Novel lipid accumulation pattern in a filamentous oleaginous microalga Tribonema utriculosum SAG22.94 under different initial nitrogen concentrations
-
摘要: 对不同初始氮浓度条件下囊状黄丝藻(Tribonema utriculosum SAG22.94)的生长状况、油脂含量和脂肪酸组成与含量进行研究。结果显示,囊状黄丝藻在氮浓度为3.0 mmol/L时,获得生物质浓度最高,为6.39 g/L;氮浓度为18.0 mmol/L时获得总脂和总脂肪酸含量最高,分别为细胞干重的44.62%和42.21%;上述3个指标单位体积的产率均在氮浓度3.0 mmol/L时达到最高值,分别为0.538、0.209和0.206 g·L-1·d-1。在4种初始氮浓度条件下,囊状黄丝藻油脂和脂肪酸含量可随着氮浓度增加而增加。脂肪酸含量分析结果显示,该藻的主要脂肪酸为豆蔻酸(C14∶0)、棕榈酸(C16∶0)、棕榈油酸(C16∶1ω7)、花生四烯酸(C20∶4ω6)和二十碳五烯酸(C20∶5ω3,EPA)。其中棕榈油酸含量最高,占总脂肪酸含量的36.53%~50.08%。研究结果表明囊状黄丝藻在不同初始氮浓度条件下具有特殊的油脂积累规律,是一株具有重要应用价值的产油丝状微藻。Abstract: We investigated the effects on growth, lipid content, and fatty acid profiles of Tribonema utriculosum SAG22.94 cultured under four different initial nitrogen concentrations (18.0, 3.0, 1.0, and 0 mmol/L). Results showed that the unbranched filaments were composed of cylindrical cells 9-15 μm wide and 17-29 μm long. The highest biomass concentration of T. utriculosum SAG22.94 cultured at a nitrogen concentration of 3.0 mmol/L was 6.39 g/L. The highest total lipid and total fatty acid contents were 44.62% and 42.21% of dry cell weight, respectively, when the filamentous microalgae were cultured under a nitrogen concentration of 18.0 mmol/L. The highest biomass and lipid and fatty acid productivities of 0.538, 0.209, and 0.206 g·L-1·d-1 were obtained under a nitrogen concentration of 3.0 mmol/L. Interestingly, total lipid and total fatty acid contents increased with the increase in nitrogen concentration within a certain threshold. In addition, the main fatty acid components of Tribonema utriculosum SAG22.94 were myristic acid (C14∶0), palmitic acid (C16∶0), palmitoleic acid (C16∶1ω7), arachidonic acid (C20∶4ω6), and eicosapentaenoic acid (C20∶5ω3, EPA). Among them, palmitoleic acid (C16∶1ω7) was the dominant fatty acid and accounted for 36.53%-50.08% of total fatty acids. In short, T.utriculosum SAG22.94 is a promising oleaginous filamentous microalga, with a unique lipid accumulation pattern.
-
Keywords:
- Tribonema utriculosum SAG22.94 /
- Nitrogen concentration /
- Total lipid /
- Fatty acid
-
-
[1] Rastogi RP, Pandey A, Larroche C, Madamwar D. Algal Green Energy-R&D and technological perspectives for biodiesel production[J]. Renew Sust Energ Rev, 2018, 82:2946-2969.
[2] Li L, Cui J, Liu Q, Ding YC, Liu JG. Screening and phylogenetic analysis of lipid-rich microalgae[J]. Algal Res, 2015, 11:381-386.
[3] Ruangsomboon S. Effects of different media and nitrogen sources and levels on growth and lipid of green microalga Botryococcus braunii, KMITL and its biodiesel properties based on fatty acid composition[J]. Bioresource Technol, 2015, 191:377-384.
[4] Ma C, Wen HQ, Xing DF, Pei XY, Zhu JN, Ren NQ, Liu BF. Molasses wastewater treatment and lipid production at low temperature conditions by a microalgal mutant Scenedesmus sp. Z-4[J]. Biotechnol Biofuels, 2017, 10(1):111.
[5] Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. Microalgal triacylglycerols as feedstocks for biofuel production:perspectives and advances[J]. Plant J, 2008, 54(4):621-639.
[6] Adams C, Godfrey V, Wahlen B, Seefeldt L, Bugbee B. Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae[J]. Bioresource Technol, 2013, 131(1):188.
[7] Milano J, Ong HC, Masjuki HH, Chong WT, Lam MK, Loh PW, Vellayan V. Microalgae biofuels as an alternative to fossil fuel for power generation[J]. Renew Sust Energ Rev, 2016, 58:180-197.
[8] Zhou WG, Wang JH, Chen P, Ji CC, Kang QY, Lu B, Li K, Liu J, Ruan R. Bio-mitigation of carbon dioxide using microalgal systems:advances and perspectives[J]. Renew Sust Energ Rev, 2017, 76:1163-1175.
[9] Richmond A, Hu Q. Handbook of Microalgal Culture[M] 2nd ed. New Jersey:Wiley Biackwell, 2013.
[10] Wang H, Zhang W, Chen L, Wang JF, Liu TZ. The contamination and control of biological pollutants in mass cultivation of microalgae[J]. Bioresource Technol, 2013, 128:745-750.
[11] Wang H, Gao LL, Chen L, Guo FJ, Liu TZ. Integration process of biodiesel production from filamentous oleaginous microalgae Tribonema minus[J]. Bioresource Technol, 2013, 142:39-44.
[12] Cai T, Park SY, Li Y. Nutrient recovery from wastewater streams by microalgae:status and prospects[J]. Renew Sust Energ Rev, 2013, 19(1):360-369.
[13] 周芷薇, 沈丹丹, 高保燕, 黄罗冬, 李爱芬, 张成武. 一株高产淀粉绿藻——标志链带藻在废水中的培养及对氮磷的去除[J]. 植物科学学报, 2016, 34(3):446-459. Zhou ZW, Shen DD, Gao BY, Huang LD, Li AF, Zhang CW. Cultivation of a starch-rich microalga Desmodesmus insignis in dairy wastewater and removal of nitrogen and phosphorus[J]. Plant Science Journal, 2016, 34(3):446-459.
-
期刊类型引用(8)
1. 郭昱昊,李苑虹,曹燕,王飞飞,祝振洲. 促进黄丝藻储能物质高效富集的氮调控策略. 中国油脂. 2023(12): 121-127 . 百度学术
2. 王飞飞,李苑虹,郭昱昊,祝振洲,张成武. 黄丝藻处理废水与生物质高值化利用研究进展. 现代化工. 2022(12): 54-59 . 百度学术
3. WANG Feifei,GUO Yuhao,CAO Yan,ZHANG Chengwu. In vitro Antibacterial Activity of Palmitoleic Acid Isolated from Filamentous Microalga Tribonema minus Against Fish Pathogen Streptococcus agalactiae. Journal of Ocean University of China. 2022(06): 1615-1621 . 必应学术
4. 戴晨明,高保燕,苏敏,黄罗冬,王飞飞,赵伟,张成武. 光强及氮浓度对丝状绿藻双星藻生长及生化组成的影响. 微生物学通报. 2020(01): 172-181 . 百度学术
5. 韦芊含,雷伟伟,陈昕,赵伟亚,张蒙,肖金吒,张雨梅. 饲用黄丝藻粉的急性毒性和亚慢性毒性试验. 中国畜牧兽医. 2020(05): 1602-1610 . 百度学术
6. 张婷,何青,徐梓钧,索菲娅,张成武,胡强. 不同营养盐及浓度对黄丝藻Tribonema sp.FACHB-1786生长及脂质积累的影响. 生物工程学报. 2020(11): 2478-2493 . 百度学术
7. 冯倩,王琳,蔡忠贞,陈昱,李青,白雪梅. 碳氮源和盐度对异养黄丝藻脂肪酸产量的影响. 安徽农业科学. 2019(12): 98-103 . 百度学术
8. 刘敏胜,耿金峰,王慧岭,马欣欣,白秀君. 微藻产油技术进展. 生物产业技术. 2019(05): 22-31 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 978
- HTML全文浏览量: 2
- PDF下载量: 844
- 被引次数: 11