高级检索+

高水分、富含淀粉植物组织的扫描电镜制备技术优化

陆彦, 祁琰, 张晓敏, 陈义芳, 王莉, 凌裕平

陆彦, 祁琰, 张晓敏, 陈义芳, 王莉, 凌裕平. 高水分、富含淀粉植物组织的扫描电镜制备技术优化[J]. 植物科学学报, 2018, 36(1): 119-126. DOI: 10.11913/PSJ.2095-0837.2018.10119
引用本文: 陆彦, 祁琰, 张晓敏, 陈义芳, 王莉, 凌裕平. 高水分、富含淀粉植物组织的扫描电镜制备技术优化[J]. 植物科学学报, 2018, 36(1): 119-126. DOI: 10.11913/PSJ.2095-0837.2018.10119
Lu Yan, Qi Yan, Zhang Xiao-Min, Chen Yi-Fang, Wang Li, Ling Yu-Ping. Optimization of water-rich starch sample preparation methods for scanning electron microscopy[J]. Plant Science Journal, 2018, 36(1): 119-126. DOI: 10.11913/PSJ.2095-0837.2018.10119
Citation: Lu Yan, Qi Yan, Zhang Xiao-Min, Chen Yi-Fang, Wang Li, Ling Yu-Ping. Optimization of water-rich starch sample preparation methods for scanning electron microscopy[J]. Plant Science Journal, 2018, 36(1): 119-126. DOI: 10.11913/PSJ.2095-0837.2018.10119
陆彦, 祁琰, 张晓敏, 陈义芳, 王莉, 凌裕平. 高水分、富含淀粉植物组织的扫描电镜制备技术优化[J]. 植物科学学报, 2018, 36(1): 119-126. CSTR: 32231.14.PSJ.2095-0837.2018.10119
引用本文: 陆彦, 祁琰, 张晓敏, 陈义芳, 王莉, 凌裕平. 高水分、富含淀粉植物组织的扫描电镜制备技术优化[J]. 植物科学学报, 2018, 36(1): 119-126. CSTR: 32231.14.PSJ.2095-0837.2018.10119
Lu Yan, Qi Yan, Zhang Xiao-Min, Chen Yi-Fang, Wang Li, Ling Yu-Ping. Optimization of water-rich starch sample preparation methods for scanning electron microscopy[J]. Plant Science Journal, 2018, 36(1): 119-126. CSTR: 32231.14.PSJ.2095-0837.2018.10119
Citation: Lu Yan, Qi Yan, Zhang Xiao-Min, Chen Yi-Fang, Wang Li, Ling Yu-Ping. Optimization of water-rich starch sample preparation methods for scanning electron microscopy[J]. Plant Science Journal, 2018, 36(1): 119-126. CSTR: 32231.14.PSJ.2095-0837.2018.10119

高水分、富含淀粉植物组织的扫描电镜制备技术优化

基金项目: 

江苏省自然科学基金项目(BK20160464)。

详细信息
    作者简介:

    陆彦(1981-),女,博士,助理研究员,研究方向为植物发育生物学(E-mail:luyan@yzu.edu.cn)。

    通讯作者:

    凌裕平,E-mail:ypling@yzu.edu.cn

  • 中图分类号: Q94-33

Optimization of water-rich starch sample preparation methods for scanning electron microscopy

Funds: 

This work was supported by a grant from the Jiangsu Natural Science Foundation (BK20160464).

  • 摘要: 应用常规高真空扫描电子显微镜观察生物样品必须经过脱水和干燥处理,但无论采用临界点干燥还是冷冻干燥方法,都存在样品表面不同程度失真的问题。植物高水分、富含淀粉组织样品经处理后,容易出现淀粉流失、细胞壁变形等现象,从而造成扫描图像粗糙,无法获得真实的细胞内部结构。本文通过对CO2临界点干燥、化学固定样品冷冻干燥和新鲜样品冷冻干燥3种扫描电镜样品制备技术中后期制样进行机械断裂和液氮脆断改进,优化出两种植物高水分、富含淀粉组织的扫描电镜样品制备方法:(1)样品首先进行FAA化学固定,经冷冻干燥后用液氮脆断,对断面喷金镀膜和扫描电镜观察。利用该方法所得细胞结构完整,细胞壁整齐,淀粉粒和蛋白轮廓明确,可用于分析淀粉粒和蛋白颗粒在细胞内的分布。(2)新鲜样品直接进行冷冻干燥,经液氮脆断后对断面喷金镀膜和扫描电镜观察。利用该方法所得细胞壁整齐,淀粉粒轮廓更清晰,并且无蛋白颗粒干扰,用于分析淀粉粒在细胞内的分布更加理想。
    Abstract: In general, biological samples must be dehydrated and dried before high vacuum scanning electron microscopy (SEM) analysis. However, during the critical point-drying or freeze-drying treatment process, samples with high water content will shrink or collapse, whereas for starch rich plant samples, tissues are prone to starch loss and cell wall deformation, resulting in poor quality scanning images. By comparing three pre-treatment methods of SEM, including CO2 critical point drying, freeze drying of chemically fixed samples, and freeze drying of fresh samples, we optimize suitable methods as follows:(1) Sample are first chemically fixed and then freeze dried, followed by brittle fracture with liquid nitrogen, with the cross-sections finally spray-coated with gold. With this treatment, the SEM images are of high quality, with the cell structure maintained and starch grains and protein complexes clear. This method can be used for analysis of the intracellular distribution of starch grains and protein. (2) Fresh samples are freeze dried directly, and after brittle fracture with liquid nitrogen, the cross-sections are finally spray-coated with gold. With this treatment, the SEM images are of high quality, with complete cell walls and clear starch granules. This is an optimal method for observation of starch granule distribution.
  • [1]

    Bello MA, Ruiz-Leon Y, Sandoval-Sierra JV, Rezinciuc S, Diéguez-Uribeondo J. Scanning electron microscopy (SEM) protocols for problematic plant, oomycete, and fungal samples[J]. J Vis Exp, 2017, 120:e55031.

    [2]

    Endress PK, Baas P, Gregory M. Systematic plant morphology and anatomy:50 years of progress[J].Taxon, 2000, 49(3):401-434.

    [3] 肖媛, 刘伟, 汪艳, 左艳霞, 胡锐,等. 生物样品的扫描电镜制样干燥方法[J]. 实验室研究与探索, 2013, 32(5):45-53.

    Xiao Y, Liu W, Wang Y, Zuo YX, Hu R, et al. Drying methods of biological sample preparation for scanning electron microscope[J]. Reseach and Exploration Laboratory, 2013, 32(5):45-53.

    [4]

    Fannes W, Vanhove MPM, Huyse T, Paladini G. A scanning electron microscope technique for studying the sclerites of Cichlidogyrus[J]. Parasitol Res, 2015, 114(5):2031-2034.

    [5]

    Singh A, Ansari MW, Rani V, Singh CP, Shukla A, et al. First evidence of putrescine involvement in mitigating the floral malformation in mangoes:a scanning electron microscope study[J]. Protoplasma, 2014, 251(5):1255-1261.

    [6]

    Wang RC, Chen C, Guo ST. Effects of drying methods on starch crystallinity of gelatinized foxtail millet (α-millet) and its eating quality[J]. J Food Eng, 2017, 207:81-89.

    [7]

    Lu Y, Jin B, Wang L, Wang Y, Wang D, et al. The male reproductive structures adapted to wind pollination in gymnosperms:male cone and pollen grain[J]. Can J Plant Sci, 2011, 91:897-906.

    [8]

    Colak G, Baykul MC, Gurler R, Catak E, Caner N. Investigation of the effects of aluminium stress on some macro and micro-nutrient contents of the seedlings of Lycopersicon esculentum Mill. by using scanning electron microscope[J]. Pak J Bot, 2014, 46(1):147-160.

    [9]

    Cai CH, Wei CX. In situ observation of crystallinity disruption patterns during starch gelatinization[J]. Carbohyd Polym, 2013, 92(1):469-478.

    [10]

    Huang J, Zhao LX, Huai HY, Li EP, Zhang FM, Wei CX. Structural and functional properties of starches from wild Trapa quadrispinosa, japonica, mammillifera and incisa[J]. Food Hydrocolloids, 2015, 48:117-126.

    [11]

    Zhang CQ, Chen SJ, Ren XY, Lu Y, Liu DR, et al. Molecular structure and physicochemical properties of starches from rice with different amylose contents resulting from modification of OsGBSSI activity[J]. J Agric Food Chem, 2017, 65(10):2222-2232.

    [12]

    Fan XX, Zhao LX, Zhang L, Xu B, Wei CX. A new allomorph distribution of C-type starch from root tuber of Apios fortunei[J]. Food Hydrocolloids, 2017, 66:334-342.

    [13] 郭素枝. 扫描电镜技术及其应用[M]. 厦门:厦门大学出版社, 2006:74-84.
    [14]

    Aoyama Y, Suzuki K, Tabe Y, Chikahisa T. Observation of water transport in the micro-porous layer of a polymer electrolyte fuel cell with a freezing method and cryo-scanning electron microscope[J]. Electrochem Commun, 2014, 41:72-75.

    [15]

    Sempere F, Santamarina MP. Cryo-scanning electron microscopy and light microscopy for the study of fungi inte-ractions[J]. Microsc Res Techniq, 2011, 74:207-211.

    [16] 孙猛, 胡泽章, 吕兵, 翟一凡, 陈浩,等. 东亚小花蝽触角的扫描电镜观察[J]. 中国生物防治学报, 2017, 33(2):176-182.

    Sun M, Hu ZZ, Lü B, Zhai YF, Chen H, et al. Scanning electron microscope observations of antenna of Orius sauteri (Poppius)[J]. Chinese Journal of Biological Control, 2017, 33(2):176-182.

    [17]

    Arreche R, Bellotti N, Deyá C, Vázquez P. Assessment of waterborne coatings formulated with sol-gel/Ag related to fungal growth resistance[J]. Prog Org Coat, 2017, 108:36-43.

    [18] 许自龙, 汪阳东, 陈益存, 高暝, 徐刚标, 何关顺. 山鸡椒雄花花芽发育形态解剖特征观察[J]. 植物科学学报, 2017, 35(2):152-163.

    Xu ZL, Wang YD, Chen YC, Gao M, Xu GB, He GS. Observation of the morphological and anatomial characteristics of male flower bud development in Litsea cubeba (Lour.) Pers[J]. Plant Science Journal, 2017, 35(2):152-163.

    [19] 赵芸玉, 夏晓飞, 熊彪, 祖奎玲, 赵良成. 臭椿不同发育阶段叶片表面结构特征[J]. 植物科学学报, 2016, 34(2):182-190.

    Zhao YY, Xia XF, Xiong B, Zu KL, Zhao LC. Leaf epidermal features of Ailanthus altissima (Mill.) swingle indiffe-rent development stages[J]. Plant Science Journal, 2016, 34(2):182-190.

    [20]

    Lu Y, Wang L, Wang D, Wang Y, Zhang M, et al. Male cone morphogenesis, pollen development and pollen dispersal mechanism in Ginkgo bilobaL.[J].Can J Plant Sci, 2011, 91:971-981.

    [21] 周喜乐, 严岳鸿, 赵国华, 刘红梅. 14种剑蕨属植物的孢子形态特征及其系统分类学意义[J]. 植物科学学报, 2016, 34(5):669-679.

    Zhou XL, Yan YH, Zhao GH, Liu HM. Spore morphology of Loxogramme (Blume) C. Presl and its taxonomic signi-ficance[J]. Plant Science Journal, 2016, 34(5):669-679.

    [22] 郝天雪, 宋海慧, 崔琳, 王学东. 大豆根瘤的扫描电镜观察[J]. 电子显微学报, 2017, 36(2):167-172.

    Hao TX, Song HH, Cui L, Wang XD. Observation of soybean nodule by scanning electron microscope[J]. Journal of Chinese Electron Microscopy Society, 2017, 36(2):167-172.

    [23]

    Wang D, Lu Y, Zhang M, Lu ZG, Luo KG, et al. Structure and function of the neck cell during fertilization in Ginkgo bilobaL.[J].Trees, 2014, 28:995-1005.

  • 期刊类型引用(9)

    1. 刘庆庭,胡平,郑明轩,林志超,李志昂,李桃. 作物组织结构与力学性能研究. 华南农业大学学报. 2024(03): 446-456 . 百度学术
    2. 邱涵,孟丽媛,杨婉婷,凌树玉,任凯利,魏赛金. 灵芝诱导子对南方红豆杉悬浮培养细胞产紫杉醇的影响. 河南农业科学. 2023(10): 52-59 . 百度学术
    3. 梁栋,刘光亮,石屹,王树声,王程栋,王晓琳. 油菜素内酯对烟草幼苗根系构型的影响及调控机制. 河南农业科学. 2022(08): 37-44 . 百度学术
    4. 邹函君,常秋翔,杨文达,张斌,公祥南,王桂文,周楷. 临界点干燥仪制备的Pt-P25的电催化析氢反应性能探究. 硅酸盐通报. 2021(02): 658-663 . 百度学术
    5. 赵孟良,任延靖. 扫描电子显微镜在植物中的应用研究进展. 电子显微学报. 2021(02): 197-202 . 百度学术
    6. 韩彪,张萍,郭素娟,董昕,李文清,解孝满. 失水对板栗种子超微结构与生理变化及萌发的影响. 基因组学与应用生物学. 2021(Z2): 2785-2792 . 百度学术
    7. 王莹,王振宇,何珊,马慧,魏相茹,孙艳丽. 高脂肪动物组织的扫描电镜样品制备方法. 电子显微学报. 2020(03): 337-342 . 百度学术
    8. 许恒,李志玲,郜晓妍,王长青,刘佳. 月季花瓣扫描电镜制样条件的探索. 广东化工. 2019(20): 17-20 . 百度学术
    9. 陆彦,郝唯卓,潘烨,张晓敏,祁琰,凌裕平,金飚,王莉. 银杏胚乳淀粉体的积累规律和发生特性. 植物科学学报. 2019(06): 788-796 . 本站查看

    其他类型引用(7)

计量
  • 文章访问数:  862
  • HTML全文浏览量:  6
  • PDF下载量:  1364
  • 被引次数: 16
出版历程
  • 收稿日期:  2017-06-07
  • 网络出版日期:  2022-10-31
  • 发布日期:  2018-02-27

目录

    /

    返回文章
    返回