高级检索+

甘蓝型油菜花蕾发育的比较蛋白质组学研究

吕恬, 岳伟莹, 蔡萌萌, 常江, 何冬丽

吕恬,岳伟莹,蔡萌萌,常江,何冬丽. 甘蓝型油菜花蕾发育的比较蛋白质组学研究[J]. 植物科学学报,2024,42(2):201−210. DOI: 10.11913/PSJ.2095-0837.23153
引用本文: 吕恬,岳伟莹,蔡萌萌,常江,何冬丽. 甘蓝型油菜花蕾发育的比较蛋白质组学研究[J]. 植物科学学报,2024,42(2):201−210. DOI: 10.11913/PSJ.2095-0837.23153
Lü T,Yue WY,Cai MM,Chang J,He DL. Comparative proteomics analysis of developing buds in Brassica napus L.[J]. Plant Science Journal,2024,42(2):201−210. DOI: 10.11913/PSJ.2095-0837.23153
Citation: Lü T,Yue WY,Cai MM,Chang J,He DL. Comparative proteomics analysis of developing buds in Brassica napus L.[J]. Plant Science Journal,2024,42(2):201−210. DOI: 10.11913/PSJ.2095-0837.23153
吕恬,岳伟莹,蔡萌萌,常江,何冬丽. 甘蓝型油菜花蕾发育的比较蛋白质组学研究[J]. 植物科学学报,2024,42(2):201−210. CSTR: 32231.14.PSJ.2095-0837.23153
引用本文: 吕恬,岳伟莹,蔡萌萌,常江,何冬丽. 甘蓝型油菜花蕾发育的比较蛋白质组学研究[J]. 植物科学学报,2024,42(2):201−210. CSTR: 32231.14.PSJ.2095-0837.23153
Lü T,Yue WY,Cai MM,Chang J,He DL. Comparative proteomics analysis of developing buds in Brassica napus L.[J]. Plant Science Journal,2024,42(2):201−210. CSTR: 32231.14.PSJ.2095-0837.23153
Citation: Lü T,Yue WY,Cai MM,Chang J,He DL. Comparative proteomics analysis of developing buds in Brassica napus L.[J]. Plant Science Journal,2024,42(2):201−210. CSTR: 32231.14.PSJ.2095-0837.23153

甘蓝型油菜花蕾发育的比较蛋白质组学研究

详细信息
    作者简介:

    吕恬(2002−),女,本科生,研究方向为作物遗传学(E-mail:15357051561@163.com

    岳伟莹(2003−),女,本科生,研究方向为作物遗传学(E-mail:15935961154@163.com

    通讯作者:

    何冬丽: E-mail:hedongli@hubu.edu.cn

    #共同第一作者。

  • 中图分类号: Q943.2

Comparative proteomics analysis of developing buds in Brassica napus L.

  • 摘要:

    甘蓝型油菜(Brassica napus L.)是我国目前的主栽油菜类型,其花蕾发育包含一系列复杂的代谢和调控过程,尤其是小孢子成熟前的早期发育过程对油菜育性影响较大。本研究首先通过组织形态学观察,确定甘蓝型油菜花蕾大小在1~3 mm时期,对应于雄蕊发育的5~9期。利用高通量的HPLC-MS/MS质谱测序技术,对该发育时段的花蕾进行蛋白质组学分析,共鉴定到13 444 个蛋白,比较各时期鉴定到的蛋白筛选出613 个差异表达蛋白。对差异蛋白的功能进行分析,发现细胞壁建成、脂质代谢、细胞转运相关蛋白大量上调,这将有利于花蕾发育过程中的细胞建成和花粉发育;核酸相关蛋白表达与含量变化迅速,这与该时段细胞的急剧分裂与生长的代谢过程一致;而ABCDE发育模型相关蛋白的表达未发生显著变化,可能具有除诱导花蕾分化外的其他功能。研究结果说明油菜花蕾发育早期细胞代谢旺盛,大量代谢相关蛋白发生了显著变化,这将为进一步分析花蕾发育过程中的代谢及调控过程提供基础。

    Abstract:

    Brassica napus L., the predominant variant of rapeseed cultivated in China, undergoes a series of complex metabolic and regulatory processes during flower bud development, especially the early developmental stages preceding microspore maturation, which significantly impacts fertility. Based on phenotypic and histological observations, flower bud sizes ranging from 1 mm to 3 mm in B. napus were found to correspond to the 5th–9th stages of angiosperm stamen development. Using high-throughput high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) sequencing technology, proteomics analysis was conducted on these flower buds. In total, 13 444 proteins were identified, including 613 differentially expressed proteins (DEPs). Functional analysis of the DEPs revealed a significant up-regulation in cell wall building, lipid metabolism, and cell transport-related proteins, crucial for cell development and pollen formation during the early stage of flower bud development. The expression of nucleic acid-related proteins markedly changed, consistent with rapid cell division and growth during this period. However, no significant changes were found in the expression of proteins related to the ABCDE development model, suggesting these proteins may have other functions beyond inducing flower bud differentiation. This study systematically studied the differences in tissue morphology and protein expression during the early stages of bud development in B. napus, paving the way for further research on the metabolism and regulation of flower bud development.

  • 1 如需查阅附表内容请登录《植物科学学报》网站(http://www.plantscience.cn)查看本期文章。
  • 图  1   甘蓝型油菜597花蕾发育形态观察

    A:成熟花蕾的各组织;B:不同发育阶段的花蕾;C:不同发育阶段的花粉粒醋酸洋红染色检测。a~e:分别来自1~5 mm大小花蕾的花粉粒。

    Figure  1.   Morphology of rapeseed line 597

    A: Tissues of mature flower buds; B: Buds at different developmental stages; C: Acetic acid magenta staining of pollen grains at different developmental stages. a–e: Pollen grains from 1–5 mm buds, respectively.

    图  2   油菜597不同发育阶段花蕾组织切片图

    E:外表皮;En: 内表皮;T:绒毡层;Ms:花粉母细胞。

    Figure  2.   Histogram of flower buds of rapeseed line 597 at different developmental stages

    E: Epidermis; En: Endothecium; T: Tapetum; Ms: Microsporocytes.

    图  3   不同发育时期597花蕾的蛋白质组学分析

    A:597花蕾不同发育阶段各3次技术重复鉴定到的蛋白数量;B:鉴定蛋白的韦恩图分析;C:597花蕾不同发育阶段各3次技术重复鉴定到的蛋白主成分分析,X轴差异度为56.25%,Y轴差异度为20.86%;D:不同发育时期花蕾蛋白的差异数量分布。

    Figure  3.   Proteomics analysis of 597 buds at different developmental stages

    A: Number of proteins identified in 597 buds with three technical replicates; B: Venn analysis of identified proteins; C: Principal component analysis of identified proteins; the Y and X axises present 56.25% and 20.86% difference, respectively; D: Distribution of DEPs at different developmental stages.

    图  4   油菜597不同大小花蕾的蛋白质组分析

    A:差异蛋白的表达热图和HCL聚类分析;B:差异蛋白的K-mean分类,共分为4类(C1~C4);C:差异蛋白的MapMan功能注释,上:每个MapMan功能分类中差异蛋白的数量,下:每个MapMan功能分类中的差异蛋白占C1~C4各类蛋白的比例。

    Figure  4.   Proteomics analysis of developing flower buds in rapeseed line 597

    A: Heatmap and HCL clustering of all DEPs; B: K-mean clusters of all DEPs; C: MapMan annotation of all DEPs in four clusters, Up: number of DEPs in each cluster, Down: percentage of DEPs in each cluster.

  • [1] 殷艳,尹亮,张学昆,郭静利,王积军. 我国油菜产业高质量发展现状和对策[J]. 中国农业科技导报,2021,23(8):1−7.

    Yin Y,Yin L,Zhang XK,Guo JL,Wang JJ. Status and countermeasure of the high-quality development of rapeseed industry in China[J]. Journal of Agricultural Science and Technology,2021,23(8):1−7.

    [2]

    Sanders PM,Bui AQ,Weterings K,McIntire KN,Hsu YC,et al. Anther developmental defects in Arabidopsis thaliana male-sterile mutants[J]. Sex. Plant Reprod,1999,11:297−322. doi: 10.1007/s004970050158

    [3] 姚楠. 植物脂质生物学进展[J]. 植物生理学报,2018,54(12):1747.

    Yao N. Advances in plant lipid biology[J]. Plant Physiology Journal,2018,54(12):1747.

    [4]

    Weigel D,Meyerowitz EM. The ABCs of floral homeotic genes[J]. Cell,1994,78(2):203−209. doi: 10.1016/0092-8674(94)90291-7

    [5]

    Theissen G,Becker A,Di Rosa A,Kanno A,Kim JT,et al. A short history of MADS-box genes in plants[J]. Plant Mol Biol,2000,42(1):115−149. doi: 10.1023/A:1006332105728

    [6]

    Hill TA,Day CD,Zondlo SC,Thackeray AG,Irish VF. Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3[J]. Development,1998,125(9):1711−1721. doi: 10.1242/dev.125.9.1711

    [7]

    Ng M,Yanofsky MF. Activation of the Arabidopsis B class homeotic genes by APETALA1[J]. Plant Cell,2001,13(4):739−753.

    [8]

    Savidge B,Rounsley SD,Yanofsky MF. Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes[J]. Plant Cell,1995,7(6):721−733.

    [9]

    Liu C,Xi WY,Shen LS,Tan CP,Yu H. Regulation of floral patterning by flowering time genes[J]. Dev Cell,2009,16(5):711−722. doi: 10.1016/j.devcel.2009.03.011

    [10]

    Theißen G. Genetics of identity[J]. Nature,2001,414(6863):491. doi: 10.1038/35107163

    [11]

    Theißen G,Saedler H. Plant biology. Floral quartets[J]. Nature,2001,409(6819):469−471. doi: 10.1038/35054172

    [12]

    Becker A,Theißen G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants[J]. Mol Phylogenet Evol,2003,29(3):464−489. doi: 10.1016/S1055-7903(03)00207-0

    [13]

    Jack T. Molecular and genetic mechanisms of floral control[J]. Plant Cell,2004,16:S1−S17. doi: 10.1105/tpc.017038

    [14]

    Pelaz S,Gustafson-Brown C,Kohalmi SE,Crosby WL,Yanofsky MF. APETALA1 and SEPALLATA3 interact to promote flower development[J]. Plant J,2001,26(4):385−394. doi: 10.1046/j.1365-313X.2001.2641042.x

    [15]

    Fan HY,Hu Y,Tudor M,Ma H. Specific interactions between the K domains of AG and AGLs,members of the MADS domain family of DNA binding proteins[J]. Plant J,1997,12(5):999−1010. doi: 10.1046/j.1365-313X.1997.12050999.x

    [16]

    Zhu W,Xu XB,Tian JK,Zhang L,Komatsu S. Proteomic analysis of Lonicera japonica Thunb. immature flower buds using combinatorial peptide ligand libraries and polyethylene glycol fractionation[J]. J Proteome Res,2016,15(1):166−181. doi: 10.1021/acs.jproteome.5b00910

    [17]

    Lu DH,Ni WM,Stanley BA,Ma H. Proteomics and transcriptomics analyses of Arabidopsis floral buds uncover important functions of ARABIDOPSIS SKP1-LIKE1[J]. BMC Plant Biol,2016,16:61. doi: 10.1186/s12870-015-0571-9

    [18]

    Heng SP,Chen FY,Wei C,et al. Cytological and iTRAQ-based quantitative proteomic analyses of hau CMS in Brassica napus L.[J]. J Proteomics,2019,193:230−238. doi: 10.1016/j.jprot.2018.10.014

    [19] 崔以璨. 长距彗星兰花蜜距石蜡切片的制备和显微结构的观察[J]. 安徽冶金科技职业学院学报,2022,32(4):45−47. doi: 10.3969/j.issn.1672-9994.2022.04.017

    Cui YC. Preparation of paraffin section and observation of microstructure of nectar spur in Darwin orchid[J]. Journal of Anhui Vocational College of Metallurgy and Technology,2022,32(4):45−47. doi: 10.3969/j.issn.1672-9994.2022.04.017

    [20]

    Oogawara R,Satoh S,Yoshioka T,Ishizawa K. Expression of α-expansin and xyloglucan endotransglucosylase/hydrolase genes associated with shoot elongation enhanced by anoxia,ethylene and carbon dioxide in arrowhead (Sagittaria pygmaea Miq.) tubers[J]. Ann Bot,2005,96(4):693−702. doi: 10.1093/aob/mci221

    [21]

    Yokoyama R,Nishitani K. A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis[J]. Plant Cell Physiol,2001,42(10):1025−1033. doi: 10.1093/pcp/pce154

    [22]

    Philippe F,Pelloux J,Rayon C. Plant pectin acetylesterase structure and function:new insights from bioinformatic analysis[J]. BMC Genomics,2017,18(1):456. doi: 10.1186/s12864-017-3833-0

    [23] 魏铭,王鑫伟,陈博,宋程威,杜亮,等. 植物紫色酸性磷酸酶基因家族功能研究进展[J]. 植物学报,2019,54(1):93−101. doi: 10.11983/CBB18044

    Wei M,Wang XW,Chen B,Song CW,Du L,et al. Research progress into the function of purple acid phosphatase gene family in plants[J]. Chinese Bulletin of Botany,2019,54(1):93−101. doi: 10.11983/CBB18044

    [24]

    Del Vecchio HA,Ying S,Park J,Knowles VL,Kanno S,et al. The cell wall-targeted purple acid phosphatase AtPAP25 is critical for acclimation of Arabidopsis thaliana to nutritional phosphorus deprivation[J]. Plant J,2014,80(4):569−581. doi: 10.1111/tpj.12663

    [25]

    Herger A,Dünser K,Kleine-Vehn J,Ringli C. Leucine-rich repeat extensin proteins and their role in cell wall sensing[J]. Curr Biol,2019,29(17):R851−R858. doi: 10.1016/j.cub.2019.07.039

    [26]

    Wan XY,Wu SW,Li ZW,An XL,Tian YH. Lipid metabolism:critical roles in male fertility and other aspects of reproductive development in plants[J]. Mol Plant,2020,13(7):955−983. doi: 10.1016/j.molp.2020.05.009

    [27]

    Zhao J,Wang SS,Qin JJ,Sun CQ,Liu FX. The lipid transfer protein OsLTPL159 is involved in cold tolerance at the early seedling stage in rice[J]. Plant Biotechnol J,2020,18(3):756−769. doi: 10.1111/pbi.13243

    [28]

    Freytes SN, Canelo M, Cerdán PD. Regulation of flowering time: when and where?[J] Curr Opin Plant Biol, 2021, 63: 102049.

    [29]

    Wu J,Wu QH,Bo ZJ,Zhu XL,Zhang JH,et al. Comprehensive effects of Flowering locus T-mediated stem growth in tobacco[J]. Front Plant Sci,2022,13:922919. doi: 10.3389/fpls.2022.922919

    [30]

    Updegraff EP,Zhao F,Preuss D. The extracellular lipase EXL4 is required for efficient hydration of Arabidopsis pollen[J]. Sex Plant Reprod,2009,22(3):197−204. doi: 10.1007/s00497-009-0104-5

    [31] 申慧敏,史俐莎,田清尹,刘家伟,王良桂,岳远征. ABC转运蛋白在植物花器官生长发育中的研究进展[J]. 西北植物学报,2021,41(11):1975−1982. doi: 10.7606/j.issn.1000-4025.2021.11.1975

    Shen HM,Shi LS,Tian QY,Liu JW,Wang LG,Yue YZ. Recent progress of ABC transporters in floral organ development of plants[J]. Acta Botanica Boreali-Occidentalia Sinica,2021,41(11):1975−1982. doi: 10.7606/j.issn.1000-4025.2021.11.1975

    [32]

    Cai Q,Qiao LL,Wang M,He BY,Lin FM,et al. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes[J]. Science,2018,360(6393):1126−1129. doi: 10.1126/science.aar4142

图(4)
计量
  • 文章访问数:  348
  • HTML全文浏览量:  26
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-24
  • 录用日期:  2023-06-28
  • 网络出版日期:  2023-07-09
  • 刊出日期:  2024-04-29

目录

    /

    返回文章
    返回