分布区. 华中师范大学学报(自然科学版). 2022(03): 487-496+540 . 百度学术
4. 李雪,高广磊,孙桂丽,史浩伯,赵芳芳,马龙. 基于MaxEnt预测梭梭和白梭梭在新疆的潜在适生区. 西部林业科学. 2021(01): 145-152 . 百度学术
5. 祖丽米热·买买提依明,维尼拉·伊利哈尔,艾拉努尔·卡哈尔,吾热古丽·艾买提,买买提明·苏来曼,刘永英. 基于最大熵模型的真藓属植物在新疆的潜在分布预测. 森林工程. 2021(04): 1-10+21 . 百度学术
6. 古丽妮尕尔·穆太力普,夏尤普·玉苏甫,袁祯燕,买买提明·苏来曼. 阿尔金山国家级自然保护区的对齿藓属(Didymodon Hedw.)植物调查. 东北林业大学学报. 2020(01): 34-43 . 百度学术
7. 张梅,禄彩丽,魏喜喜,马珊,刘伟峰,宋健,彭瑞,李建贵. 基于MaxEnt模型新疆枣潜在适生区预测. 经济林研究. 2020(01): 152-161 . 百度学术
8. 周亚东,Mwangi Brian Njoroge,Ndungu John Mbari,王生位,胡光万,王青锋. 基于MaxEnt模型模拟肯尼亚茜草科河骨木属植物的潜在分布及其在植物志中的应用初探(英文). 植物科学学报. 2020(05): 636-643 . 本站查看
9. 杨冬臣,王佳颖,李静,杨一洲,张金林. 基于Maxent生态位模型的外来入侵植物刺果瓜在我国的适生区预测. 河北农业大学学报. 2019(03): 45-50 . 百度学术
10. 赵儒楠,何倩倩,褚晓洁,鲁志强,祝遵凌. 气候变化下千金榆在我国潜在分布区预测. 应用生态学报. 2019(11): 3833-3843 . 百度学术
其他类型引用(15)
计量
- 文章访问数: 853
- HTML全文浏览量: 0
- PDF下载量: 921
- 被引次数: 25