高级检索+

天山野果林准噶尔山楂叶片功能性状及解剖结构对海拔的响应

贾贤德, 吕海英, 巫利梅, 杨伊楠, 黄仁豪, 王昊, 牛鑫

贾贤德,吕海英,巫利梅,杨伊楠,黄仁豪,王昊,牛鑫. 天山野果林准噶尔山楂叶片功能性状及解剖结构对海拔的响应[J]. 植物科学学报,2024,42(2):150−159. DOI: 10.11913/PSJ.2095-0837.23157
引用本文: 贾贤德,吕海英,巫利梅,杨伊楠,黄仁豪,王昊,牛鑫. 天山野果林准噶尔山楂叶片功能性状及解剖结构对海拔的响应[J]. 植物科学学报,2024,42(2):150−159. DOI: 10.11913/PSJ.2095-0837.23157
Jia XD,Lü HY,Wu LM,Yang YN,Huang RH,Wang H,Niu X. Response of leaf functional traits and anatomical structure to altitude in Crataegus songarica K. Koch in Tianshan wild fruit forest[J]. Plant Science Journal,2024,42(2):150−159. DOI: 10.11913/PSJ.2095-0837.23157
Citation: Jia XD,Lü HY,Wu LM,Yang YN,Huang RH,Wang H,Niu X. Response of leaf functional traits and anatomical structure to altitude in Crataegus songarica K. Koch in Tianshan wild fruit forest[J]. Plant Science Journal,2024,42(2):150−159. DOI: 10.11913/PSJ.2095-0837.23157
贾贤德,吕海英,巫利梅,杨伊楠,黄仁豪,王昊,牛鑫. 天山野果林准噶尔山楂叶片功能性状及解剖结构对海拔的响应[J]. 植物科学学报,2024,42(2):150−159. CSTR: 32231.14.PSJ.2095-0837.23157
引用本文: 贾贤德,吕海英,巫利梅,杨伊楠,黄仁豪,王昊,牛鑫. 天山野果林准噶尔山楂叶片功能性状及解剖结构对海拔的响应[J]. 植物科学学报,2024,42(2):150−159. CSTR: 32231.14.PSJ.2095-0837.23157
Jia XD,Lü HY,Wu LM,Yang YN,Huang RH,Wang H,Niu X. Response of leaf functional traits and anatomical structure to altitude in Crataegus songarica K. Koch in Tianshan wild fruit forest[J]. Plant Science Journal,2024,42(2):150−159. CSTR: 32231.14.PSJ.2095-0837.23157
Citation: Jia XD,Lü HY,Wu LM,Yang YN,Huang RH,Wang H,Niu X. Response of leaf functional traits and anatomical structure to altitude in Crataegus songarica K. Koch in Tianshan wild fruit forest[J]. Plant Science Journal,2024,42(2):150−159. CSTR: 32231.14.PSJ.2095-0837.23157

天山野果林准噶尔山楂叶片功能性状及解剖结构对海拔的响应

基金项目: 国家自然科学基金项目(32160090,31200300)。
详细信息
    作者简介:

    贾贤德(1998−),男,硕士研究生,研究方向为植物逆境生理生态(E-mail:1562180042@qq.com

    通讯作者:

    吕海英: E-mail:lvhyxj@163.com

  • 中图分类号: Q948.118

Response of leaf functional traits and anatomical structure to altitude in Crataegus songarica K. Koch in Tianshan wild fruit forest

  • 摘要:

    为揭示准噶尔山楂(Crataegus songarica K. Koch)对海拔高度变化的响应,以新疆伊犁果子沟不同海拔(1100~1700 m)的准噶尔山楂作为研究对象,分析其叶片功能性状及解剖结构差异。结果显示:(1)随着海拔的升高,准噶尔山楂的叶长、叶宽、叶面积、比叶面积、叶绿素含量呈降低趋势,叶长宽比、比叶重、叶干物质含量呈上升趋势,比叶重可塑性最强。(2)随着海拔升高,叶厚、栅栏组织厚度、上下表皮厚度呈上升趋势;主脉厚度、突起度呈下降趋势,主脉突起度可塑性最强。(3)叶面积与叶长、叶长宽比、比叶面积呈正相关;叶厚与上下表皮厚度、主脉突起度等呈正相关。研究结果表明,准噶尔山楂在高海拔区域主要通过增加叶厚和叶干物质含量以提高抗逆性,减少叶面积、叶绿素含量来降低高光强对叶片的伤害;在低海拔区域主要通过增加叶面积、叶绿素含量来促进有机物的积累。

    Abstract:

    This study investigated the adaptive responses of Crataegus songarica K. Koch to varying altitudes (1 100-1 700 m) in Guozigou, Yili, Xinjiang, China, focusing on leaf functional traits and anatomical structure. Results showed that: (1) An increase in altitude led to a reduction in leaf length, leaf width, leaf area, specific leaf area, and chlorophyll content, but an increase in the leaf length to width ratio, specific leaf weight, and leaf dry matter content, with specific leaf weight showing the strongest plasticity. (2) Higher altitudes were associated with increasing leaf thickness, palisade tissue thickness, and upper and lower epidermis thickness, but decreasing central vein thickness and protrusion, with central vein protrusion showing the strongest plasticity. (3) Leaf area was positively correlated with leaf length, length-width ratio, and specific leaf area, while leaf thickness was positively correlated with upper and lower epidermis thickness and central vein protrusion. Overall, our findings indicated that Crataegus songarica adapts to high-altitude conditions by enhancing leaf thickness and dry matter content for better stress tolerance and by diminishing leaf area and chlorophyll content to mitigate leaf damage from intense sunlight. Conversely, at lower altitudes, the plant increases leaf area and chlorophyll content to facilitate organic matter accumulation.

  • 图  1   准噶尔山楂叶片功能性状间相关性分析

    Figure  1.   Correlation analysis of leaf functional traits in Crataegus songarica

    *:P<0.05;**:P<0.01. Same below.

    图  2   准噶尔山楂叶片解剖结构随海拔梯度的变化趋势

    不同字母表示不同海拔各参数差异显著(P<0.05)。

    Figure  2.   Variations in leaf anatomical structures in Crataegus songarica with altitude

    Different letters indicate significant differences in parameters at different altitudes (P<0.05).

    图  3   准噶尔山楂叶片解剖结构相关性分析

    Figure  3.   Correlation analysis of leaf anatomical structures in Crataegus songarica

    表  1   样地基本信息

    Table  1   Basic information of sample plots

    样地号
    Sampling site
    海拔
    Altitude / m
    纬度
    Latitude / N
    经度
    Longitude / E
    坡度
    Slope / °
    11 15644°22′20.19″80°57′43.15″13.89
    21 18044°22′20.08″80°57′40.26″16.13
    31 19544°22′20.23″80°57′41.51″17.98
    41 20944°22′20.22″80°57′44.35″18.85
    51 23644°22′20.08″80°57′44.25″19.56
    61 27444°22′20.94″80°57′45.13″20.23
    71 31244°22′20.57″80°57′49.05″20.63
    81 35844°22′21.26″80°57′50.12″21.05
    91 37644°22′21.27″80°57′51.26″22.47
    101 41044°22′22.28″80°57′52.41″23.50
    111 43044°22′26.43″80°58′15.16″24.65
    121 48344°22′23.30″80°57′54.02″24.78
    131 51044°22′22.31″80°57′55.33″25.01
    141 53844°22′23.32″80°57′56.21″25.58
    151 58044°22′21.29″80°57′59.58″27.83
    161 61244°22′22.80″80°57′43.92″29.92
    171 62344°22′23.59″80°57′45.83″30.97
    181 63044°23′13.15″80°57′37.41″31.65
    下载: 导出CSV

    表  2   不同海拔叶片功能性状变化特征

    Table  2   Changes of leaf functional traits at different altitudes

    海拔
    A / m
    叶长
    LL / cm
    叶宽
    LW / cm
    叶长宽比
    LL/LW
    叶面积
    LA / cm2
    比叶面积
    SLA / cm2/g
    比叶重
    SLW / mg/cm2
    叶干物质含量
    LDMC / g/g
    叶绿素含量
    SPAD
    1 100~1 2005.92±0.15a5.73±0.16a1.00±0.04c17.56±0.97a170.58±10.22a6.03±0.47c0.37±0.03c42.01±1.51a
    1 200~1 3005.77±0.16ab5.57±0.12a1.02±0.04bc16.19±0.81ab140.34±8.75b6.08±0.43c0.46±0.03bc40.34±0.87a
    1 300~1 4005.68±0.13ab5.38±0.17ab1.10±0.05abc14.56±0.84bc130.82±7.88bc6.75±0.38c0.49±0.04ab39.73±0.81a
    1 400~1 5005.59±0.18ab5.38±0.21ab1.14±0.04ab13.77±0.61c118.24±10.37bcd7.57±1.23c0.49±0.03ab39.28±1.33a
    1 500~1 6005.42±0.19ab4.98±0.17bc1.16±0.05a13.25±0.90c113.81±7.68cd11.12±1.08b0.50±0.05ab38.93±1.15a
    1 600~1 7005.39±0.18b4.61±0.12c1.18±0.04a7.88±0.59d96.10±6.81d14.17±0.69a0.58±0.03a34.89±0.89b
    注:数据显示为平均值±标准误,同列不同字母表示不同海拔各参数差异显著(P<0.05)。
    Notes: Data is shown as Mean±Standard error, and different letters in the same column indicate significant differences in parameters at different altitudes (P<0.05).
    下载: 导出CSV

    表  3   准噶尔山楂叶片解剖结构可塑性指数

    Table  3   Plasticity index of leaf anatomical structures in Crataegus songarica

    指标 Index可塑性指数 PI指标 Index可塑性指数 PI
    栅栏组织厚度0.26角质层厚度0.45
    海绵组织厚度0.28叶片组织结构紧密度0.29
    主脉厚度0.40叶片组织结构疏松度0.30
    叶片厚度0.27栅海比0.33
    上表皮厚度0.33主脉突起度0.49
    下表皮厚度0.38  
    下载: 导出CSV
  • [1]

    Ma M,Zhao CZ,Kang MP,Li XY,Zhang ZW,Bai XQ. Periploca sepium leaf dry weight,area,and thickness scale differently under different light environments in Taohe riparian forests[J]. Flora,2023,301:152255. doi: 10.1016/j.flora.2023.152255

    [2]

    Xu R,Cheng SD,Zhou J,Tigabu M,Ma XQ,Li M. Intraspecific variations in leaf functional traits of Cunninghamia lanceolata provenances[J]. BMC Plant Biol,2023,23(1):92. doi: 10.1186/s12870-023-04097-y

    [3]

    De Cárcer PS,Vitasse Y,Peñuelas J,Jassey VEJ,Buttler A,Signarbieux C. Vapor-pressure deficit and extreme climatic variables limit tree growth[J]. Glob Chang Biol,2018,24(3):1108−1122. doi: 10.1111/gcb.13973

    [4] 黄伟佳,刘春,刘岳,黄斌,李定强,袁再健. 南岭山地不同海拔土壤生态化学计量特征及影响因素[J]. 生态环境学报,2023,32(1):80−89.

    Huang WJ,Liu C,Liu Y,Huang B,Li DQ,Yuan ZJ. Soil ecological stoichiometry and its influencing factors at different elevations in Nanling Mountains[J]. Ecology and Environmental Sciences,2023,32(1):80−89.

    [5] 仲小茹,张露,潘昕昊,叶雄英,黄献峰,等. 常绿阔叶林米槠叶片功能性状对不同海拔梯度的响应与适应[J]. 江西农业大学学报,2022,44(6):1438−1447.

    Zhong XR,Zhang L,Pan XH,Ye XY,Huang XF,et al. Response and adaptation of leaf functional traits to different altitudes in evergreen broad-leaved forest of Castanopsis carlesii[J]. Acta Agriculturae Universitatis Jiangxiensis,2022,44(6):1438−1447.

    [6]

    Chai YF,Zhang XF,Yue M,Liu X,Li Q,et al. Leaf traits suggest different ecological strategies for two Quercus species along an altitudinal gradient in the Qinling Mountains[J]. J For Res,2015,20(6):501−513. doi: 10.1007/s10310-015-0496-z

    [7] 陈艳艳,黄轩,黄晓霞,程小毛. 贡嘎山不同海拔峨眉冷杉叶片生态解剖结构特性研究[J]. 西南林业大学学报,2020,40(6):160−165.

    Chen YY,Huang X,Huang XX,Cheng XM. An eco-anatomical study on Abies fabri leaves at gradient elevation in Gongga mountain[J]. Journal of Southwest Forestry University,2020,40(6):160−165.

    [8]

    Liu WS,Zheng L,Qi DH. Variation in leaf traits at different altitudes reflects the adaptive strategy of plants to environmental changes[J]. Ecol Evol,2020,10(15):8166−8175. doi: 10.1002/ece3.6519

    [9] 郭文文,卓么草,方江平,卢杰,权红,任毅华. 藏东南色季拉山薄毛海绵杜鹃叶解剖结构特征与环境适应性[J]. 西北植物学报,2020,40(5):811−818.

    Guo WW,Zhuo MC,Fang JP,Lu J,Quan H,Ren YH. Anatomical characteristics and environmental adaptability of Rhododendron aganniphum var. schizopeplum leaf in Sejila mountain,southeastern Tibet[J]. Acta Botanica Boreali-Occidentalia Sinica,2020,40(5):811−818.

    [10] 范贺娟,来风兵,曹家睿,陈蜀江,许超宗. 天山野果林区滑坡景观时空演变及生态风险预测[J]. 山地学报,2020,38(2):231−240.

    Fan HJ,Lai FB,Cao JR,Chen SJ,Xu CZ. Spatio-temporal evolution and ecological risk prediction of landslide landscape in the Tianshan wild fruit forest area[J]. Mountain Research,2020,38(2):231−240.

    [11] 盛芳,陈淑英,田嘉,李鹏,秦雪,等. 新疆准噶尔山楂不同居群的遗传多样性[J]. 生物多样性,2017,25(5):518−530. doi: 10.17520/biods.2016369

    Sheng F,Chen SY,Tian J,Li P,Qin X,et al. Genetic diversity of Crataegus songorica in Xinjiang[J]. Biodiversity Science,2017,25(5):518−530. doi: 10.17520/biods.2016369

    [12] 刘欢,廖康,刘娟,赵世荣,孙琪,曹倩. 新疆野生山楂资源遗传多样性及亲缘关系的ISSR分析[J]. 经济林研究,2016,34(2):19−23.

    Liu H,Liao K,Liu J,Zhao SR,Sun Q,Cao Q. Analysis of genetic diversity and genetic relationship of wild hawthorn resources in Xinjiang by ISSR markers[J]. Nonwood Forest Research,2016,34(2):19−23.

    [13] 刘影,张相锋,赵玉,甘宇平. 新疆濒危野生樱桃李的种群结构与动态[J]. 生态学杂志,2013,32(7):1762−1769.

    Liu Y,Zhang XF,Zhao Y,Gan YP. Population structure and its dynamics of wild Prunus divaricata in Xinjiang,Northwest China[J]. Chinese Journal of Ecology,2013,32(7):1762−1769.

    [14] 侯博,许正. 中国伊犁野生果树及近缘种研究[J]. 干旱区研究,2006,23(3):453−458.

    Hou B,Xu Z. Study on wild fruit trees and their kindred species in the Yili valley,China[J]. Arid Zone Research,2006,23(3):453−458.

    [15] 魏海霞,霍艳玲,周忠科,张治国. 唐古特白刺叶功能性状沿气候梯度的变异特征[J]. 生态学报,2022,42(20):8343−8351.

    Wei HX,Huo YL,Zhou ZK,Zhang ZG. Variations in leaf traits of Nitraria tangutorum along a climatic gradient[J]. Acta Ecologica Sinica,2022,42(20):8343−8351.

    [16] 孙慧兰,李卫红,杨余辉,杨玉海. 伊犁山地不同海拔土壤有机碳的分布[J]. 地理科学,2012,32(5):603−608.

    Sun HL,Li WH,Yang YH,Yang YH. Soil organic carbon changing with altitudes on the Ili mountainous region[J]. Scientia Geographica Sinica,2012,32(5):603−608.

    [17] 李明,胡霞,苗兴军,许正,赵忠. 基于SRAP标记的伊犁河谷野生杏群体遗传多样性研究[J]. 园艺学报,2016,43(10):1980−1988.

    Li M,Hu X,Miao XJ,Xu Z,Zhao Z. Genetic diversity analysis of wild apricot (Prunus armeniaca) populations in the Ili valley as revealed by SRAP markers[J]. Acta Horticulturae Sinica,2016,43(10):1980−1988.

    [18] 羊海军,崔大方,许正,林培钧. 中国天山野果林种子植物组成及资源状况分析[J]. 植物资源与环境学报,2003,12(2):39−45.

    Yang HJ,Cui DF,Xu Z,Lin PJ. Analysis on the components and resource situation of seed plants in the wild fruit forest in Tianshan Mountain in China[J]. Journal of Plant Resources and Environment,2003,12(2):39−45.

    [19] 杨蕾,吕海英,李进,马雪,艾克拜尔·依米提. 新疆天山野果林准噶尔山楂种群结构与动态分析[J]. 西北植物学报,2018,38(12):2314−2323.

    Yang L,Lü HY,Li J,Ma X,Akbar·Yimit. Structure and dynamic analysis of Crataegus songarica K. Koch population in Tianshan wild fruit forest of Xinjiang[J]. Acta Botanica Boreali-Occidentalia Sinica,2018,38(12):2314−2323.

    [20]

    Gratani L,Covone F,Larcher W. Leaf plasticity in response to light of three evergreen species of the Mediterranean maquis[J]. Trees,2006,20(5):549−558. doi: 10.1007/s00468-006-0070-6

    [21] 杨靖,钟乾娟,王崇云,何明超,张天碧,等. 云南药山黄背栎种群不同海拔空间格局分析[J]. 生态科学,2019,38(5):111−118.

    Yang J,Zhong QJ,Wang CY,He MC,Zhang TB,et al. Spatial pattern analysis of Quercus pannosa population at different altitudes in Yunnan Yaoshan[J]. Ecological Science,2019,38(5):111−118.

    [22] 肖燕,张科燕,张树斌,张教林. 羊蹄甲属藤本和树木叶片热值与建成成本的比较研究[J]. 植物科学学报,2020,38(3):428−436.

    Xiao Y,Zhang KY,Zhang SB,Zhang JL. Differences in leaf caloric values and construction costs between liana and tree species in Bauhinia[J]. Plant Science Journal,2020,38(3):428−436.

    [23] 郑梦娜,贾傲,陈之光,廣田充,唐艳鸿,等. 青藏高原矮火绒草(Leontopodium nanum)叶片性状对海拔高度变化的响应[J]. 生态学报,2022,42(24):10305−10316.

    Zheng MN,Jia A,Chen ZG,Hirota M,Tang YH,et al. Responses of leaf traits of Leontopodium nanum to altitude changes on the Qinghai-Tibetan Plateau[J]. Acta Ecologica Sinica,2022,42(24):10305−10316.

    [24] 郑大柽,秦倩倩,邱聪,刘艳红. 重度火烧1年后林下植被的物种多样性及叶功能性状[J]. 应用与环境生物学报,2022,28(6):1601−1607.

    Zheng DC,Qin QQ,Qiu C,Liu YH. Species diversity and leaf functional traits of understory vegetation one year after severe burning[J]. Chinese Journal of Applied and Environmental Biology,2022,28(6):1601−1607.

    [25]

    Momo ST,Ploton P,Martin-Ducup O,Lehnebach R,Fortunel C,et al. Leveraging signatures of plant functional strategies in wood density profiles of African trees to correct mass estimations from terrestrial laser data[J]. Sci Rep,2020,10(1):2001. doi: 10.1038/s41598-020-58733-w

    [26]

    Bonilla D,Aldana AM,Cárdenas S,Sanchez A. Functional divergence between várzea and igapó forests:a study of functional trait diversity in the Colombian Orinoco basin[J]. Forests,2020,11(11):1172. doi: 10.3390/f11111172

    [27] 高风,文仕知,韦铄星,欧汉彪,王智慧,等. 不同种源香合欢种子和叶表型性状变异分析[J]. 中南林业科技大学学报,2023,43(2):57−66.

    Gao F,Wen SZ,Wei SX,Ou HB,Wang ZH,et al. Variation analysis of seed and leaf phenotypic traits of Albizia odoratissima from different provenances[J]. Journal of Central South University of Forestry & Technology,2023,43(2):57−66.

    [28] 王姝,周道玮. 植物表型可塑性研究进展[J]. 生态学报,2017,37(24):8161−8169.

    Wang S,Zhou DW. Research on phenotypic plasticity in plants:an overview of history,current status,and development trends[J]. Acta Ecologica Sinica,2017,37(24):8161−8169.

    [29]

    Reitz O,Bogena H,Neuwirth B,Sanchez-Azofeifa A,Graf J,et al. Environmental drivers of gross primary productivity and light use efficiency of a temperate spruce forest[J]. J Geophys Res:Biogeosci,2023,128(2):e2022JG007197. doi: 10.1029/2022JG007197

    [30] 胡启鹏,郭志华,孙玲玲,王彬. 长白山林线树种岳桦幼树叶功能型性状随海拔梯度的变化[J]. 生态学报,2013,33(12):3594−3601. doi: 10.5846/stxb201205160724

    Hu QP,Guo ZH,Sun LL,Wang B. Response of leaf functional traits of Betula ermanii saplings to the altitudinal variation[J]. Acta Ecologica Sinica,2013,33(12):3594−3601. doi: 10.5846/stxb201205160724

    [31] 邵文静,张今杰,盖胜男,魏玉磊,李嘉欣,等. 低温胁迫下高粱幼苗叶片生理变化及相关基因表达分析[J]. 农业生物技术学报,2021,29(5):857−870.

    Shao WJ,Zhang JJ,Ge SN,Wei YL,Li JX,et al. Physiological changes and related genes expression analysis of sorghum (Sorghum bicolor) seedlings under low temperature stress[J]. Journal of Agricultural Biotechnology,2021,29(5):857−870.

    [32] 闫景明,周晓兵,张静,陶冶. 新疆野苹果枝条化学计量海拔变异特征研究[J]. 干旱区研究,2021,38(2):450−459.

    Yan JM,Zhou XB,Zhang J,Tao Y. Variation in one-year-old branch stoichiometry of Malus sieversii at different altitudes and the influencing factors in Tianshan Mountains,China[J]. Arid Zone Research,2021,38(2):450−459.

    [33]

    Reich PB,Hobbie SE,Lee TD. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation[J]. Nat Geosci,2014,7(12):920−924. doi: 10.1038/ngeo2284

    [34]

    Wright IJ,Reich PB,Westoby M,Ackerly DD,Baruch Z,et al. The worldwide leaf economics spectrum[J]. Nature,2004,428(6985):821−827. doi: 10.1038/nature02403

    [35]

    Ochirova SS,Dordzhieva VI,Boskhomdzhieva ED,Kolivaev BB. Anatomical structure of the leaf of Filipéndula hexapetala[J]. IOP Conf Ser:Earth Environ Sci,2021,839(5):052014. doi: 10.1088/1755-1315/839/5/052014

    [36] 王菲,程小毛,肖云龙,黄晓霞. 千家寨野生古茶树叶片解剖结构和化学组分计量特征对海拔梯度的适应[J]. 生态学杂志,2021,40(7):1958−1968.

    Wang F,Cheng XM,Xiao YL,Huang XX. Adaptation of leaf anatomical structure and stoichiometric characteristics of wild ancient tea tree to different altitudes in Qianjiazhai[J]. Chinese Journal of Ecology,2021,40(7):1958−1968.

    [37] 刘玉萍,周勇辉,吕婷,张晓宇,苏旭. 青藏高原3种野豌豆光合生理特性的比较[J]. 草地学报,2017,25(1):122−129.

    Liu YP,Zhou YH,Lü T,Zhang XY,Su X. Comparative studies of photosynthetic characteristics of three Vicia species from the Qinghai-Tibet Plateau[J]. Acta Agrestia Sinica,2017,25(1):122−129.

    [38]

    Mendes KR,Marenco RA. Stomatal opening in response to the simultaneous increase in vapor pressure deficit and temperature over a 24-h period under constant light in a tropical rainforest of the central Amazon[J]. Theor Exp Plant Physiol,2017,29(4):187−194. doi: 10.1007/s40626-017-0094-x

    [39]

    Kumari S. Effects of nitrogen levels on anatomy,growth,and chlorophyll content in sunflower (Helianthus annuus L. ) leaves[J]. J Agric Sci,2017,9(8):208−219.

    [40] 滕尧,李安定,郝自远,张洪亮,张丽敏,蔡国俊. 西番莲解剖结构特征及低温胁迫下叶片结构与抗寒性的关系[J]. 浙江农业学报,2018,30(11):1849−1858.

    Teng Y,Li AD,Hao ZY,Zhang HL,Zhang LM,Cai GJ. Anatomical structure of Passiflora caerulea L. and relationship between leaf structure and cold resistance under low temperature stress[J]. Acta Agriculturae Zhejiangensis,2018,30(11):1849−1858.

    [41]

    Kiełtyk P. Variation of vegetative and floral traits in the alpine plant Solidago minuta:evidence for local optimum along an elevational gradient[J]. Alp Bot,2018,128(1):47−57. doi: 10.1007/s00035-017-0197-7

    [42] 魏丽萍,田耀华,周会平,岩香甩,龚燕雄,原慧芳. 遮荫处理对不同品种橡胶树叶片解剖特征和生长的影响[J]. 热带作物学报,2019,40(1):45−53.

    Wei LP,Tian YH,Zhou HP,Yan XS,Gong YX,Yuan HF. The influence of shade treatment on leaf anatomical characteristics and growth of different rubber variaties[J]. Chinese Journal of Tropical Crops,2019,40(1):45−53.

    [43] 贾婷,宋武云,关新贤,魏智文,陈涵,等. 湿地松针叶功能性状及其对磷添加的响应[J]. 南京林业大学学报(自然科学版),2021,45(6):65−71.

    Jia T,Song WY,Guan XX,Wei ZW,Chen H,et al. Responses of needle functional traits of Pinus elliottii to phosphorus addition[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2021,45(6):65−71.

    [44] 刘晓娟,马克平. 植物功能性状研究进展[J]. 中国科学:生命科学,2015,45(4):325−339. doi: 10.1360/N052014-00244

    Liu XX,Ma KP. Plant functional traits:concepts,applications and future directions[J]. Scientia Sinica Vitae,2015,45(4):325−339. doi: 10.1360/N052014-00244

图(3)  /  表(3)
计量
  • 文章访问数:  342
  • HTML全文浏览量:  46
  • PDF下载量:  195
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-27
  • 录用日期:  2023-07-20
  • 网络出版日期:  2023-09-21
  • 刊出日期:  2024-04-29

目录

    /

    返回文章
    返回