高级检索+

外源NO和SA对盐胁迫下番茄幼苗叶片膜脂过氧化及AsA-GSH循环的影响

孙德智, 韩晓日, 彭靖, 范富, 宋桂云, 杨恒山

孙德智, 韩晓日, 彭靖, 范富, 宋桂云, 杨恒山. 外源NO和SA对盐胁迫下番茄幼苗叶片膜脂过氧化及AsA-GSH循环的影响[J]. 植物科学学报, 2018, 36(4): 612-622. DOI: 10.11913/PSJ.2095-0837.2018.40612
引用本文: 孙德智, 韩晓日, 彭靖, 范富, 宋桂云, 杨恒山. 外源NO和SA对盐胁迫下番茄幼苗叶片膜脂过氧化及AsA-GSH循环的影响[J]. 植物科学学报, 2018, 36(4): 612-622. DOI: 10.11913/PSJ.2095-0837.2018.40612
Sun De-Zhi, Han Xiao-Ri, Peng Jing, Fan Fu, Song Gui-Yun, Yang Heng-Shan. Effects of exogenous nitric oxide and salicylic acid on membrane peroxidation and the ascorbate-glutathione cycle in leaves of Lycopersicon esculentum seedlings under NaCl stress[J]. Plant Science Journal, 2018, 36(4): 612-622. DOI: 10.11913/PSJ.2095-0837.2018.40612
Citation: Sun De-Zhi, Han Xiao-Ri, Peng Jing, Fan Fu, Song Gui-Yun, Yang Heng-Shan. Effects of exogenous nitric oxide and salicylic acid on membrane peroxidation and the ascorbate-glutathione cycle in leaves of Lycopersicon esculentum seedlings under NaCl stress[J]. Plant Science Journal, 2018, 36(4): 612-622. DOI: 10.11913/PSJ.2095-0837.2018.40612
孙德智, 韩晓日, 彭靖, 范富, 宋桂云, 杨恒山. 外源NO和SA对盐胁迫下番茄幼苗叶片膜脂过氧化及AsA-GSH循环的影响[J]. 植物科学学报, 2018, 36(4): 612-622. CSTR: 32231.14.PSJ.2095-0837.2018.40612
引用本文: 孙德智, 韩晓日, 彭靖, 范富, 宋桂云, 杨恒山. 外源NO和SA对盐胁迫下番茄幼苗叶片膜脂过氧化及AsA-GSH循环的影响[J]. 植物科学学报, 2018, 36(4): 612-622. CSTR: 32231.14.PSJ.2095-0837.2018.40612
Sun De-Zhi, Han Xiao-Ri, Peng Jing, Fan Fu, Song Gui-Yun, Yang Heng-Shan. Effects of exogenous nitric oxide and salicylic acid on membrane peroxidation and the ascorbate-glutathione cycle in leaves of Lycopersicon esculentum seedlings under NaCl stress[J]. Plant Science Journal, 2018, 36(4): 612-622. CSTR: 32231.14.PSJ.2095-0837.2018.40612
Citation: Sun De-Zhi, Han Xiao-Ri, Peng Jing, Fan Fu, Song Gui-Yun, Yang Heng-Shan. Effects of exogenous nitric oxide and salicylic acid on membrane peroxidation and the ascorbate-glutathione cycle in leaves of Lycopersicon esculentum seedlings under NaCl stress[J]. Plant Science Journal, 2018, 36(4): 612-622. CSTR: 32231.14.PSJ.2095-0837.2018.40612

外源NO和SA对盐胁迫下番茄幼苗叶片膜脂过氧化及AsA-GSH循环的影响

基金项目: 

内蒙古民族大学科学研究基金(NMDYB15097);内蒙古民族大学博士科研启动基金(BS417);国家自然科学基金(31760372)。

详细信息
    作者简介:

    孙德智(1978-),男,博士,讲师,研究方向为植物营养与逆境生理生态(E-mail:sdzcf@163.com)。

    通讯作者:

    孙德智,E-mail:sdzcf@163.com

  • 中图分类号: Q945.78

Effects of exogenous nitric oxide and salicylic acid on membrane peroxidation and the ascorbate-glutathione cycle in leaves of Lycopersicon esculentum seedlings under NaCl stress

Funds: 

This work was supported by grants from the Scientific Research Foundation of Inner Mongolia University for Nationalities (NMDYB15097), Doctoral Research Foundation of Inner Mongolia University for the Nationalities (BS417), and National Natural Science Foundation of China (31760372).

  • 摘要: 以番茄(Lycopersicon esculentum Mill.)品种‘秦丰保冠’为试材,在水培条件下研究单独和复配施用一氧化氮(NO)供体硝普钠(SNP)、水杨酸(SA)对100 mmol/L NaCl胁迫下番茄幼苗的生长、叶片光合作用、膜脂过氧化及抗坏血酸-谷胱甘肽(AsA-GSH)循环的影响。结果显示,盐胁迫能显著影响番茄幼苗的生长、光合作用和活性氧代谢系统的相关指标。单独或复配施用SNP、SA均能有效缓解番茄幼苗的盐渍伤害,并以SNP和SA复配处理效果最好。处理3 ~ 7 d时,叶片PSⅡ最大光化学效率(Fv/Fm)、净光合速率(Pn)、APX、GR、DHAR的活性、AsA和GSH含量分别较胁迫处理有不同程度的提高;而H2O2、MDA、DHA、GSSG的含量和电解质渗漏率分别较胁迫处理有不同程度的降低。研究结果表明盐胁迫下外源NO、SA单独或复配处理均能通过维持或协调作用促进番茄相关抗氧化酶活性的提高和抑制抗氧化剂含量的降低,起到维持AsA-GSH循环高效运转、减轻膜脂过氧化、促进光合作用、改善植株生长发育和提高幼苗盐渍抗性的作用,且NO和SA复配处理时具有协同增效的作用。
    Abstract: A hydroponics experiment was conducted to study the effects of single and compound application of nitric oxide (NO) donor sodium nitroprusside (SNP) and salicylic acid (SA) on plant growth, photosynthetic parameters, membrane lipid peroxidation and the ascorbate-glutathione cycle (AsA-GSH cycle) in tomato cultivar (‘Qinfeng Baoguan’) seedling leaves under 100 mmol/L NaCl stress. Results showed that salt stress had significant effects on the growth, photosynthetic rate, and related indicators of reactive oxygen metabolism. Single or combined application of SNP and SA effectively alleviated the salinity damage of tomato seedlings, and the strongest effect was observed after applying a combination of SNP and SA. After 3-7 days of stress treatment, the PSⅡ maximal photochemistry efficiency (Fv/Fm), net photosynthetic rate (Pn), activities of ascorbate peroxidase (APX), glutathione reductase (GR) and droascorbic acid reductase (DHAR), and contents of reductive-form abscisic acid (AsA) and reduced glutathione (GSH) in leaves increased by 9.5%-15.3%, 25.5%-94.9%, 38.8%-67.5%, 15.2%-30.6%, 7.9%-41%, 4.4%-45.7%, and 13.8%-21.5%, respectively. Furthermore, the contents of H2O2, malondialdehyde (MDA), dehydroascorbic acid (DHA), oxidized glutathione (GSSG) and electrolyte leakage in leaves were reduced by 18.4%-40.4%, 35.2%-52.4%, 4.6%-26.3%, 14.8%-20.7%, and 23.1%-29.3%, respectively, compared with stress treatment. In conclusion, single or combined application of SNP and SA not only played a role in the stable operation of the AsA-GSH cycle, but also reduced membrane lipid peroxidation, promoted photosynthesis, enhanced plant growth and development, and improved seedling resistance by maintaining and coordinating the increase in related antioxidant enzyme activities and inhibiting the decrease in antioxidant content. Thus, a synergistic effect was observed after applying both SNP and SA.
  • [1]

    Hasanuzzaman M, Nahar K, Fujita M. Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages[M]//Ahmad P, Azooz MM, Prasad MNV, eds. Ecophysiology and Responses of Plants under Salt Stress. New York:Springer, 2013.

    [2]

    Nazar R, Umar S, Khan NA. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress[J]. Plant signal Behav, 2015, 10(3):1-10.

    [3]

    Hossain MA, Ismail MR, Uddin MK, Islam MZ, Ashrafuzzaman M. Efficacy of ascorbate-glutathione cycle for scavenging H2O2 in two contrasting rice genotypes during salinity stress[J]. Aust J Crop Sci, 2013, 7(12):1801-1808.

    [4]

    Delian E, Bǎdulescu L, Dobrescu A, Chira L, Lagunovschi-Luchian V. A brief overview of seed priming benefits in tomato[J]. Rom Biotech Lett, 2017, 22(3):12505-12513.

    [5]

    Yusuf M, Hayat S, Alyemeni MN, Fariduddin Q, Ahmad A. Salicylic acid:Physiological roles in plants[M]//Hayat S, Ahmad A, Alyemeni MN, eds. Salicylic Acid:Plant Growth and Development. Netherlands:Springer Dordrecht Heidelberg, 2013.

    [6]

    Yu M, Lamattina L, Spoel SH, Loake GJ. Nitric oxide function in plant biology:a redox cue in deconvolution[J]. New Phytol, 2014, 202(4):1142-1156.

    [7]

    Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, et al. Nitric oxide and salicylic acid signaling in plant defense[J]. P Natl Acad Sci USA, 2000, 97(16):8849-8855.

    [8] 张婧一, 陈红艳, 张洪培, 朱楠, 董娟娥. 水杨酸诱发的NO介导了丹参悬浮培养细胞中丹酚酸B的生物合成[J]. 植物科学学报, 2015, 33(1):81-89.

    Zhang JY, Chen HY, Zhang HP, Zhu N, Dong JE. Nitric oxide triggered by salicylic acid mediates the biosynthesis of salvianolic acid B in Salvia miltiorrhiza suspension cell culture[J]. Plant Science Journal, 2015, 33(1):81-89.

    [9]

    Khurana A, Kumar R, Babbar SB. Nitric oxide is involved in salicylic acid-induced flowering of Lemna aequinoctialis Welw[J]. Acta Physiol Plant, 2014, 36(10):2827-2833.

    [10]

    Asgher M, Per TS, Masood A, Fatma M, Freschi L, et al. Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress[J]. Environ Sci Pollut R, 2017, 24(3):2273-2285.

    [11]

    Xu LL, Fan ZY, Dong YJ, Kong J, Bai XY. Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of two peanut cultivars under cadmium stress[J]. Biol Plantarum, 2015, 59(1):171-182.

    [12]

    Singh AP, Dixit G, Kumar A, Mishra S, Kumar N, et al. A protective role for nitric oxide and salicylic acid for arsenite phytotoxicity in rice (Oryza sativa L.)[J]. Plant Physiol Bioch, 2017, 115:163-173.

    [13]

    Esim N, Atici Ö. Effects of exogenous nitric oxide and salicylic acid on chilling-induced oxidative stress in wheat (Triticum aestivum)[J]. Front Life Sci, 2015, 8(2):124-130.

    [14]

    Song YL, Dong YJ, Kong J, Tian XY, Bai XY, Xu LL. Effects of root addition and foliar application of nitric oxide and salicylic acid in alleviating iron deficiency induced chlorosis of peanut seedlings[J]. J Plant Nutr, 2017, 40(1):63-81.

    [15]

    Yan F, Liu Y, Sheng H, Wang Y, Kang H, Zeng J. Salicylic acid and nitric oxide increase photosynthesis and antioxidant defense in wheat under UV-B stress[J]. Biol Plantarum, 2016, 60(4):686-694.

    [16]

    Simaei M, Khavari-nejad RA, Saadatmand S, Bernard F, Fahimi H. Effects of salicylic acid and nitric oxide on antioxidant capacity and proline accumulation in Glycine max L. treated with NaCl salinity[J]. Afr J Agr Res, 2011, 6(16):3775-3782.

    [17]

    Liu S, Dong YJ, Xu LL, Kong J. Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings[J]. Plant Growth Regul, 2014, 73(1):67-78.

    [18] 林植芳, 李双顺, 林桂珠, 郭俊彦. 衰老叶片和叶绿体中H2O2的积累与膜脂过氧化的关系[J]. 植物生理学报, 1988, 14(1):16-22.

    Lin ZF, Li SS, Lin GZ,Guo JY. The accumulation of hydrogen peroxide in senescencing leaves and chloroplasts in relation to lipid peroxidation[J]. Plant Physiology Journal, 1988, 14(1):16-22.

    [19]

    Heath RL, Packer L. Photoperoxidation in isolated chloroplasts:Ⅰ. Kinetics and stoichiometry of fatty acid peroxidation[J]. Arch Biochem Biophys, 1968, 125(1):189-198.

    [20] 张宪政. 作物生理研究方法[M]. 北京:农业出版社, 1992.
    [21]

    Arakawa N, Tsutsumi K, Sanceda NG, Kurata T, Inagaki C. A rapid and sensitive method for the determination of ascorbic acid using 4,7-diphenyl-l,10-phenanthroline[J]. Agric Biol Chem, 1981, 45(5):1289-1290.

    [22]

    Griffith OW. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine[J]. Anal Biochem, 1980, 106:207-212.

    [23]

    Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant Cell Physiol, 1981, 22(5):867-880.

    [24]

    Foyer CH, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts:a proposed role in ascorbic acid metabolism[J]. Planta, 1976, 133(1):21-25.

    [25]

    Hossain MA, Nakano Y, Asada K. Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide[J]. Plant Cell Physiol, 1984, 25(3):385-395.

    [26]

    Demetriou G, Neonaki C, Navakoudis E, Kotzabasis K. Salt stress impact on the molecular structure and function of the photosynthetic apparatus-The protective role of polyamines[J]. BBA-Bioenergetics, 2007, 1767(4):272-280.

    [27] 樊怀福, 郭世荣, 焦彦生, 张润花, 李娟. 外源一氧化氮对NaCl胁迫下黄瓜幼苗生长, 活性氧代谢和光合特性的影响[J]. 生态学报, 2007, 27(2):546-553.

    Fan HF, Guo SR, Jiao YS, Zhang RH, Li J. The effects of exogenous nitric oxide on growth, active oxygen metabolism and photosynthetic characteristics in cucumber seedling under NaCl stress[J]. Acta Ecologica Sinica, 2007, 27(2):546-553.

    [28]

    Kim YH, Khan AL, Waqas M, Lee IJ. Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress:a review[J]. Front Plant Sci, 2017, 8(4):1-7.

    [29]

    Nahar K, Hasanuzzaman M, Suzuki T, Fujita M. Polyamines-induced aluminum tolerance in mung bean:A study on antioxidant defense and methylglyoxal detoxification systems[J]. Ecotoxicology, 2017, 26(1):58-73.

    [30]

    Kadioglu A, Saruhan N, Saǧlam A, Terzi R, Acet T. Exo-genous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system[J]. Plant Growth Regul, 2011, 64(1):27-37.

    [31] 颜志明, 孙锦, 郭世荣, 魏跃, 胡德龙, 王全智. 外源脯氨酸对盐胁迫下甜瓜幼苗根系抗坏血酸-谷胱甘肽循环的影响[J]. 植物科学学报, 2014, 32(5):502-508.

    Yan ZM, Sun J, Guo SR, Wei Y, Hu DL, Wang QZ. Effects of exogenous proline on the ascorbate-glutathione cycle in roots of Cucumis melo seedlings under salt stress[J]. Plant Science Journal, 2014, 32(5):502-508.

    [32]

    Anjum NA, Gill SS, Gill R, Hasanuzzaman M, Duarte AC, et al. Metal/metalloid stress tolerance in plants:role of ascorbate, its redox couple, and associated enzymes[J]. Protoplasma, 2014, 251(6):1265-1283.

    [33]

    Nahar K, Hasanuzzaman M, Alam MM, Fujita M. Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system[J]. Environ Exp Bot, 2015, 112:44-54.

    [34] 刘会芳, 何晓玲, 马展, 徐巍, 刘苗苗, 刘慧英. 外源GSH对NaCl胁迫下番茄幼苗生长及AsA-GSH循环的影响[J]. 石河子大学学报:自然科学版, 2014, 32(3):265-271.

    Liu HF, He XL, Ma Z, Xu W, Liu MM, Liu HY. Effects of exogenous GSH on the growth and AsA-GSH cycle in tomato seedlings under NaCl stress[J]. Journal of Shihezi University:Natural Science Edition, 2014, 32(3):265-271.

    [35]

    Wu XX, Zhu WM, Zhang H, Ding HD, Zhang HJ. Exogenous nitric oxide protects against salt-induced oxidative stress in the leaves from two genotypes of tomato (Lyco-persicom esculentum Mill.)[J]. Acta Physiol Plant, 2011, 33(4):1199-1209.

    [36]

    He Y, Zhu ZJ. Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidative enzyme activity in Lycopersicon esculentum[J]. Biol Plantarum, 2008, 52(4):792-795.

    [37]

    Manai J, Kalai T, Gouia H, Corpas FJ. Exogenous nitric oxide (NO) ameliorates salinity-induced oxidative stress in tomato (Solanum lycopersicum) plants[J]. J Soil Sci Plant Nutr, 2014, 14(2):433-446.

    [38]

    Tari I, Csiszár J, Horváth E, Poór P, Takács Z, Szepesi Á. The alleviation of the adverse effects of salt stress in the tomato plant by salicylic acid shows a time-and organ-specific antioxidant response[J]. Acta Biol Cracov Bot, 2015, 57(1):21-30.

    [39] 樊怀福, 郭世荣, 段九菊, 杜长霞,孙锦. 外源NO对NaCl胁迫下黄瓜(Cucumis sativus L.)幼苗生长和谷胱甘肽抗氧化酶系统的影响[J]. 生态学报, 2008, 28(6):2511-2517.

    Fan HF, Guo SR, Duan JJ, Du CX, Sun J. Effects of nitric oxide on the growth and glutathione dependent antioxidative system in cucumber (Cucumis sativus L.) seedlings under NaCl stress[J]. Acta Ecologica Sinica, 2008, 28(6):2511-2517.

    [40] 刘建新, 王鑫, 李博萍. 外源一氧化氮供体SNP对NaCl胁迫下黑麦草幼苗叶片抗坏血酸-谷胱甘肽循环的影响[J]. 草业学报, 2010, 19(2):82-88.

    Liu JX, Wang X, Li BP. Effects of exogenous nitric oxide donor SNP on AsA-GSH cycle in ryegrass seedlings lea-ves under salt stress[J]. Acta Prataculturae Sinica, 2010, 19(2):82-88.

    [41]

    Miyake C, Schreiber U, Hormann H, Sano S, Kozi A. The FAD-enzyme monodehydroascorbate radical reductase mediates photoproduction of superoxide radicals in spinach thylakoid membranes[J]. Plant Cell physiol, 1998, 39(8):821-829.

  • 期刊类型引用(17)

    1. 徐磊,胥晓,刘沁松. 外源水杨酸对盐胁迫下珙桐幼苗抗氧化系统和基因表达的影响. 植物研究. 2023(04): 572-581 . 百度学术
    2. 张爱慧,冷欣兰,袁颖辉,任慧羚,陈雪琼,朱士农. 5-ALA对NaCl胁迫下丝瓜幼苗生长及生理特性的影响. 江苏农业科学. 2023(13): 137-141 . 百度学术
    3. 朱普生,刘慧英,曹泽,丛蕴郸. 番茄GAPDH基因家族的鉴定及其在GSNO调控番茄盐胁迫中的响应. 分子植物育种. 2023(23): 7682-7688 . 百度学术
    4. 张雪蒙,亢超,滕元旭,陈静怡,崔辉梅. 外源硫化氢和水杨酸对盐胁迫下加工番茄幼苗生长与生理特性的影响. 西北植物学报. 2022(02): 255-262 . 百度学术
    5. 吴莺,张淑英,陈明媛,王梦柯. SNP对盐胁迫下棉花幼苗光合抑制及氧化损伤的缓解效应. 植物生理学报. 2022(04): 757-766 . 百度学术
    6. 左月桃,董玲,任晓松,刘赵月,左师宇,李晶. 外源褪黑素对盐碱胁迫下小黑麦种子萌发幼苗生长、抗氧化能力的影响. 麦类作物学报. 2022(01): 90-99 . 百度学术
    7. 赵野,刘威,王贺,吴华鑫,肖雅楠,闫永庆. 外源CaCl_2对盐胁迫下西伯利亚白刺活性氧代谢的影响. 植物生理学报. 2021(05): 1105-1112 . 百度学术
    8. 程园,李灿婴,侯佳宝,李雪,王晓涵,葛永红. 采后硝普钠处理对南果梨果实贮藏品质和细胞壁降解酶的影响. 食品科学. 2020(01): 252-257 . 百度学术
    9. 耿贵,李任任,吕春华,於丽华,王宇光. 外源调节物质对盐胁迫下植物生长调控研究进展. 中国农学通报. 2020(24): 85-90 . 百度学术
    10. 刘赵月,李蕊彤,李晶,顾万荣,左师宇,任晓松,左月桃,魏湜. 盐碱胁迫下京尼平苷对玉米种子萌发及根系AsA-GSH循环的影响. 江苏农业学报. 2020(04): 842-850 . 百度学术
    11. 赵宝泉,邢锦城,王静,朱小梅,刘冲,洪立洲. 水杨酸对盐胁迫下杭白菊幼苗生长和生理特性的影响. 吉林农业大学学报. 2020(04): 370-379 . 百度学术
    12. 普凌,赵鑫,王艇越,侯浩南,张毅. 等渗盐胁迫对番茄幼苗生长和生理特性的影响. 陕西农业科学. 2019(05): 35-38 . 百度学术
    13. 蒋景龙,沈季雪,李丽. 外源H_2O_2对盐胁迫下黄瓜幼苗氧化胁迫及抗氧化系统的影响. 西北农业学报. 2019(06): 998-1007 . 百度学术
    14. 孙德智,杨恒山,张庆国,范富,苏雅乐其其格,彭靖,韩晓日. 外源一氧化氮供体硝普钠对番茄幼苗盐胁迫伤害的缓解作用. 浙江农业学报. 2019(08): 1286-1294 . 百度学术
    15. 李翀,王杰,贾赵辉,程雪飞,彭孝楠,陈颖,张金池. 南林‘895’杂交杨组培苗对NaCl胁迫的生理响应. 安徽农业大学学报. 2019(06): 961-967 . 百度学术
    16. 李海萍. 盐胁迫及外源物质对植物抗盐性影响的研究进展. 青海农技推广. 2018(04): 48-50 . 百度学术
    17. 董亚茹,赵东晓,杜建勋,孙景诗,陈传杰,王照红. 外源NO对NaCl胁迫下桑树种子萌发及幼苗生理生化特性的影响. 蚕业科学. 2018(06): 821-827 . 百度学术

    其他类型引用(16)

计量
  • 文章访问数:  769
  • HTML全文浏览量:  3
  • PDF下载量:  705
  • 被引次数: 33
出版历程
  • 收稿日期:  2018-01-06
  • 网络出版日期:  2022-10-31
  • 发布日期:  2018-08-27

目录

    /

    返回文章
    返回