高级检索+

BB染色体组野生种花生LTR反转录转座子RT基因的多样性分析

熊发前, 刘菁, 韩柱强, 阳太亿, 唐秀梅, 唐荣华, 钟瑞春, 蒋菁, 贺梁琼, 吴海宁, 黄志鹏, 刘俊仙

熊发前, 刘菁, 韩柱强, 阳太亿, 唐秀梅, 唐荣华, 钟瑞春, 蒋菁, 贺梁琼, 吴海宁, 黄志鹏, 刘俊仙. BB染色体组野生种花生LTR反转录转座子RT基因的多样性分析[J]. 植物科学学报, 2022, 40(1): 54-65. DOI: 10.11913/PSJ.2095-0837.2022.10054
引用本文: 熊发前, 刘菁, 韩柱强, 阳太亿, 唐秀梅, 唐荣华, 钟瑞春, 蒋菁, 贺梁琼, 吴海宁, 黄志鹏, 刘俊仙. BB染色体组野生种花生LTR反转录转座子RT基因的多样性分析[J]. 植物科学学报, 2022, 40(1): 54-65. DOI: 10.11913/PSJ.2095-0837.2022.10054
Xiong Fa-Qian, Liu Jing, Han Zhu-Qiang, Yang Tai-Yi, Tang Xiu-Mei, Tang Rong-Hua, Zhong Rui-Chun, Jiang Jing, He Liang-Qiong, Wu Hai-Ning, Huang Zhi-Peng, Liu Jun-Xian. Diversity analysis of reverse transcriptase gene (RT) of long terminal repeat retrotransposons in Arachis ipaensis Krapov. et W. C. Greg. with BB genome[J]. Plant Science Journal, 2022, 40(1): 54-65. DOI: 10.11913/PSJ.2095-0837.2022.10054
Citation: Xiong Fa-Qian, Liu Jing, Han Zhu-Qiang, Yang Tai-Yi, Tang Xiu-Mei, Tang Rong-Hua, Zhong Rui-Chun, Jiang Jing, He Liang-Qiong, Wu Hai-Ning, Huang Zhi-Peng, Liu Jun-Xian. Diversity analysis of reverse transcriptase gene (RT) of long terminal repeat retrotransposons in Arachis ipaensis Krapov. et W. C. Greg. with BB genome[J]. Plant Science Journal, 2022, 40(1): 54-65. DOI: 10.11913/PSJ.2095-0837.2022.10054
熊发前, 刘菁, 韩柱强, 阳太亿, 唐秀梅, 唐荣华, 钟瑞春, 蒋菁, 贺梁琼, 吴海宁, 黄志鹏, 刘俊仙. BB染色体组野生种花生LTR反转录转座子RT基因的多样性分析[J]. 植物科学学报, 2022, 40(1): 54-65. CSTR: 32231.14.PSJ.2095-0837.2022.10054
引用本文: 熊发前, 刘菁, 韩柱强, 阳太亿, 唐秀梅, 唐荣华, 钟瑞春, 蒋菁, 贺梁琼, 吴海宁, 黄志鹏, 刘俊仙. BB染色体组野生种花生LTR反转录转座子RT基因的多样性分析[J]. 植物科学学报, 2022, 40(1): 54-65. CSTR: 32231.14.PSJ.2095-0837.2022.10054
Xiong Fa-Qian, Liu Jing, Han Zhu-Qiang, Yang Tai-Yi, Tang Xiu-Mei, Tang Rong-Hua, Zhong Rui-Chun, Jiang Jing, He Liang-Qiong, Wu Hai-Ning, Huang Zhi-Peng, Liu Jun-Xian. Diversity analysis of reverse transcriptase gene (RT) of long terminal repeat retrotransposons in Arachis ipaensis Krapov. et W. C. Greg. with BB genome[J]. Plant Science Journal, 2022, 40(1): 54-65. CSTR: 32231.14.PSJ.2095-0837.2022.10054
Citation: Xiong Fa-Qian, Liu Jing, Han Zhu-Qiang, Yang Tai-Yi, Tang Xiu-Mei, Tang Rong-Hua, Zhong Rui-Chun, Jiang Jing, He Liang-Qiong, Wu Hai-Ning, Huang Zhi-Peng, Liu Jun-Xian. Diversity analysis of reverse transcriptase gene (RT) of long terminal repeat retrotransposons in Arachis ipaensis Krapov. et W. C. Greg. with BB genome[J]. Plant Science Journal, 2022, 40(1): 54-65. CSTR: 32231.14.PSJ.2095-0837.2022.10054

BB染色体组野生种花生LTR反转录转座子RT基因的多样性分析

基金项目: 

国家自然科学基金项目(31960409;31960416)、广西自然科学基金项目(2018GXNSFDA281027;2018GXNSFDA294004;2020GXNSFAA297081);广西农业科学院科技发展基金项目(桂农科2018YM06;桂农科2017JZ13;桂农科31960409;桂农科2021YT052)。

详细信息
    作者简介:

    熊发前(1983),男,博士研究生,研究员,研究方向为花生种质资源和遗传育种及分子生物学(E-mail:xfq2002@126.com)。

    通讯作者:

    刘俊仙,liujunxian868@163.com

  • 中图分类号: Q943.2

Diversity analysis of reverse transcriptase gene (RT) of long terminal repeat retrotransposons in Arachis ipaensis Krapov. et W. C. Greg. with BB genome

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31960409

  • 摘要: 利用简并PCR技术从野生花生种(Arachis ipaensis Krapov.et W.C.Greg.)的基因组中扩增分离Ty1-copia类(1类)和Ty3-gypsy类(2类)反转录转座子RT基因,并对其序列特征、多样性、系统进化关系及转录活性进行分析。结果显示:对于1和2类RT基因,目的条带分别约为260和430 bp;分离获得了23和32条序列,长度范围分别为262~266、395~435 bp;AT所占比例分别为61.60%~69.17%和55.79%~61.34%;核苷酸序列间相似性分别为52.5%~98.9%和45.0%~98.8%,氨基酸序列间相似性分别为39.8%~100%和9.0%~97.2%。其中2类基因的异质性高于1类;1类和2类基因分别有3条和15条发生了无义突变,2类的无义突变发生率远高于1类。1类基因的保守基序保守性较高,2类的保守基序呈一定程度的变异。代表序列的蛋白质三级结构基本类似。聚类分析结果显示,1类和2类基因可被分为5个和6个家族。1类和2类基因都有部分序列与其他物种的RT基因序列亲缘关系较近,表明它们之间可能存在两类反转录转座子的横向传递。通过比对花生EST数据库,本研究发现1类有1条以及2类有7条序列为具有转录活性的反转录转座子,且2类基因比1类更具有转录活性。
    Abstract: The reverse transcriptase gene (RT) sequences of Ty1-copia-like (Type 1) and Ty3-gypsy-like retrotransposons (Type 2) were amplified and isolated from the Arachis ipaensis Krapov. et W. C. Greg. with BB genome by degenerate polymerase chain reaction (PCR). Sequence characteristics, diversity, phylogenetic relationships, and transcriptional activity were then analyzed. Results showed that the target bands for types 1 and 2 were 260 bp and 430 bp in size, respectively. 23 sequences of type 1 retrotransposons and 32 sequences of type 2 retrotransposons were obtained. Sequence lengths of type 1 and type 2 ranged from 262 to 266 bp and from 395 to 435 bp, respectively. The proportion of AT content in type 1 and type 2 ranged from 61.60% to 69.17% and from 55.79% to 61.34%, respectively. Similarity between nucleotide sequences in type 1 and type 2 ranged from 52.5% to 98.9% and from 45.0% to 98.8%, respectively. The similarity between amino acid sequences of type 1 and type 2 ranged from 39.8% to 100% and from 9.0% to 97.2%, respectively. The heterogeneity of type 2 was higher than that of type 1. There were three and 15 nonsense mutations in type 1 and type 2, respectively. The incidence of nonsense mutations in type 2 was much higher than that in type 1. The conserved motifs of type 1 were highly conserved, while the conserved motifs of type 2 showed a certain degree of variation. The protein tertiary structures were similar in overall configuration. Type 2 had more differences in protein structure than type 1. Based on cluster analysis, type 1 and type 2 were divided into five and six families, respectively. The phylogenetic tree showed that type 1 and type 2 were divided into four and 11 classes, respectively, but type 2 sequence categories and diversity were significantly higher than that of type 1. Several type 1 and 2 RT gene sequences were closely related to the RT gene sequences of other species, indicating possible horizontal transmission of retrotransposons. When searching the peanut EST database, one type 1 and seven type 2 sequences from the A.ipaensis BB genome showed transcriptional activity. The type 2 retrotransposons showed greater transcriptional activity than the type 1 retrotransposons. This study not only provides sequences for the isolation of full-length LTR retrotransposons and for studies on their transcriptional activity and function, but also lays the foundation for the development of molecular markers based on LTR retrotransposons in the Arachis genus.
  • [1] 熊发前, 蒋菁, 钟瑞春, 韩柱强, 贺梁琼, 等. 目标起始密码子多态性(SCoT)分子标记技术在花生属中的应用[J]. 作物学报, 2010, 36(12):2055-2061.

    Xiong FQ, Jiang J, Zhong RC, Han ZQ, He LQ, et al. Application of SCoT molecular markers in genus Arachis[J]. Acta Agronomica Sinica, 36(12):2055-2061.

    [2]

    Xiong FQ, Zhong RC, Han ZQ, Jiang J, He LQ, et al. Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes[J]. Mol Biol Rep, 2011, 38(5):3487-3494.

    [3]

    Kumar A, Pearce SR, McLean K, Harrison G, HeslopHarrison JS, et al. The Tyl-copia group of retrotransposons in plants:genomic organisation, evolution and use as molecular markers[J]. Genetica, 1997, 100:205-217.

    [4]

    Kumar A, Bennetzen JL. Plant retrotransposons[J]. Annu Rev Genet, 1999, 33:479-532.

    [5]

    Feschotte C, Jiang N, Wessler SR. Plant transposable elements:where genetics meets genomics[J]. Nat Rev Genet, 2002, 3(5):329-341.

    [6]

    Bonchev G, Parisod C. Transposable elements and microevolutionary changes in natural populations[J]. Mol Ecol Resour, 2013, 13(5):765-775.

    [7]

    Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, et al. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequencespecific amplification polymorphisms (S-SAP)[J]. Mol Gen Genet, 1997, 253(6):687-694.

    [8]

    Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A. IRAP and REMAP:two new retrotransposon-based DNA fingerprinting techniques[J]. Theor Appl Genet, 1999, 98(5):704-711.

    [9]

    Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A. High-oleate peanut mutants result from a MITE insertion into the FAD2 gene[J]. Theor Appl Genet, 2004, 108(8):1492-1502.

    [10]

    Gowda MVC, Bhat RS, Motagi BN, Sujay V, Kumari V, Sujatha B. Association of high-frequency origin of late leaf spot resistance mutants with AhMITE1 transposition in peanut[J]. Plant Breed, 2010, 129(5):567-569.

    [11]

    Gowda MVC, Bhat RS, Sujay V, Kusuma P, Varshakumari, et al. Characterization of AhMITE1 transposition and its association with the mutational and evolutionary origin of botanical types in peanut (Arachis spp.)[J]. Plant Syst Evol, 2011, 291(3-4):153-158.

    [12]

    Shirasawa K, Hirakawa H, Tabata S, Hasegawa M, Kiyoshima H, et al. Characterization of active miniature inverted-repeat transposable elements in the peanut genome[J]. Theor Appl Genet, 2012, 124(8):1429-1438.

    [13]

    Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S, et al. In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut[J]. BMC Plant Biol, 2012, 12:80.

    [14]

    Shirasawa K, Bertioli DJ, Varshney RK, Moretzsohn MC, Leal-Bertioli SCM, et al. Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes[J]. DNA Res, 2013, 20(2):173-184.

    [15]

    Mondal S, Hande P, Badigannavar AM. Identification of transposable element markers for a rust (Puccinia arachidis Speg.) resistance gene in cultivated peanut[J]. J Phytopathol, 2014, 162(7-8):548-552.

    [16]

    Hake AA, Shirasawa K, Yadawad A, Sukruth M, Patil M, et al. Mapping of important taxonomic and productivity traits using genic and non-genic transposable element markers in peanut (Arachis hypogaea L.)[J]. PLoS One, 2017, 12(10):e0186113.

    [17]

    Gayathri M, Shirasawa K, Varshney RK, Pandey MK, Bhat RS. Development of AhMITE1 markers through genome-wide analysis in peanut (Arachis hypogaea L.)[J]. BMC Res Notes, 2018, 11:10.

    [18] 王洁, 李双铃, 王辉, 石延茂, 任艳, 等. 利用AhMITE1转座子分子标记鉴定花生F1代杂种[J]. 花生学报, 2012, 41(2):8-12.

    Wang J, Li SL, Wang H, Shi YM, Ren Y, et al. Identification of peanut F1 hybrid using AhMITE1 transposable element marker[J]. Journal of Peanut Science, 2012, 41(2):8-12.

    [19] 王辉, 李双铃, 任艳, 许梦琦, 石延茂, 等. 利用AhMITE转座子分子标记研究花生栽培种及高世代材料的亲缘关系[J]. 农业生物技术学报, 2013, 21(10):1176-1184.

    Wang H, Li SL, Ren Y, Xu MQ, Shi YM, et al. Genetic relationship of peanut (Arachis hypogaea L.) varieties and advanced generation lines evaluated by AhMITE transposable markers[J]. Journal of Agricultural Biotechnology, 2013, 21(10):1176-1184.

    [20] 尹亮, 任艳, 石延茂, 李双铃, 王辉, 袁美. 利用AhMITE1转座子分子标记鉴定栽培花生杂交F1代种子真伪[J]. 山东农业科学, 2015, 47(12):1-5.

    Yin L, Ren Y, Shi YM, Li SL, Wang H, Yuan M. Identification of true F1 hybrid seeds using AhMITE1 markers in cultivated peanut[J]. Shandong Agricultural Sciences, 2015, 47(12):1-5.

    [21] 许梦琦, 李双铃, 任艳, 石延茂, 王辉, 等. 花生作图亲本间分子标记的多态性分析[J]. 湖北农业科学, 2015, 54(11):2763-2766.

    Xu MQ, Li SL, Ren Y, Shi YM, Wang H, et al. Polymorphic analysis of molecular markers between mapping parents in peanut[J]. Hubei Agricultural Sciences, 2015, 54(11):2763-2766.

    [22] 吴琪, 曹广英, 尹亮, 唐月异, 王秀贞, 等. 利用AhMITE转座子分子标记鉴定花生杂交F1 代真假杂种[J]. 花生学报, 2017, 46(3):48-53.

    Wu Q, Cao GY, Yin L, Tang YY, Wang XZ, et al. Identification of peanut hybrid F1 with AhMITE markers[J]. Journal of Peanut Science, 46(3):48-53.

    [23] 刘婷, 王传堂, 唐月异, 王志伟, 孙全喜, 等. 利用近红外技术和转座子标记鉴定花生杂交F1 真杂种[J]. 分子植物育种, 2017, 15(9):3592-3598.

    Liu T, Wang CT, Tang YY, Wang ZW, Sun QX, et al. Identification of true F1 hybrids in peanut with near infrared spectroscopy and transposon markers[J]. Molecular Plant Breeding, 2017, 15(9):3592-3598.

    [24]

    Nielen S, Campos-Fonseca F, Leal-Bertioli S, Guimaraes P, Seijo G, et al. FIDEL-a retrovirus-like retrotransposon and its distinct evolutionary histories in the A-and B-genome components of cultivated peanut[J]. Chromosome Res, 2010, 18(2):227-246.

    [25]

    Nielen S, Vidigal BS, Leal-Bertioli SCM, Ratnaparkhe M, Paterson AH, et al. Matita, a new retroelement from peanut:characterization and evolutionary context in the light of the Arachis A-B genome divergence[J]. Mol Genet and Genomics, 2012, 287(1):21-38.

    [26] 熊发前, 刘俊仙, 贺梁琼, 韩柱强, 黄志鹏, 等. 花生LTR和MITE转座子及其分子标记开发利用研究进展[J]. 分子植物育种, 2017, 15(2):640-647.

    Xiong FQ, Liu JX, He LQ, Han ZQ, Huang ZP, et al. Recent advances on the development and utilization of molecular markers based on LTR retrotransposons and MITE transposons from peanut (Arachis hypogaea L.)[J]. Molecular Plant Breeding, 2017, 15(2):640-647.

    [27] 熊发前, 刘俊仙, 刘菁, 贺梁琼, 蒋菁, 等. 花生DNA的五种改良CTAB提取方法的比较分析及其应用[J]. 分子植物育种, 2019, 17(7):2207-2216.

    Xiong FQ, Liu JX, Liu J, He LQ, Jiang J, et al. Comparative analysis and application of five improved CTAB extraction methods for peanut DNA[J]. Molecular Plant Breeding, 2019, 17(7):2207-2216.

    [28]

    Kumekawa N, Ohtsubo E, Ohtsubo H. Identification and phylogenetic analysis of gypsy-type retrotransposons in the plant kingdom[J]. Genes Genet Syst, 1999, 74(6):299-307.

    [29] 阳太亿, 刘俊仙, 刘菁, 蒋菁, 韩柱强, 等. 四倍体野生种花生Ty1-copia类逆转座子逆转录酶基因的克隆与分析[J]. 山东农业科学, 2019, 51(9):9-20.

    Yang TY, Liu JX, Liu J, Jiang J, Han ZQ, et al. Cloning and analysis of reverse transcriptase of Ty1-copia-like retrotransposons in Arachis monticola[J]. Shandong Agricultural Sciences, 51(9):9-20.

    [30] 郭晓芳, 贾举庆, 张晓军, 张春来, 张美俊, 等. 裸燕麦Ty1copia类反转录转座子反转录酶序列的分离、鉴定与分析[J]. 植物科学学报, 2018, 36(5):721-728.

    Guo XF, Jia JQ, Zhang XJ, Zhang CL, Zhang MJ, et al. Isolation, identification and characterization of reverse transcriptase sequence from Ty1-copia retrotransposon in Avena nuda[J]. Plant Science Journal, 2018, 36(5):721-728.

    [31] 张文波, 陈凌, 李雪辉, 白玉娥, 林晓飞. 兴安落叶松Ty3gypsy类逆转座子逆转录酶的多样性分析[J]. 分子植物育种, 2016, 14(5):1098-1106.

    Zhang WB, Chen L, Li XH, Bai YE, Lin XF. Sequence diversity analysis of reverse transcriptases of Ty3-gypsy-like retrotransposons in Larix gmelinii[J]. Molecular Plant Breeding, 2016, 14(5):1098-1106.

    [32]

    Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, et al. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut[J]. Nat Genet, 2016, 48(4):438-446.

    [33]

    Lu Q, Li HF, Hong YB, Zhang GQ, Wen SJ, et al. Genome sequencing and analysis of the peanut B-genome progenitor (Arachis ipaensis)[J]. Front Plant Sci, 2018, 9:604.

    [34]

    Voytas DF, Cummings MP, Konieczny A, Ausubel FM, Rodermel SR. Copia-like retrotransposons are ubiquitous among plants[J]. Proc Natl Acad Sci USA, 1992, 89(15):7124-7128.

计量
  • 文章访问数:  321
  • HTML全文浏览量:  2
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-20
  • 修回日期:  2021-09-14
  • 网络出版日期:  2022-10-31
  • 发布日期:  2022-02-27

目录

    /

    返回文章
    返回