Nitrogen modulates plant diseases: recent progress
-
摘要:
氮是植物生长发育所必需的重要元素。氮素在寄主-病原体互作中的作用十分复杂,受多重因素调控。本文综述了氮素与植物病害发生的关系,从寄主防御和病原体侵染角度论述了氮素影响植物病害发生的机制,比较了不同氮素形式对植物病害影响的差异,并对今后的研究方向进行了展望。
Abstract:Nitrogen is an important element necessary for plant growth and development. The role of nitrogen in host-pathogen interactions is complex and regulated by multiple factors. In this paper, the relationship between nitrogen and plant disease development is reviewed, and the molecular mechanisms are described from the perspectives of host defense and pathogen infection. The effects of different nitrogen forms on plant disease are also compared.
-
Keywords:
- Nitrogen /
- Plant disease /
- Pathogen /
- Molecular mechanism
-
无居民海岛是指我国海域范围内不用于人口居住的岛屿[1],与有人居住的岛屿数量相比,我国有许多无人居住的岛屿,这些岛屿及周边海域拥有丰富的海洋资源,具有巨大的发展潜力,对我国海洋经济发展和资源合理利用具有重要作用[2]。岛屿植被是岛屿生态系统的重要组成部分,了解岛屿的植物资源对于确定植被的恢复和建设方式具有指导意义[3]。近年来,国内对无居民海岛植被的研究日益增多,主要集中于无居民海岛植物群落的相关环境因子[4-6]、外来入侵植物[7]和海岛开发利用[8-10]等方面。然而,目前对无居民海岛植物物种组成及区系特征的相关研究报道较少。
本研究在实地调查和查阅以往文献的基础上,总结分析了福建平潭5个无居民海岛的种子植物物种组成和地理分布型类型,探索该地区种子植物区系的组成和地理分布,研究结果旨在为保护海岛特色植物群落、促进海岛生态规划和创造海岛优质生态环境提供线索。
1. 材料与方法
1.1 研究区概况
平潭为福建省管辖的综合实验区,位于福建省东部,是福建省第一大岛。平潭属亚热带季风气候,夏季主要为西南风,冬季以东北风为主[11]。本次调查选取包括光幼屿(25°34′54.48″N,119°50′4.56″E)、红山屿(25°34′41.88″N,119°50′27.96″E)、黄门岛(25°27′40.68″N,119°40′ 50.88″E)、姜山岛(25º26′30.12″N,119º48′28.30″E)、龙母屿(25°20′49.26″N,119º41′48.74″E)在内的5座无居民海岛,各岛概况见表1。
表 1 平潭5个无居民海岛基本情况Table 1. Basic information of 5 uninhabited islands in Pingtan岛屿
Island面积
Area / hm²近岸距离
Inshore distance / km周长
Perimeter / m海拔
Altitude / m周长/面积
Perimeter area ratio物种数
Species光幼屿 6.22 22.57 1 075.4 45.1 0.017 77 红山屿 3.07 23.05 1 015.0 33.2 0.033 53 黄门岛 7.18 3.89 1 417.3 24.2 0.020 114 姜山岛 40.24 1.12 4 951.2 22.4 0.012 115 龙母屿 2.88 8.14 993.3 20.8 0.034 102 1.2 调查对象及方法
本研究采用样方法和样线法相结合的技术路线,对平潭5个无居民海岛的植物资源进行详尽的全面踏勘。样方法设置的乔木群落样方面积为20 m×20 m,共22个,四角设置4个5 m×5 m的灌木样方,另外取5个1 m×1 m的草本样方,分别位于样地的四角及中部位置。样线法设置方法为按环岛样线和东西向或南北向沿岛屿中部设置样线的方式,记录样线左右10 m以内出现的植物。随时记录沿路所见植物种类,拍摄照片,对于现场无法识别的植物记录其细节特征,查阅《福建植物志》[12]进行鉴定。依据中国外来入侵物种信息系统(http://www.iplant.cn/ias)和《中国入侵植物名录》[13] 统计外来植物。采用《世界种子植物科的分布区类型》[14]划分种子植物科分布区类型,属、种的分布区类型根据《中国种子植物属的分布区类型》[15] 并结合中国植物志电子版(https://www.iplant.cn/)进行划分。
剔除外来植物后,根据以上方法划分该地种子植物科属种的分布区类型,分析其种子植物区系特征。通过热带属数/温带属数(R/T)研究其区系成分,以平潭5个无居民海岛与其他无居民海岛属的分布区类型为基础,进行聚类分析。采用Jaccard 相似性系数[16],分别计算平潭5个无居民海岛之间的属-种相似性系数,并对岛屿空间特征参数的相关性进行分析。以上数据处理均利用Excel 2016和SPSS 26软件完成。
2. 结果与分析
2.1 平潭5个无居民海岛的种子植物物种组成
调查发现,5个无居民海岛共有种子植物213种(含种下单位,下同),隶属71科179属。其中,被子植物70科178属212种;裸子植物仅1种;单子叶植物10科33属48种,分别占总科、属、种数的14.08%、18.44%和22.54%;双子叶植物61科146属165种,分别占总科、属、种数的85.92%、81.56%和77.46%(表2)。
表 2 平潭5个无居民海岛种子植物物种分类群统计Table 2. Statistics of vascular plant species taxa of 5 uninhabited islands in Pingtan分类群
Plant taxon科数(占比)
No. of families(Percentage / %)属数(占比)
No. of genera(Percentage / %)种数(占比)
No. of species(Percentage / %)裸子植物 1(1.41) 1(0.56) 1(0.47) 被子植物 70(98.59) 178(99.44) 212(99.53) 双子叶植物 61(85.92) 146(81.56) 165(77.46) 单子叶植物 10(14.08) 33(18.44) 48(22.54) 合计 71(100) 179(100) 213(100) 根据整理的种子植物名录,外来草本植物共有42种(19.72%),隶属于20科38属,如鬼针草(Bidens Pilosa L.)、飞扬草(Euphorbia hirta L.)、蟛蜞菊(Wedelia chinensis (L.) Pruski)、牵牛(Pharbitis ni (L.) Roth)和白花地胆草(Elephantopus tomentosus L.)等;原生草本植物共有171种(80.28%),隶属于65科145属。可见,平潭5个无居民海岛的种子植物以原生植物分布为主。
2.2 种子植物生活型统计与分析
植物生活型是植物对环境长期适应的表现形式,体现在外部形态、结构等方面,可反映植物与环境间的关系[17, 18],并揭示植物对环境的生态适应性[19]。由表3可知,植物生活型有乔木、灌木、藤本和草本4种类型。平潭5个无居民海岛的种子植物生活型占比大小依次是草本(59.65%)、灌木(28.07%)、藤本(8.19%)和乔木(4.09%)。草本植物种数最多,其中,多年生草本58种,包括烟豆(Glycine tabacina Benth)、中华补血草(Limonium sinense (Girard) Kuntze)和厚藤(Ipomoea pes-caprae (L.) R. Brown)等;一、二年生植物44种,分别占总种数的21.64%和4.09%,包括画眉草(Eragrostis pilosa (L.) Beauv)、马唐(Digitaria sanguinalis (L.) Scop)和爵床(Justicia procumbens L.)等。
表 3 平潭5个无居民海岛种子植物种子植物生活型统计Table 3. Statistics of life forms of seed plants of 5 uninhabited islands in Pingtan生活型
Life form种数
No. of species占总种数的百分比
Account of total species / %乔木 常绿 2 1.17 落叶 5 2.92 灌木 常绿 31 18.13 落叶 17 9.94 藤本 常绿木质藤本 5 2.92 落叶木质藤本 4 2.34 多年生草质藤本 5 2.92 草本 一年生 37 21.64 二年生 7 4.09 多年生 58 33.92 合计 171 100 2.3 种子植物区系地理成分统计与分析
2.3.1 科分布区类型
在科水平上,平潭5个无居民海岛种子植物65科的地理成分可划分为6个类型4个变型(表4)。其中,世界广布科有29个,占总科数的44.62%,包括菊科、禾本科、蔷薇科、苋科和蝶形花科等。科的地理分布中热带成分占比优势显著,热带性质突出。经统计,热带性质科共28个,占总科数(除世界广布科)的77.78%。热带性质的科主要有大戟科、夹竹桃科、锦葵科和含羞草科等。温带性质的科共8个,包括忍冬科和胡颓子科等,占总科数(除世界广布科)的22.22%。
表 4 平潭5个无居民海岛科、属、种的分布区类型统计Table 4. Distribution pattern statistics of vascular plants families, genera and species on five uninhabited islands in Pingtan分布区类型及其变型
Distribution types and variants科
Families属
Genera种
Species数量
No.占比
Percentage / %数量
No.占比
Percentage / %数量
No.占比
Percentage / %1. 世界分布 29 – 15 – 7 – 2. 泛热带分布 23 63.89 52 40.00 16 9.76 2-1. 热带亚洲-大洋洲和热带美洲分布 1 2.78 2 1.54 1 0.61 2-2. 热带亚洲、非洲和南美洲间断分布 1 2.78 4 3.08 5 3.05 2S. 以南半球为主的泛热带 1 2.78 0 0 0 0 3. 热带亚洲和热带美洲间断分布 1 2.78 4 3.08 7 4.27 4. 旧世界热带分布 1 2.78 14 10.77 6 3.66 4-1. 热带亚洲、非洲和大洋洲间断或星散分布 0 0 2 1.54 3 1.83 5. 热带亚洲至热带大洋洲分布 0 0 8 6.15 19 11.59 6. 热带亚洲至热带非洲 0 0 2 1.54 4 2.44 7. 热带亚洲(印度-马来西亚)分布 0 0 2 1.54 29 17.68 8. 北温带分布 4 11.11 14 10.78 7 4.27 8-4. 北温带和南温带(全温带)间断分布 3 8.33 3 2.31 3 1.83 9. 东亚和北美洲间断分布 0 0 6 4.62 4 2.44 10. 旧世界温带分布 0 0 4 3.08 4 2.44 10-1. 地中海区、西亚(或中亚)和东亚间断分布 0 0 3 2.31 1 0.61 10-3. 欧亚和南部非洲(有时也在大洋洲)间断分布 0 0 1 0.77 0 0 11. 温带亚洲 0 0 0 0 17 10.37 14. 东亚分布 1 2.78 7 5.38 14 8.54 14-1. 中国-喜马拉雅(SH) 0 0 0 0 3 1.83 14-2. 中国-日本(SJ) 0 0 1 0.77 9 5.49 15. 中国特有分布特有 0 0 1 0.77 12 7.32 合计 65 100 145 100 171 100 2.3.2 属分布区类型
在属水平上,平潭5个无居民海岛的种子植物共145属,其地理成分可划分为12个类型7个变型(表4)。世界广布类型的属有15个,占总属数的10.34%,包括莎草属(Cyperus)、苋属(Amaranthus)和马唐属(Digitaria)等。属的分布区类型中热带成分占主导地位,有90个,占总属数(除世界广布属)的69.24%,热带性质明显,包括大戟属(Euphorbia)、南蛇藤属(Celastrus)、紫珠属(Callicarpa)和马齿苋属(Portulaca)等。温带性质的属共40个,占总属数(除世界广布属)的30.02%,包括山麦冬属(Liriope)、胡枝子属(Lespedeza)、胡颓子属(Elaeagnus)和络石属(Trachelospermum)等。
2.3.3 种分布区类型
在种水平上,平潭5个无居民海岛共有171种种子植物(不含外来植物),其地理成分可划分为13个分布区类型7个变型(表4)。世界广布类型的种有7个,占总种数的4.09%,如莎草属(Cyperus)、苋属(Amaranthus)和堇菜属(Viola)等。种的分布区类型中热带成分占主导地位,热带性质(2~7型)的种有90个,占总种数(除世界广布种)的54.88%,热带性质明显,包括马蹄金(Dichondra micrantha Urban)、紫珠(Callicarpa bodinieri Levl)和算盘子(Glochidion puberum (L.) Hutch)等。温带性质(8~14型)的种共62个,占总种数(除世界广布种)的37.80%,有桑(Morus alba L.)、滨柃(Eurya emarginata (Thunb.) Makino)和络石(Trachelospermum jasminoides (Lindl.) Lem)等。
2.3.4 滨海特有植物
仅分布于岛屿或滨海地区且具有明显岛屿特征的植物被称为滨海特色植物[20]。由于海岛的特殊环境结构,平潭5个无居民海岛分布有较多的滨海特色植物,共14科24属24种。其中,滨海前胡(Peucedanum japonicum Thunb)、滨柃(Eurya emarginata (Thunb.) Makino)、肉叶耳草(Hedyotis coreana (DC.) Neupane & N. Wikstr)和滨海珍珠菜(Lysimachia mauritiana Lam)等植物既适应海岛的气候与土壤,又具有滨海特色与观赏价值,同时具有较高的园林利用价值和极高的生态价值。
2.4 平潭5个无居民海岛与其他海岛种子植物区系比较分析
对平潭5个无居民海岛与其他海岛区系进行种子植物属的分布区类型比较,结果见表5。各个地区中泛热带分布型占比较高,为24.03%~40.00%,厦门近岸海域无居民海岛植物区系的R/T值(4.23)远高于其他海岛,热带性质最强烈;纬度相近的平潭和连江无居民海岛的R/T值接近,且均大于2,分别为2.31和2.13,热带优势明显。相反,纬度相对较高的浙江无居民海岛和渤海区9个无居民海岛的热带成分比例稍低,而温带分布比例略高,R/T值最低,仅为1.11和0.66,两者的北温带分布比例则远高于前三者,温带性质趋势明显,符合R/T值的排列顺序。将世界分布属和中国特有属排除后,重新计算这些地区的R/T值(图1)。由图1可知,随着纬度的增加,热带分布型所占比例逐渐降低,而温带分布型占比则逐渐上升,植物区系具有热带向温带过渡的特点,与中国植被类型的分布规律一致[21]。
表 5 平潭与其他地区无居民海岛种子植物属的分布区类型比较Table 5. Comparison of distribution types of seed flora and genera among five uninhabited islands in Pingtan and different island regions分布区
类型
Distribution type平潭(5个)
Pingtan (5)
(25°15′~25°45′N)厦门近岸
Xiamen
(24°25′~24°35′N)连江(5个)
Lianjiang (5)
(26°07′~26°27′N)浙江(5个)
Zhejiang (5)
(28°12′~28°18′N)渤海(9个)
Bohai Sea
(37°06′~40°55′N)1 10.34 9.35 10.90 12.34 16.67 2 40.00 29.50 36.05 24.03 24.71 3 2.76 11.87 7.48 1.30 0.00 4 11.03 8.63 8.16 7.14 4.71 5 5.52 8.99 6.80 5.19 2.35 6 1.38 6.83 4.08 5.19 3.53 7 1.38 7.19 5.44 3.25 3.53 8 11.72 7.91 13.60 23.38 30.59 9 4.14 3.24 4.08 4.55 5.88 10 5.52 2.16 5.44 4.55 9.41 11 0.00 0.00 0.68 0.64 5.88 12 0.00 0.36 0.00 0.00 2.35 13 0.00 0.00 0.00 0.00 0.00 14 5.52 3.60 8.16 8.44 4.71 15 0.69 0.36 0.00 0.00 2.35 R/T 2.31 4.23 2.13 1.11 0.66 注:1,世界广布;2,泛热带分布;3,热带亚洲和热带美洲分布;4,旧世界热带分布;5,热带亚洲至热带大洋洲分布;6,热带亚洲至热带非洲分布;7,热带亚洲分布;8,北温带分布;9,东亚和北美间断分布;10,旧世界温带分布;11,温带亚洲分布;12,地中海及西亚至中亚分布;13,中亚分布;14,东亚分布;15,中国特有分布。 Notes: 1, Cosmopolitan; 2, Pantropic; 3, Tropical Asia & tropical America disjunct; 4, Old world tropical distributed; 5, Tropical Asia to tropical Australasia distributed; 6, Tropical Asia to tropical Africa distributed; 7, Tropical Asia distributed; 8, North temperate distributed; 9, East Asia & North America disjunct; 10, Old world temperate distributed; 11, Temperate Asia; 12, Mediterranea, West Asia to Central Asia; 13, Central Asia; 14, East Asia distributed; 15, Endemic to China. 为进一步探讨平潭5个无居民海岛与其他地区植物区系的相似性,对其属的分布区类型比率进行聚类分析。如图2所示,当欧氏距离约为10时,可将5个地区划分为2组。第1组为厦门近岸海域无居民海岛、平潭5个无居民海岛和连江县5个无居民海岛,3个地区纬度相近,植物热带成分占50%以上;第2组为渤海区9个无居民海岛和浙江5个无居民海岛,其植物热带成分明显减少,占30%左右。
2.5 不同岛屿间植物的物种相似度与空间特征关系
计算平潭5个无居民海岛属相似性系数与种相似性系数。结果显示,5个海岛在属级水平上相似性程度均不高,属的相似性系数大于30%的有光幼屿分别与红山屿(48%)和黄门岛(32%);以及姜山岛分别与龙母屿(47%)和黄门岛(31%);相似性系数小于30%的有黄门岛与红山屿(28%)、姜山岛分别与光幼屿(21%)和红山屿(20%),龙母屿分别与光幼屿(26%)、红山屿(22%)、黄门岛(28%)(附表1
1 ))。相较于属级水平,各个海岛之间在种级水平上的相似性程度有所降低,姜山岛与光幼屿(19%)以及红山屿(17%)之间的相似度均小于20%,说明这3个海岛在种水平上的差异较大(附表
1 ))。分析物种相似性系数Cj与岛屿空间特征的相关性,结果表明,Cj与面积比(δA)(0.577)、岸线长度比(δPer)(0.585)和高程比(δE)(0.591)呈正相关,与周长面积比的比值(δPAR)(−0.602)和近岸距离比(δI)(−0.211)呈负相关,但均不显著。
3. 讨论
3.1 平潭5个无居民海岛种子植物区系特征
平潭5个无居民海岛的种子植物共有71科179属213种,剔除外来物种后,共65科145属171种,与福建种子植物202科1596属4416种相比[22],本研究区域种子植物的科、属 、种数分别占了福建省植物区系的32.18%、9.09%和3.87%。按照生活型进行分类,草本植物占优势,共计102种(59.65%);其次为灌木48种(28.07%);乔木和藤本的种数则较少,分别是7种(4.09%)和14种(8.19%)。
平潭海岛的种子植物区系优势较为明显,含有较多热带科以及亚热带科,区系科、属、种的地理性质均以热带为主,科的热带成分占77.79%,温带成分仅占22.22%;属的热带成分占69.24%,温带成分为30.02%;种的热带成分占54.88%,温带成分为37.80%。种子植物中含有较多的热带科以及亚热带科,与福建省植物区系的特征相符合。科、属的热带成分以泛热带分布为主,种的热带成分以热带亚洲为主;科、属的温带成分以北温带为主,种的温带成分以温带亚洲及东亚分布为主,整体呈现显著的由热带向温带过渡的趋势。通过对平潭与其他地区岛屿的属分布区类型进行对比发现,除浙江和渤海区的无居民海岛外,其余岛屿的R/T值均具有明显的热带性质,符合其所处的亚热带海洋季风气候区的地理位置及热带起源[23],这一结果与相关研究[24]一致。随着纬度的增加,不同海岛植物区系的属级分布类型中,温带分布型逐渐增加,热带分布型占比逐步减少,显示出海岛植物区系地理成分的纬向分异性。
3.2 平潭5个无居民海岛间植物的物种相似度与空间特征关系
分析平潭5个无居民海岛植物间的种相似性系数及其与岛屿空间特征的相关性,发现Cj与面积比、岸线长度比和高程等空间特征均无显著相关性。平潭5个无居民海岛中,物种组成相似性较高的有光幼屿与红山屿、姜山岛与龙母屿、黄门岛与光幼屿,以及姜山岛与黄门岛,但均未超过50%,说明各个岛屿植物间的亲缘关系较远。
通常海岛面积越大,环境异质性越高,物种丰富度也会更高,这是岛屿生物地理学的普遍规律[25, 26]。平潭5个无居民海岛中姜山岛的面积最大,物种数也最多。但面积最小的龙母屿,其物种数却居第3,原因之一可能是龙母屿的灌木、草本能够较好地适应岛屿环境,且草本植物在该岛占绝对优势[27],其生存所需空间比乔木小得多,所以受岛屿面积的制约较小[28, 29];另一方面,尽管平潭5个无居民海岛同属一个气候带,但不同海岛间的物种数存在差异主要是由海岛环境的特殊性决定的[30]。
由于各个岛屿具有独立性,形成了不同的生态环境,并进行长时间的自然选择[31, 32],因此导致各岛屿的植物种类存在差异。本文仅以分布型从宏观层面对平潭5个无居民海岛的种子植物进行了区系分析,没有从微观层面进行探讨,后期对植物区系的研究可考虑土壤因子、地质变化和岛屿间植物竞争生态位等方面的因素。
3.3 平潭5个无居民海岛的保护和利用
海岛植物物种丰富度与人为活动因素紧密相关[33]。有居民海岛由于长期受人为干扰,海岛植被中的原生植被可能被破坏,从而对原生植物的生态位造成威胁,此外,海岛开发也会导致一定程度上原生植物数量的减少和次生植被的增加[34]。相比有居民海岛,无居民海岛植物受人为干扰较小。
平潭5个无居民岛屿的种子植物以原生植物为主,但海岛上的入侵植物也需要重视,如鬼针草(Bidens pilosa L.)、马缨丹(Lantana camara L.)和小蓬草(Conyza canadensis L.)等。为保护当地的物种多样性,避免物种的进一步同质化[35],应建立一个长期稳定的实时更新数据库,开展生态治理研究[36]。针对以上入侵植物,建议制定具有针对性的防控策略,尽可能挖掘其潜在的利用价值[37],做到有效防控与利用。
-
表 1 氮肥促进的病害
Table 1 Diseases stimulated by increased nitrogen supply
表 2 氮肥抑制的病害
Table 2 Diseases suppressed by increased nitrogen supply
-
[1] The SV,Snyder R,Tegeder M. Targeting nitrogen metabolism and transport processes to improve plant nitrogen use efficiency[J]. Front Plant Sci,2021,11:628366. doi: 10.3389/fpls.2020.628366
[2] Marcianò D,Ricciardi V,Maddalena G,Massafra A,Fassolo EM,et al. Influence of nitrogen on grapevine susceptibility to downy mildew[J]. Plants,2023,12(2):263. doi: 10.3390/plants12020263
[3] Huang HC,Thu TNT,He XH,Gravot A,Bernillon S,et al. Increase of fungal pathogenicity and role of plant glutamine in nitrogen-induced susceptibility (NIS) to rice blast[J]. Front Plant Sci,2017,8:265.
[4] Luo CS,Ma LK,Zhu JH,Guo ZP,Dong K,Dong Y. Effects of nitrogen and intercropping on the occurrence of wheat powdery mildew and stripe rust and the relationship with crop yield[J]. Front Plant Sci,2021,12:637393. doi: 10.3389/fpls.2021.637393
[5] Fleitas MC,Schierenbeck M,Gerard GS,Dietz JI,Golik SI,et al. How leaf rust disease and its control with fungicides affect dough properties,gluten quality and loaf volume under different N rates in wheat[J]. J Cereal Sci,2018,80:119−127. doi: 10.1016/j.jcs.2018.02.003
[6] Abro MA,Lecompte F,Bardin M,Nicot PC. Nitrogen fertilization impacts biocontrol of tomato gray mold[J]. Agron Sustain Dev,2014,34(3):641−648. doi: 10.1007/s13593-013-0168-3
[7] Sandham T,Mahapatra S,Das S. Effect of different levels of nitrogen and potassium against leaf spots disease of groundnut in different fertility gradient soil in field[J]. Legume Res,2018,43(2):283−288.
[8] Song RF,Ahmed W,Tan YJ,Zhao ZX. Different levels of nitrogen fertilizer in nursery stage positively affect the activity of defense-related enzymes and resistance of tobacco plant to Phytophthora nicotianae[J]. Chiang Mai J Sci,2022,49(3):551−564. doi: 10.12982/CMJS.2022.046
[9] Fleitas MC,Schierenbeck M,Gerard GS,Dietz JI,Golik SI,Simón MR. Breadmaking quality and yield response to the green leaf area duration caused by fluxapyroxad under three nitrogen rates in wheat affected with tan spot[J]. Crop Prot,2018,106:201−209. doi: 10.1016/j.cropro.2018.01.004
[10] Mutiga SK,Morales L,Angwenyi S,Wainaina J,Harvey J,et al. Association between agronomic traits and aflatoxin accumulation in diverse maize lines grown under two soil nitrogen levels in eastern Kenya[J]. Field Crops Res,2017,205:124−134. doi: 10.1016/j.fcr.2017.02.007
[11] De Cal A,Melgarejo P,Del Mar Jimenez-Gasco M. Editorial:necrotrophic fungal plant pathogens[J]. Front Plant Sci,2022,13:839674. doi: 10.3389/fpls.2022.839674
[12] Fagard M,Launay A,Clément G,Courtial J,Dellagi A,et al. Nitrogen metabolism meets phytopathology[J]. J Exp Bot,2014,65(19):5643−5656. doi: 10.1093/jxb/eru323
[13] Walters DR,Bingham IJ. Influence of nutrition on disease development caused by fungal pathogens:implications for plant disease control[J]. Ann Appl Biol,2007,151(3):307−324. doi: 10.1111/j.1744-7348.2007.00176.x
[14] Bönnighausen J,Gebhard D,Kröger C,Hadeler B,Tumforde T,et al. Disruption of the GABA shunt affects mitochondrial respiration and virulence in the cereal pathogen Fusarium graminearum[J]. Mol Microbiol,2015,98(6):1115−1132. doi: 10.1111/mmi.13203
[15] Tavernier V,Cadiou S,Pageau K,Laugé R,Reisdorf-Cren M,et al. The plant nitrogen mobilization promoted by Colletotrichum lindemuthianum in Phaseolus leaves depends on fungus pathogenicity[J]. J Exp Bot,2007,58(12):3351−3360. doi: 10.1093/jxb/erm182
[16] Luo ZB,Chen QY,Su YF,Hu SS,Keyhani NO,et al. The AreA nitrogen catabolite repression activator balances fungal nutrient utilization and virulence in the insect fungal pathogen Beauveria bassiana[J]. J Agric Food Chem,2023,71(1):646−659. doi: 10.1021/acs.jafc.2c07047
[17] Horst RJ,Zeh C,Saur A,Sonnewald S,Sonnewald U,Voll LM. The Ustilago maydis Nit2 homolog regulates nitrogen utilization and is required for efficient induction of filamentous growth[J]. Eukaryotic Cell,2012,11(3):368−380. doi: 10.1128/EC.05191-11
[18] Donofrio NM,Oh Y,Lundy R,Pan H,Brown DE,et al. Global gene expression during nitrogen starvation in the rice blast fungus,Magnaporthe grisea[J]. Fungal Genet Biol,2006,43(9):605−617. doi: 10.1016/j.fgb.2006.03.005
[19] Soanes DM,Kershaw MJ,Cooley RN,Talbot NJ. Regulation of the MPG1 hydrophobin gene in the rice blast fungus Magnaporthe grisea[J]. Mol Plant Microbe Interact,2002,15(12):1253−1267. doi: 10.1094/MPMI.2002.15.12.1253
[20] Varlakhanova NV,Tornabene BA,Ford MGJ. Feedback regulation of TORC1 by its downstream effectors Npr1 and Par32[J]. Mol Biol Cell,2018,29(22):2603−2799. doi: 10.1091/mbc.E18-08-0499
[21] Divon HH,Ziv C,Davydov O,Yarden O,Fluhr R. The global nitrogen regulator,FNR1,regulates fungal nutrition-genes and fitness during Fusarium oxysporum pathogenesis[J]. Mol Plant Pathol,2006,7(6):485−497. doi: 10.1111/j.1364-3703.2006.00354.x
[22] Rai R,Tate JJ,Cooper TG. Multiple targets on the Gln3 transcription activator are cumulatively required for control of its cytoplasmic sequestration[J]. G3 Genes| Genomes| Genet,2016,6(5):1391−1408.
[23] Liu YY,Li HX,Li JY,Zhou Y,Zhou ZM,et al. Characterization of the promoter of the nitrate transporter-encoding gene nrtA in Aspergillus nidulans[J]. Mol Genet Genomics,2020,295(5):1269−1279. doi: 10.1007/s00438-020-01700-x
[24] Havenga M,Wingfield BD,Wingfield MJ,Dreyer LL,Roets F,Aylward J. Genetic response to nitrogen starvation in the aggressive Eucalyptus foliar pathogen Teratosphaeria destructans[J]. Curr Genet,2021,67(6):981−990. doi: 10.1007/s00294-021-01208-w
[25] Stephenson SA,Hatfield J,Rusu AG,Maclean DJ,Manners JM. CgDN3:an essential pathogenicity gene of Colletotrichum gloeosporioides necessary to avert a hypersensitive-like response in the host Stylosanthes guianensis[J]. Mol Plant Microbe Interact,2000,13(9):929−941. doi: 10.1094/MPMI.2000.13.9.929
[26] Xiong DG,Wang YL,Tian CM. Transcriptomic profiles of the smoke tree wilt fungus Verticillium dahliae under nutrient starvation stresses[J]. Mol Genet Genomics,2015,290(5):1963−1977. doi: 10.1007/s00438-015-1052-4
[27] Pellier AL,Laugé R,Veneault-Fourrey C,Langin T. CLNR1,the AREA/NIT2-like global nitrogen regulator of the plant fungal pathogen Colletotrichum lindemuthianum is required for the infection cycle[J]. Mol Microbiol,2003,48(3):639−655. doi: 10.1046/j.1365-2958.2003.03451.x
[28] Pérez-García A,Snoeijers SS,Joosten MHAJ,Goosen T,de Wit PJGM. Expression of the avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum is regulated by the global nitrogen response factor NRF1[J]. Mol Plant Microbe Interact,2001,14(3):316−325. doi: 10.1094/MPMI.2001.14.3.316
[29] Thomma BPHJ,Bolton MD,Clergeot PH,de Wit PJGM. Nitrogen controls in planta expression of Cladosporium fulvum Avr9 but no other effector genes[J]. Mol Plant Pathol,2006,7(2):125−130. doi: 10.1111/j.1364-3703.2006.00320.x
[30] Ancona V,Li WT,Zhao YF. Alternative sigma factor RpoN and its modulation protein YhbH are indispensable for Erwinia amylovora virulence[J]. Mol Plant Pathol,2014,15(1):58−66. doi: 10.1111/mpp.12065
[31] Wang YM,Wu JN,Park ZY,Kim SG,Rakwal R,et al. Comparative secretome investigation of Magnaporthe oryzae proteins responsive to nitrogen starvation[J]. J Proteome Res,2011,10(7):3136−3148. doi: 10.1021/pr200202m
[32] Katz ME,Buckland R,Hunter CC,Todd RB. Distinct roles for the p53-like transcription factor XprG and autophagy genes in the response to starvation[J]. Fungal Genet Biol,2015,83:10−18. doi: 10.1016/j.fgb.2015.08.006
[33] Ren WC,Zhang ZH,Shao WY,Yang YL,Zhou MG,Chen CJ. The autophagy-related gene BcATG1 is involved in fungal development and pathogenesis in Botrytis cinerea[J]. Mol Plant Pathol,2017,18(2):238−248. doi: 10.1111/mpp.12396
[34] Sun YM,Wang M,Mur LAJ,Shen QR,Guo SW. Unravelling the roles of nitrogen nutrition in plant disease defences[J]. Int J Mol Sci,2020,21(2):572. doi: 10.3390/ijms21020572
[35] Plavcová L,Hacke UG,Almeida-Rodriguez AM,Li E,Douglas CJ. Gene expression patterns underlying changes in xylem structure and function in response to increased nitrogen availability in hybrid poplar[J]. Plant Cell Environ,2013,36(1):186−199. doi: 10.1111/j.1365-3040.2012.02566.x
[36] Sun Q,Liu XG,Yang J,Liu WW,Du QG,et al. MicroRNA528 affects lodging resistance of maize by regulating lignin biosynthesis under nitrogen-luxury conditions[J]. Mol Plant,2018,11(6):806−814. doi: 10.1016/j.molp.2018.03.013
[37] Li ZY,Jiang H,Jiang XM,Zhang LF,Qin Y. Integrated physiological,transcriptomic,and metabolomic analyses reveal that low-nitrogen conditions improve the accumulation of flavonoids in snow chrysanthemum[J]. Ind Crops Prod,2023,197:116574. doi: 10.1016/j.indcrop.2023.116574
[38] Liao GX,Yang YH,Xiao WM,Mo ZW. Nitrogen modulates grain yield,nitrogen metabolism,and antioxidant response in different rice genotypes[J]. J Plant Growth Regul,2023,42(4):2103−2114. doi: 10.1007/s00344-022-10684-4
[39] Duan YK,Yang HY,Yang H,Wu YQ,Fan SF,et al. Integrative physiological,metabolomic and transcriptomic analysis reveals nitrogen preference and carbon and nitrogen metabolism in blackberry plants[J]. J Plant Physiol,2023,280:153888. doi: 10.1016/j.jplph.2022.153888
[40] Wu D,Wang XW,Xu SQ,Chen CJ,Mao R,Liu XY. Plant phenols contents and their changes with nitrogen availability in peatlands of northeastern China[J]. J Plant Ecol,2020,13(6):713−721. doi: 10.1093/jpe/rtaa061
[41] Lacrampe N,Colombié S,Dumont D,Nicot P,Lecompte F,Lugan R. Nitrogen-mediated metabolic patterns of susceptibility to Botrytis cinerea infection in tomato (Solanum lycopersicum) stems[J]. Planta,2023,257(2):41. doi: 10.1007/s00425-022-04065-0
[42] Zhou JL,Feng ZL,Liu SC,Wei F,Shi Y,et al. CGTase,a novel antimicrobial protein from Bacillus cereus YUPP-10,suppresses Verticillium dahliae and mediates plant defence responses[J]. Mol Plant Pathol,2021,22(1):130−144. doi: 10.1111/mpp.13014
[43] Vega A,Canessa P,Hoppe G,Retamal I,Moyano TC,et al. Transcriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum lycopersicum[J]. Front Plant Sci,2015,6:911.
[44] Wang M,Gu ZC,Wang RR,Ding JJ,Ling N,et al. Plant primary metabolism regulated by nitrogen contributes to plant-pathogen interactions[J]. Plant Cell Physiol,2019,60(2):329−342. doi: 10.1093/pcp/pcy211
[45] Isabel González-Hernández A,Fernández-Crespo E,Scalschi L,Hajirezaei MR,von Wirén N,et al. Ammonium mediated changes in carbon and nitrogen metabolisms induce resistance against Pseudomonas syringae in tomato plants[J]. J Plant Physiol,2019,239:28−37. doi: 10.1016/j.jplph.2019.05.009
[46] Liu CX,Alcázar R. A new insight into the contribution of putrescine to defense in Arabidopsis thaliana[J]. Plant Signaling Behav,2021,16(4):1885187. doi: 10.1080/15592324.2021.1885187
[47] Pazarlar S,Sanver U,Cetinkaya N. Exogenous pipecolic acid modulates plant defence responses against Podosphaera xanthii and Pseudomonas syringae pv. lachrymans in cucumber (Cucumis sativus L.)[J]. Plant Biol,2021,23(3):473−484. doi: 10.1111/plb.13243
[48] Barrit T,Porcher A,Cukier C,Satour P,Guillemette T,et al. Nitrogen nutrition modifies the susceptibility of Arabidopsis thaliana to the necrotrophic fungus,Alternaria brassicicola[J]. Physiol Plant,2022,174(1):e13621. doi: 10.1111/ppl.13621
[49] Bloom AJ. Photorespiration and nitrate assimilation:a major intersection between plant carbon and nitrogen[J]. Photosynth Res,2015,123(2):117−128. doi: 10.1007/s11120-014-0056-y
[50] Camañes G,Pastor V,Cerezo M,García-Andrade J,Vicedo B,et al. A deletion in NRT2.1 attenuates Pseudomonas syringae-induced hormonal perturbation,resulting in primed plant defenses[J]. Plant Physiol,2012,158(2):1054−1066. doi: 10.1104/pp.111.184424
[51] Dechorgnat J,Patrit O,Krapp A,Fagard M,Daniel-Vedele F. Characterization of the Nrt2.6 gene in Arabidopsis thaliana:a link with plant response to biotic and abiotic stress[J]. PLoS One,2012,7(8):e42491. doi: 10.1371/journal.pone.0042491
[52] Wu XX,Yuan DP,Chen H,Kumar V,Kang SM,et al. Ammonium transporter 1 increases rice resistance to sheath blight by promoting nitrogen assimilation and ethylene signalling[J]. Plant Biotechnol J,2022,20(6):1085−1097. doi: 10.1111/pbi.13789
[53] Olea F,Pérez-García A,Cantón FR,Rivera ME,Cañas R,et al. Up-regulation and localization of asparagine synthetase in tomato leaves infected by the bacterial pathogen Pseudomonas syringae[J]. Plant Cell Physiol,2004,45(6):770−780. doi: 10.1093/pcp/pch092
[54] Hwang IS,An SH,Hwang BK. Pepper asparagine synthetase 1 (CaAS1) is required for plant nitrogen assimilation and defense responses to microbial pathogens[J]. Plant J,2011,67(5):749−762. doi: 10.1111/j.1365-313X.2011.04622.x
[55] Liu CY,Tian SR,Lv X,Pu YD,Peng HR, et al. Nicotiana benthamiana asparagine synthetase associates with IP-L and confers resistance against tobacco mosaic virus via the asparagine-induced salicylic acid signalling pathway[J]. Mol Plant Pathol,2022,23(1):60−77.
[56] Brauc S,de Vooght E,Claeys M,Höfte M,Angenon G. Influence of over-expression of cytosolic aspartate aminotransferase on amino acid metabolism and defence responses against Botrytis cinerea infection in Arabidopsis thaliana[J]. J Plant Physiol,2011,168(15):1813−1819. doi: 10.1016/j.jplph.2011.05.012
[57] Marroquin-Guzman M,Wilson RA. GATA-dependent glutaminolysis drives appressorium Formation in Magnaporthe oryzae by suppressing TOR inhibition of cAMP/PKA signaling[J]. PLoS Pathog,2015,11(4):e1004851. doi: 10.1371/journal.ppat.1004851
[58] Monteoliva MI,Rizzi YS,Cecchini NM,Hajirezaei MR,Alvarez ME. Context of action of proline dehydrogenase (ProDH) in the hypersensitive response of Arabidopsis[J]. BMC Plant Biol,2014,14(1):21. doi: 10.1186/1471-2229-14-21
[59] Xiong XP,Sun SC,Zhu QH,Zhang XY,Liu F,et al. Transcriptome analysis and RNA interference reveal GhGDH2 regulating cotton resistance to verticillium wilt by JA and SA signaling pathways[J]. Front Plant Sci,2021,12:654676. doi: 10.3389/fpls.2021.654676
[60] Ansari MI,Jalil SU,Ansari SA,Hasanuzzaman M. GABA shunt:a key-player in mitigation of ROS during stress[J]. Plant Growth Regul,2021,94(2):131−149. doi: 10.1007/s10725-021-00710-y
[61] Maekawa S,Sato T,Asada Y,Yasuda S,Yoshida M,et al. The Arabidopsis ubiquitin ligases ATL31 and ATL6 control the defense response as well as the carbon/nitrogen response[J]. Plant Mol Biol,2012,79(3):217−227. doi: 10.1007/s11103-012-9907-0
[62] Zhou JX,Kong WW,Zhao HY,Li R,Yang YJ,Li J. Transcriptome-wide identification of indole glucosinolate dependent flg22-response genes in Arabidopsis[J]. Bioch Biophys Res Commun,2019,520(2):311−319. doi: 10.1016/j.bbrc.2019.09.110
[63] Wang D,Xu H,Huang JY,Kong YZ,AbuQamar S,et al. The Arabidopsis CCCH protein C3H14 contributes to basal defense against Botrytis cinerea mainly through the WRKY33‐dependent pathway[J]. Plant Cell Environ,2020,43(7):1792−1806. doi: 10.1111/pce.13771
[64] Bürger M,Chory J. Stressed out about hormones:how plants orchestrate immunity[J]. Cell Host Microbe,2019,26(2):163−172. doi: 10.1016/j.chom.2019.07.006
[65] Ding ST,Shao XQ,Li JX,Ahammed GJ,Yao YL,et al. Nitrogen forms and metabolism affect plant defence to foliar and root pathogens in tomato[J]. Plant Cell Environ,2021,44(5):1596−1610. doi: 10.1111/pce.14019
[66] Mur LAJ,Prats E,Pierre S,Hall MA,Hebelstrup KH. Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways[J]. Front Plant Sci,2013,4:215.
[67] Liu YJ,Zhang HJ. Reactive oxygen species and nitric oxide as mediators in plant hypersensitive response and stomatal closure[J]. Plant Signaling Behav,2021,16(12):985860.
[68] Lindermayr C,Sell S,Müller B,Leister D,Durner J. Redox regulation of the NPR1-TGA1 system of Arabidopsis thaliana by nitric oxide[J]. Plant Cell,2010,22(8):2894−2907. doi: 10.1105/tpc.109.066464
[69] Wang CX,El-Shetehy M,Shine MB,Yu KS,Navarre D,et al. Free radicals mediate systemic acquired resistance[J]. Cell Rep,2014,7(2):348−355. doi: 10.1016/j.celrep.2014.03.032
[70] Gupta KJ,Brotman Y,Segu S,Zeier T,Zeier J,et al. The form of nitrogen nutrition affects resistance against Pseudomonas syringae pv. phaseolicola in tobacco[J]. J Exp Bot,2013,64(2):553−568. doi: 10.1093/jxb/ers348
[71] Vitor SC,Duarte GT,Saviani EE,Vincentz MGA,Oliveira HC,Salgado I. Nitrate reductase is required for the transcriptional modulation and bactericidal activity of nitric oxide during the defense response of Arabidopsis thaliana against Pseudomonas syringae[J]. Planta,2013,238(3):475−486. doi: 10.1007/s00425-013-1906-0
[72] Mur LAJ,Kumari A,Brotman Y,Zeier J,Mandon J,et al. Nitrite and nitric oxide are important in the adjustment of primary metabolism during the hypersensitive response in tobacco[J]. J Exp Bot,2019,70(17):4571−4582. doi: 10.1093/jxb/erz161
[73] Zhou JY,Wang M,Sun YM,Gu ZC,Wang RR,et al. Nitrate increased cucumber tolerance to Fusarium wilt by regulating fungal toxin production and distribution[J]. Toxins,2017,9(3):100. doi: 10.3390/toxins9030100
[74] Celar F. Competition for ammonium and nitrate forms of nitrogen between some phytopathogenic and antagonistic soil fungi[J]. Biol Control,2003,28(1):19−24. doi: 10.1016/S1049-9644(03)00049-5
[75] Maywald NJ,Mang M,Pahls N,Neumann G,Ludewig U,Francioli D. Ammonium fertilization increases the susceptibility to fungal leaf and root pathogens in winter wheat[J]. Front Plant Sci,2022,13:946584. doi: 10.3389/fpls.2022.946584
计量
- 文章访问数: 175
- HTML全文浏览量: 25
- PDF下载量: 34