Loading [MathJax]/jax/output/SVG/jax.js
高级检索+

莲的花色研究进展

胡佳诺, 余梓萌, 张心怡, 张平, 杨平仿

胡佳诺,余梓萌,张心怡,张平,杨平仿. 莲的花色研究进展[J]. 植物科学学报,2023,41(6):800−808. DOI: 10.11913/PSJ.2095-0837.23255
引用本文: 胡佳诺,余梓萌,张心怡,张平,杨平仿. 莲的花色研究进展[J]. 植物科学学报,2023,41(6):800−808. DOI: 10.11913/PSJ.2095-0837.23255
Hu JN,Yu ZM,Zhang XY,Zhang P,Yang PF. Studies on flower pigmentation in Nelumbo nucifera Gaertn.[J]. Plant Science Journal,2023,41(6):800−808. DOI: 10.11913/PSJ.2095-0837.23255
Citation: Hu JN,Yu ZM,Zhang XY,Zhang P,Yang PF. Studies on flower pigmentation in Nelumbo nucifera Gaertn.[J]. Plant Science Journal,2023,41(6):800−808. DOI: 10.11913/PSJ.2095-0837.23255
胡佳诺,余梓萌,张心怡,张平,杨平仿. 莲的花色研究进展[J]. 植物科学学报,2023,41(6):800−808. CSTR: 32231.14.PSJ.2095-0837.23255
引用本文: 胡佳诺,余梓萌,张心怡,张平,杨平仿. 莲的花色研究进展[J]. 植物科学学报,2023,41(6):800−808. CSTR: 32231.14.PSJ.2095-0837.23255
Hu JN,Yu ZM,Zhang XY,Zhang P,Yang PF. Studies on flower pigmentation in Nelumbo nucifera Gaertn.[J]. Plant Science Journal,2023,41(6):800−808. CSTR: 32231.14.PSJ.2095-0837.23255
Citation: Hu JN,Yu ZM,Zhang XY,Zhang P,Yang PF. Studies on flower pigmentation in Nelumbo nucifera Gaertn.[J]. Plant Science Journal,2023,41(6):800−808. CSTR: 32231.14.PSJ.2095-0837.23255

莲的花色研究进展

基金项目: 武汉市园林局项目(武园林发[2022]16号)。
详细信息
    作者简介:

    胡佳诺(1975-),男,高级工程师,研究方向为荷花种质资源保护与开发利用(E-mail:471976927@qq.com

    通讯作者:

    杨平仿: E-mail: yangpf@hubu.edu.cn

  • 中图分类号: S682.32

Studies on flower pigmentation in Nelumbo nucifera Gaertn.

Funds: This work was supported by a grant from the Wuhan Municipal Landscape Gardens and Forestry Bureau (2022-16)
  • 摘要:

    莲(Nelumbo nucifera Gaertn.)是我国十大名花之一,其观赏价值在很大程度上取决于花色的多样性。植物的花色形成主要由花青素决定,然而,目前对莲花色形成的相关报道较少,其具体分子机制仍有待完善。本文综述了莲花色形成的相关研究,归纳了莲花瓣中主要色素成分的研究进展,并对参与花青素合成通路的结构基因和调控基因进行了梳理与总结,旨在为今后进一步探索莲花色形成的分子机制提供参考,为莲的花色育种提供理论基础。

    Abstract:

    The lotus (Nelumbo nucifera Gaertn.) ranks among the 10 most eminent flowers in China, with its ornamental value primarily attributed to the color diversity of its petals. In general, color formation in plants is largely influenced by anthocyanins. However, few studies have been conducted on the lotus and the molecular mechanisms underlying petal color formation remain incompletely understood. This review focuses on studies related to lotus petal coloration, summarizing advances in our understanding of the pigment constituents, as well as structural and regulatory genes involved in the anthocyanin biosynthesis pathway. The primary objective of this review is to provide a reference for further study of the mechanisms governing lotus color formation and propose directions for future lotus breeding.

  • 森林空间结构是根据林木的空间位置和属性,来描述林木间相互关系的空间排列方式。而林木个体的空间分布状态,即分布格局,是研究林木在水平空间相互关系的重要指标,同时也是空间结构的基本特征之一[1]。分布格局的研究方法主要有样方法和距离法,但两种方法均存在局限性。

    1999年,有学者提出了由参照树和相邻木组成的描述林分空间结构单元的方法[2]。该方法把林区内任意一棵树和距其最近的4棵相邻树组成的结构小组称为林分空间结构单元。角尺度(Wi)就是基于林分空间结构单元所构建的一个参数,用于描述林木的分布格局[3]。角尺度法主要是通过判断由参照树和相邻木构成的夹角大小,来判断相邻木围绕参照树的均匀性。该方法既可以通过图形来判断分布格局,也可以通过数值来判断,其操作方便,计算简单[4]。林木分布格局在林木和森林的生长演替过程中均发挥直接作用。因此,通过分析森林林分整体的角尺度分布特征,能有效地确定林分演替阶段,了解林分的稳定性。同时,对优势种分布格局进行分析,还能了解优势种与其他物种的关系,如竞争、共生、互助等。

    随机木是指Wi=0.50的林木,随机木对应的结构单元称为随机体。该概念是Zhang和Hui[5]在2021年基于角尺度参数提出的。随机木在反映林分整体树种组成和竞争情况等方面具有重要作用。研究发现,随机体比例在天然林中不受地域分布、树种组成、林分结构、格局类型和树木竞争的影响,并由此提出了“随机体-稳定性”假说[6]。但在喀斯特区域,因其特有的“富钙、干旱、瘠薄”等异质生境,加之喀斯特复杂的地质地貌和环境因素,使其成为环境异质性与生物物种多样性的独特响应区。因此,生境异质性强的喀斯特地区天然林中,“随机体-稳定性”假说是否仍然成立,还有待检验。Li等[7]分析了喀斯特地区土壤和岩石两种立地上,不同径阶树木群体以及每种立地上两种生活型树木的随机体分布特征,结果发现随机体的比例和分布受生活型和生境异质性的影响,而与树的大小无关。然而,先前对于随机体在喀斯特地区影响因素的分析,均是以尺度较小的样地作为研究对象,在更大的森林样地尺度中,生活型是否对随机体有影响还不清楚。生境异质性的产生主要有两个原因,一是组成生境的能量和物质在时间或空间上的差异,如生物因素、水分状况等[8],二是区域生态系统运动发展的不平衡性[9]。而不同的环境因子在喀斯特地区中对随机体的影响还未知。此外,立地条件对于林木生长也是一个重要因素[10]。因此,研究喀斯特生境中不同因子对随机体的影响差异具有重要意义。

    我国桂西南地区是北热带喀斯特季节性雨林的重要分布区之一,不但包含了从山顶到山坡到洼地的各种地形要素,还包含了水平方向上的高异质性以及垂直方向上的多层性,形成了一系列典型的“峰丛-洼地”生境类型[11, 12]。在喀斯特岩溶山地的地形地貌中,存在着复杂多样的小生境,这些小生境受不同因素的影响而呈现出多样性。此外,在不同的地段、坡向和坡位上,小生境的资源分配和植物组成等方面均存在明显差异。本文基于弄岗喀斯特季节性雨林15-hm2样地的第2次复查数据,从林分整体和优势种角尺度分布特征,以及生活型、生物因子和地形因子对随机体的影响进行分析。研究旨在探讨:(1)基于北热带喀斯特季节性雨林相邻木林分整体和优势种的随机体分布特征;(2)不同生活型树种在空间尺度较大的喀斯特生境中对随机体是否有影响;(3)北热带喀斯特季节性雨林不同环境因子对随机体的影响差异。

    弄岗国家级自然保护区地处广西龙州县与宁明县的交界地带,分弄岗、隆呼、陇瑞3个区,总面积为10 077 hm2。保护区土壤类型为原始石灰土、棕色石灰土、黑色石灰土等。年降水集中在5-9月,降水量分布不均匀,干湿交替较强;年平均温度22 ℃,最低温度13 ℃,最高温度37 ℃~39 ℃。

    北热带喀斯特季节性雨林地处弄岗自然保护区弄岗片的弄姆皇(22°25′N,106°57′E)。整个样地南北宽300 m,东西长500 m,海拔为180~370 m,平均海拔260 m,样地坡度范围在3.7°~78.9°,平均坡度41.7°。整个样地生境多样化,属于喀斯特“峰丛-洼地”典型的生境类型,在中国森林生物多样性监测网络中,该样地是唯一的典型热带喀斯特森林监测样地。

    根据CTFS全球森林生物多样性监测标准,利用全站仪将15-hm2样地划分成1 500个10 m×10 m的样方。在此基础上,于2011年完成了首次植被调查,对样方内胸径(DBH)≥1 cm个体的名称、胸径、坐标及生长状态等进行了调查并记录。之后,每5年进行一次调查,并于2021年完成第2次复查。本文以2021年的复查数据为依据,选取DBH≥5 cm的个体作为研究对象。

    树种优势度(Dsp)指树种在林分中的数量优势度和空间上的优势度,选取优势度位于前10的物种作为优势种,Dsp的计算公式为:

    Dsp=Dg(1¯Usp) (1)

    式中,Dg表示相对显著度, ˉUsp表示树种大小比数均值。Dsp接近1表示非常优势,接近0表示几乎没有优势[13]

    树种大小比数均值表达式如下:

    ¯Usp=1NspNspi=1Ui (2)

    式中,Nsp表示所观察树种的参照树数量,Ui为树种的第i株树的大小比数值。

    角尺度(Wi)指的是参照树与4株最近邻木间小于标准角的夹角占比,用下式表示[3]

    Wi=1nnj=1Zij (3)

    其中:Zij=1{1jα00

    式中,Wi为参照树i的角尺度,n指相邻木个体数,n=4。Zij为参照树i与其相邻木j之间的第j个夹角α与标准角α0之间的大小关系,有两种可能的值,当Zij=1时,表明第j个α角小于标准角,当Zij=0时,表明第j个α角大于标准角。

    角尺度均值(¯W)能够反映一个林分整体的分布情况。其计算公式如下:

    ¯W=1NNiwi (4)

    优势种角尺度均值用下式表示:

    ¯Wsp=1NspNspi=1 (5)

    式中,N为样地林木总株数。当角尺度均值在[0.457,0.517]时为随机分布;大于0.517为聚集分布;小于0.475为均匀分布[14]。角尺度等于0.50的林木被称为随机木,相应林木的结构单元称为随机体[15]。角尺度为0.75或1的林木为聚集木,相应林木结构单元称为聚集体。角尺度为0或0.25的林木被称作均匀木,相应林木的结构单元被称作均匀体。本研究在计算林分整体和优势种角尺度时,设置了5 m缓冲区,并将缓冲区内的林木做相邻木处理,以此消除林木的边缘效应造成的影响。

    运用Pearson相关分析法,判断随机体与环境因子及环境因子间的相关性。相关系数r计算公式如下:

    r=(xˉx)(yˉy)(xˉx)2(yˉy)2 (6)

    r取值范围为−1~1,当|r|≥0.8,表示两者高度相关;0.5≤|r|<0.8,为中度相关;0.3≤|r|<0.5,表示低相关;当|r|<0.3,表示相关性非常微弱,可视为没有相关性,P<0.05表明有统计学意义。

    用全站仪获取精确海拔数据,计算每个20 m×20 m样方的平均海拔、坡向、坡度和凹凸度4个地形指标[16-18]。土壤湿度状况以地形湿润指数和干旱度指数为表征,参见Punchi-Manage等[19]的研究。样地内岩石裸露情况采用踏查法进行评估。综上共有7个地形因子。此外,还考查了每个样方内最大胸径、胸高断面积之和、植株个体数和平均胸径4个生物因子,共11个环境因子。

    冗余分析的响应变量由每个样方的随机体个数组成。为了消除林木边缘效应的影响,设置2 m缓冲区,缓冲区内的林木做相邻木处理。解释变量数据包括11个环境因子。冗余分析前,对数据进行标准化处理,并比较自变量的相关系数是否大于7,以此衡量自变量间的共线性。再计算每个变量的方差膨胀因子,当方差膨胀因子<10时,表示无明显的共线性问题[20],可进行冗余分析。采用层次分割方法对冗余分析结果进行变差分解,以获取每个解释变量的校正解释率。

    数据分析计算均利用R 4.3.1软件完成,冗余分析在vegan程序包中进行,层次分割采用rdacca.hp程序包[21],利用ForestSAS程序包计算角尺度和大小比数均值[22],Pearson相关系数图在corrplot包中绘制,角尺度分布特征图在ggplot2包中完成,单独效应比例图在Origin 2021软件中绘制。

    树种优势度位于前10的物种在森林中起关键作用,尤其是闭花木(Cleistanthus sumatranus (Miq.) Muell. Arg.)、苹婆(Sterculia monosperma Ventenat)和广西牡荆(Vitex kwangsiensis P'ei),不仅在数量上占林分整体的绝大多数,其优势度也是最高的,分别为0.262、0.260、0.245,其他树种的优势度均小于0.200。角尺度计算结果表明,林分整体和优势种角尺度均值都在随机分布范围内(表1)。但林分整体和优势种随机木的分布频率均超过0.5,而均匀木和聚集木分布频率均比随机木低,说明样地中大多数林木的最近相邻木处于随机分布,各个优势种的最近相邻木处于随机分布的也占大多数,即随机体占绝对分布(图1)。

    表  1  北热带喀斯特季节性雨林树种优势度排名前10的树种
    Table  1.  Top 10 dominant species in northern tropical karst seasonal rainforest
    树种
    Species
    科名
    Family
    株数
    Number of
    plants
    大小比数
    Dominance
    相对显著度
    Relative
    significance
    优势度
    Advantage
    degree
    角尺度
    Uniform angle
    index
    广西牡荆
    Vitex kwangsiensis P'ei
    唇形科 1 645 0.325 0.122 0.286 0.504
    苹婆
    Sterculia monosperma Ventenat
    梧桐科 2 426 0.491 0.134 0.262 0.498
    闭花木
    Cleistanthus sumatranus (Miq.) Muell. Arg.
    大戟科 3 054 0.530 0.139 0.256 0.504
    劲直刺桐
    Erythrina stricta Roxb.
    豆科 242 0.074 0.031 0.171 0.485
    蚬木
    Excentrodendron tonkinense (A. Chev.)
    H. T. Chang et R. H. Miau
    锦葵科 483 0.367 0.039 0.156 0.498
    海南椴
    Diplodiscus trichosperma (Merrill) Y. Tang
    锦葵科 456 0.317 0.033 0.150 0.509
    黄梨木
    Boniodendron minus (Hemsl.) T. Chen
    无患子科 404 0.314 0.026 0.133 0.506
    对叶榕
    Ficus hispida L. f.
    桑科 676 0.602 0.031 0.110 0.497
    假玉桂
    Celtis timorensis Span
    大麻科 414 0.509 0.020 0.099 0.495
    鱼骨木
    Psydrax dicocca Gaertn.
    茜草科 252 0.405 0.015 0.094 0.510
    林分整体 −  10 052 0.489 0.500
    下载: 导出CSV 
    | 显示表格
    图  1  北热带喀斯特季节性雨林林分整体和优势种角尺度分布特征
    All :林分整体 ;VIK :广西牡荆 ;STM :苹婆;CLS: 闭花木 ; ERS :劲直刺桐; EXH :蚬木 ; DIT :海南椴 ;BOM :黄 梨木 ; FIH :对叶榕 ;CET :假玉桂 ;PSD :鱼骨木。
    Figure  1.  Uniform angle index distribution characteristics of overall stand and dominant species in northern tropical karst seasonal rainforest
    All: Entire stand; VIK: Vitex kwangsiensis C. P'ei; STM: Sterculia monosperma Vent; CLS: Cleistanthus sumatranus (Miq.) Müll. Arg.; ERS: Erythrina stricta Roxb.; EXH: Excentrodendron hsienmu (A. Chev.) H. T. Chang et R. H. Miao; DIT: Diplodiscus trichospermus (Merr.) Y. Tang, M. G. Gilbert et Dorr; BOM: Boniodendron minus (Hemsl.) T.C. Chen; FIH: Ficus hispida L. f.; CET: Celtis timorensis Span.; PSD: Psydrax dicocca Gaertn.

    乔木角尺度均值在随机分布范围内,为0.499,随机体占比为57.167%,均匀体占比较小,为23.189%,聚集体次之,为19.644%。灌木角尺度均值为0.519,为聚集分布,随机体占比为59.173%,均匀体占比为19.064%,聚集体为21.763%。乔木和灌木的随机体比例均超过55%,但灌木的聚集体占比高于均匀体。而在乔木中,均匀体占比高于聚集体,表明不同生活型的植物,其随机体比例和分布存在一定的差异(表2)。

    表  2  北热带喀斯特季节性雨林不同生活型随机体比例和分布
    Table  2.  Proportion and distribution of random framework among different life forms in northern tropical karst seasonal rainforest
    生活型
    Life style
    角尺度 Uniform angle index / %
    非常均匀
    Very regular
    均匀
    Regular
    随机
    Random
    聚集
    Clustered
    非常聚集
    Very clustered
    角尺度均值
    Uniform angle index mean
    乔木 0.773 22.416 57.167 15.785 3.859 0.499
    灌木 0.719 18.345 59.173 16.187 5.576 0.519
    下载: 导出CSV 
    | 显示表格

    研究结果显示,随机体与胸高断面积之和、平均海拔、坡度、岩石裸露率、凹凸度、干旱度指数、原有植株个体数之间均存在显著正相关,其中相关性最高的为原有植株个体数,相关系数达0.86;平均海拔和坡度分别与随机体存在低度相关,相关系数分别为0.36和0.31。随机体分别与最大胸径、平均胸径和地形湿润指数存在显著负相关,但与坡向无显著相关性。胸高断面积和最大胸径、坡度和地形湿润指数间也具有较高的相关性,相关系数分别为0.7和−0.72(图2)。

    图  2  北热带喀斯特季节性雨林随机体与环境因子Pearson相关性矩阵图
    Meanelev:平均海拔;Slope:坡度;Aspect:坡向;Convex:凹凸度;TWI:地形湿润指数;ACH:干旱度指数;RBR:岩石裸露率;ba:胸高断面积之和;Maxdbh:最大胸径;Meandbh:平均胸径。
    Figure  2.  Pearson correlation matrix between random framework and environmental factors in northern tropical karst seasonal rainforest
    Meanelev: Mean elevation; Slope: Slope; Aspect: Aspect; Convex: Convexity; TWI: Topographic wetness index; ACH: Altitude above channel; RBR: Rock-bareness rate; ba: Total basal area; Maxdbh: Maximum diameter at breast height; Meandbh: Mean diameter at breast height.

    结合环境因子的相关性和方差膨胀因子分析,将胸高断面积之和剔除。对随机体与生物因子和地形因子进行冗余分析,10个环境因子对随机体的解释量R2经校正后为0.729。其中,生物因子解释了65.6%,地形因子解释了7.3%。未被解释的部分占27.1%。根据层次分割法各环境因子单独效应比例排序,随机体的主要影响因素包括原有植株个体数、平均胸径、平均海拔、地形湿润指数和坡度;贡献较小的是最大胸径、坡向、岩石裸露率、凹凸度和干旱度指数(图3)。

    图  3  北热带喀斯特季节性雨林环境因子单独效应比例图
    Figure  3.  Individual effect proportions of environmental factors in northern tropical karst seasonal rainforest

    林木的空间分布格局主要分为随机分布、规则分布和聚集分布,最理想的是随机分布,而随机分布也是天然原始顶极群落中最为显著的结构特征[23]。本研究中,林分整体为随机分布,优势种的角尺度均值也在随机分布范围内,且随机体占比均超过50%。因此,随机体以相似的比例出现在不同树种中,且支持了“随机体-稳定性”假说,与前人研究结果一致[5]。这种结构体相对来说具有较小的生存压力,稳定性高,在竞争情况下不易出现弱势或者不健康的林木,在自然演替过程中存活几率更大[6]。而均匀体和聚集体占比较小,与袁星明等[24]的报道相似。

    不同空间分布格局分析方法可能导致结果上的差异。前人研究采用完全随机零模型和泊松异质性零模型对该地区分布格局进行了分析,完全随机零模型结果表明,在小尺度上所有物种均呈聚集分布[25],与本研究结果不一致;然而,当泊松异质性零模型去除生境异质性后,大部分物种表现为随机分布,与本文结果一致。完全随机零模型是基于假设个体随机分布,不受任何因素的干扰而对分布格局进行拟合分析。但在生境异质性强的北热带喀斯特地区,物种的分布显然会受到各种因素的影响。因此,在不考虑任何因素干扰情况下大多数物种呈聚集分布,与本研究结果存在差异。泊松异质性零模型主要用于模拟生境关联,本研究基于相邻木的角尺度法分析林木分布格局,也未直接考虑生境异质性,所以二者结果一致。另外,角尺度法不存在尺度效应,而空间点格局法可以拟合分析不同尺度的林木分布格局,二者各具特点。对于这两种方法,有学者也进行了对比,发现角尺度法在判断分布格局的准确性、有效性和可行性方面优于空间点格局分析[26]

    林分密度是预测林分动态的重要空间信息之一[27]。以往研究表明,种群分布格局对密度具有一定的依赖性,密度越大,聚集强度越高[28]。在本研究中,闭花木的密度最大,聚集程度也是最高的。尽管苹婆与鱼骨木在数量上存在显著差异,但它们在聚集体中所占的比例却几乎相同。这可能是在北热带喀斯特季节性雨林中岩石的裸露率较高,在岩石裸露度高的区域,植物聚集度就会偏低,反之亦然。因此,种群的分布格局与密度无明显的线性关系。

    植物生活型的形成是植物在特定环境中趋同适应的结果。灌木主要处于上层乔木树种的林冠下或林隙中,在数量特征和空间分布格局上会受后者的制约与影响[29]。本研究中,乔木分布比灌木多,优势度位于前10的皆为乔木树种,生活型为灌木的树种仅占25.8%。灌木树种相对于乔木树种其聚集体比例更高,分布格局为聚集分布,而乔木树种为随机分布。研究表明,不同生活型的种群聚集度差异很大,从乔木层到灌木层,聚集度逐渐增加,在林下灌丛层中,聚集度最高[25],与本文结果一致。因此随机体分布与树种自身的生物学特性有一定关系。

    随机体受诸多因素的影响,不同因素的影响程度不同。本研究中,植株个体数、平均胸径、平均海拔、地形湿润指数和坡度对随机体的影响较大,而最大胸径、坡向、岩石裸露率、凹凸度和干旱度指数对随机体的影响较小。从相关系数可以看出,植株个体数与随机体呈显著正相关,植株的个体数越多,随机体所占比例越高,群落越稳定。

    林木间的竞争是最直观的相互影响关系。在林区,因为森林资源有限,为了生存,林木之间必然要进行争夺[30-32]。林木自身遗传物质的差异,导致了林木自身的竞争能力也不一样。竞争力可以从林木的胸径等属性中反映出来[33]。不同树种之间的竞争强度会影响其生长状况,从而影响其在森林中的分布。此外,强烈的竞争还会造成一些树木的死亡,从而使森林随机体的分布发生改变。本研究中优势种随机体的分布情况不一,既存在随机分布,也存在聚集分布。因此,竞争是影响随机体分布的重要原因之一。

    海拔对植物的分布起重要作用,一方面是直接作用,另一方面是对其他非生物资源(如光、温、水、土等)的分配产生影响。然而,在本研究中,地形因子对于随机体分布的解释力度相对较低。尽管如此,在这些地形因子之中,海拔仍然是解释随机体分布最具影响力的因素。在北热带喀斯特季节性雨林中,物种丰富度随着海拔梯度的变化而呈现显著差异[34],物种之间的竞争强度和自疏程度都有所提高,而同种植物之间的聚集程度则有所下降[35]。同时,由于海拔的不同,水热条件也会发生较大的差异,从而使植物在不同海拔有明显的分布差异。在海拔较高的地区,如山顶,其光照强度高、水分缺乏、昼夜温差大、岩石裸露度高、土层薄。而在洼地边缘通常伴有季节性水淹,光照强度较弱[36]。因此,海拔直接或间接影响林木分布[37],造成随机体分布的差异。

    本研究分析了北热带喀斯特季节性雨林森林动态监测样地中的随机体分布特征及其影响因素,发现该区林分整体稳定性较高,多数林木处于随机分布状态。其中,闭花木、苹婆和广西牡荆树种占主要优势,且其角尺度对林分整体分布起关键作用。不同生活型植物的随机体分布不同,树种本身生物学特性是影响不同生活型树种随机体分布的原因。不同环境因子对随机体的影响程度不同,原有植株个体数、平均胸径、平均海拔、地形湿润度指数和坡度是随机体的主要驱动因子。

  • 图  1   花青素合成代谢通路

    PAL:苯丙氨酸解氨酶;C4H:肉桂酸-4-羟化酶;4CL:4-香豆酸辅酶A连接酶;CHS:查尔酮合酶;CHI:查尔酮异构酶;F3’H:类黄酮3’-羟化酶;F3’5’H:类黄酮3’,5’-羟化酶;DFR:二氢黄酮醇4-还原酶;ANS/LDOX:花青素合成酶/无色花青素双加氧酶;UFGT:类黄酮葡萄糖基转移酶;MT:甲基转移酶;AT:酰基转移酶;GST:谷胱甘肽巯基转移酶;CCR:肉桂酰辅酶A还原酶;FLS:黄酮醇合成酶;LAR:无色花青素还原酶;ANR:花青素还原酶。

    Figure  1.   Anthocyanin biosynthesis pathway

    PAL: Phenylalanine ammonia lyase; C4H: Cinnamate 4-hydroxylase; 4CL: 4-Coumarate coenzyme A ligase; CHS: Chalcone synthase; CHI: Chalcone isomerase; F3’H: Flavonoid 3’-hydroxylase; F3’5’H: Flavonoid 3’,5’-hydroxylase; DFR: Dihydroflavonol 4-reductase; ANS/LDOX: Anthocyanidinsynthase/ Leucoanthocyanidindioxygenase; UFGT: UDP-glycose flavonoid glycosyltransferase; MT: Methyltransferase; AT: Acyltransferase; GST: Glutathione S-transferase; CCR: Cinnamoyl-CoA reductase; FLS: Flavonol synthase; LAR: Leucoanthocyantin reductase; ANR: Anthocyanidin reductase.

  • [1]

    The Angiosperm Phylogeny Group,Chase MW,Christenhusz MJM,Fay MF,Byng JW,et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants:APG Ⅳ[J]. Botan J Linn Soc,2016,181 (1):1−20. doi: 10.1111/boj.12385

    [2]

    Guo HB. Cultivation of lotus (Nelumbo nucifera Gaertn. ssp. nucifera) and its utilization in China[J]. Genet Resour Crop Evol,2009,56 (3):323−330. doi: 10.1007/s10722-008-9366-2

    [3]

    Kuo YC,Lin YL,Liu CP,Tsai WJ. Herpes simplex virus type 1 propagation in HeLa cells interrupted by Nelumbo nucifera[J]. J Biomed Sci,2005,12 (6):1021−1034. doi: 10.1007/s11373-005-9001-6

    [4]

    Ohkoshi E,Miyazaki H,Shindo K,Watanabe H,Yoshida A,Yajima H. Constituents from the leaves of Nelumbo nucifera stimulate lipolysis in the white adipose tissue of mice[J]. Planta Med,2007,73 (12):1255−1259. doi: 10.1055/s-2007-990223

    [5]

    Moghaddam AH,Nabavi SM,Nabavi SF,Bigdellou R,Mohammadzadeh S,Ebrahimzadeh MA. Antioxidant,antihemolytic and nephroprotective activity of aqueous extract of Diospyros lotus seeds[J]. Acta Pol Pharm,2012,69 (4):687−692.

    [6]

    Lin TY,Hung CY,Chiu KM,Lee MY,Lu CW,Wang SJ. Neferine,an alkaloid from lotus seed embryos,exerts antiseizure and neuroprotective effects in a kainic acid-induced seizure model in rats[J]. Int J Mol Sci,2022,23 (8):4130. doi: 10.3390/ijms23084130

    [7]

    Lin ZY,Zhang C,Cao DD,Damaris RN,Yang PF. The latest studies on lotus (Nelumbo nucifera)-an emerging horticultural model plant[J]. Int J Mol Sci,2019,20 (15):3680. doi: 10.3390/ijms20153680

    [8] 刘凤栾,费俞颉,俞洁. 洒锦荷花的彩斑特性及起源探讨[J]. 中国花卉园艺,2020(18):38−40.
    [9]

    Liu J,Wang YX,Zhang MH,Wang YM,Deng XB,et al. Color fading in lotus (Nelumbo nucifera) petals is manipulated both by anthocyanin biosynthesis reduction and active degradation[J]. Plant Physiol Biochem,2022,179:100−107. doi: 10.1016/j.plaphy.2022.03.021

    [10]

    Deng J,Chen S,Yin XJ,Wang K,Liu YL,et al. Systematic qualitative and quantitative assessment of anthocyanins,flavones and flavonols in the petals of 108 lotus (Nelumbo nucifera) cultivars[J]. Food Chem,2013,139 (1-4):307−312. doi: 10.1016/j.foodchem.2013.02.010

    [11]

    Cappellini F,Marinelli A,Toccaceli M,Tonelli C,Petroni K. Anthocyanins:from mechanisms of regulation in plants to health benefits in foods[J]. Front Plant Sci,2021,12:748049. doi: 10.3389/fpls.2021.748049

    [12]

    Zhang HY,Xu ZL,Zhao HW,Wang X,Pang J,et al. Anthocyanin supplementation improves anti-oxidative and anti-inflammatory capacity in a dose-response manner in subjects with dyslipidemia[J]. Redox Biol,2020,32:101474. doi: 10.1016/j.redox.2020.101474

    [13]

    Sunil L,Shetty NP. Biosynthesis and regulation of anthocyanin pathway genes[J]. Appl Microbiol Biotechnol,2022,106 (5):1783−1798.

    [14]

    Jaakola L. New insights into the regulation of anthocyanin biosynthesis in fruits[J]. Trends Plant Sci,2013,18 (9):477−483. doi: 10.1016/j.tplants.2013.06.003

    [15]

    Tanaka Y,Brugliera F. Flower colour and cytochromes P450[J]. Philos Trans Roy Soc B:Biol Sci,2013,368 (1612):20120432. doi: 10.1098/rstb.2012.0432

    [16]

    Tanaka Y,Sasaki N,Ohmiya A. Biosynthesis of plant pigments:anthocyanins,betalains and carotenoids[J]. Plant J,2008,54 (4):733−749. doi: 10.1111/j.1365-313X.2008.03447.x

    [17]

    Zhang HL,Zhang SY,Zhang H,Chen X,Liang F,et al. Carotenoid metabolite and transcriptome dynamics underlying flower color in marigold (Tagetes erecta L.)[J]. Sci Rep,2020,10 (1):16835. doi: 10.1038/s41598-020-73859-7

    [18]

    Pu XD,Li Z,Tian Y,Gao RR,Hao LJ,et al. The honeysuckle genome provides insight into the molecular mechanism of carotenoid metabolism underlying dynamic flower coloration[J]. New Phytol,2020,227 (3):930−943. doi: 10.1111/nph.16552

    [19]

    Zhang LN,Zhang QY,Li WH,Zhang SK,Xi WP. Identification of key genes and regulators associated with carotenoid metabolism in apricot (Prunus armeniaca) fruit using weighted gene coexpression network analysis[J]. BMC Genomics,2019,20 (1):876. doi: 10.1186/s12864-019-6261-5

    [20]

    Polturak G,Aharoni A. “La Vie en Rose”:biosynthesis,sources,and applications of betalain pigments[J]. Mol Plant,2018,11 (1):7−22. doi: 10.1016/j.molp.2017.10.008

    [21]

    Saito K,Yonekura-Sakakibara K,Nakabayashi R,Higashi Y,Yamazaki M,et al. The flavonoid biosynthetic pathway in Arabidopsis:structural and genetic diversity[J]. Plant Physiol Biochem,2013,72:21−34. doi: 10.1016/j.plaphy.2013.02.001

    [22]

    Nishihara M,Nakatsuka T. Genetic engineering of flavonoid pigments to modify flower color in floricultural plants[J]. Biotechnol Lett,2011,33 (3):433−441. doi: 10.1007/s10529-010-0461-z

    [23]

    Thill J,Miosic S,Ahmed R,Schlangen K,Muster G,et al. ‘Le Rouge et le Noir’:a decline in flavone formation correlates with the rare color of black dahlia (Dahlia variabilis hort.) flowers[J]. BMC Plant Biol,2012,12:225. doi: 10.1186/1471-2229-12-225

    [24]

    Katori M,Watanabe K,Nomura K,Yoneda K. Cultivar differences in anthocyanin and carotenoid pigments in the petals of the flowering lotus (Nelumbo spp.)[J]. J Jpn Soc Hortic Sci,2002,71 (6):812−817. doi: 10.2503/jjshs.71.812

    [25]

    Yang RZ,Wei XL,Gao FF,Wang LS,Zhang HJ,et al. Simultaneous analysis of anthocyanins and flavonols in petals of lotus (Nelumbo) cultivars by high-performance liquid chromatography-photodiode array detection/electrospray ionization mass spectrometry[J]. J Chromatogr A,2009,1216 (1):106−112. doi: 10.1016/j.chroma.2008.11.046

    [26]

    Chen S,Fang LC,Xi HF,Guan L,Fang JB,et al. Simultaneous qualitative assessment and quantitative analysis of flavonoids in various tissues of lotus (Nelumbo nucifera) using high performance liquid chromatography coupled with triple quad mass spectrometry[J]. Anal Chim Acta,2012,724:127−135. doi: 10.1016/j.aca.2012.02.051

    [27]

    Chen S,Xiang Y,Deng J,Liu YL,Li SH. Simultaneous analysis of anthocyanin and non-anthocyanin flavonoid in various tissues of different lotus (Nelumbo) cultivars by HPLC-DAD-ESI-MSn[J]. PLoS One,2013,8 (4):e62291. doi: 10.1371/journal.pone.0062291

    [28] 吴倩. 荷花花瓣和花粉类黄酮成分分析[D]. 南京: 南京农业大学, 2015: 15-49.
    [29] 刘青青,张大生,刘凤栾,蔡栋,王晓晗,等. 荷花花色研究进展[J]. 园艺学报,2021,48(10):2100−2112. doi: 10.16420/j.issn.0513-353x.2021-0602

    Liu QQ,Zhang DS,Liu FL,Cai D,Wang XH,et al. Advances in flower color research on lotus (Nelumbo)[J]. Acta Hortic Sin,2021,48 (10):2100−2112. doi: 10.16420/j.issn.0513-353x.2021-0602

    [30]

    Tohge T,de Souza LP,Fernie AR. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants[J]. J Exp Bot,2017,68 (15):4013−4028. doi: 10.1093/jxb/erx177

    [31]

    Morita Y,Hoshino A. Recent advances in flower color variation and patterning of Japanese morning glory and petunia[J]. Breed Sci,2018,68 (1):128−138. doi: 10.1270/jsbbs.17107

    [32]

    Martin C,Prescott A,Mackay S,Bartlett J,Vrijlandt E. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus[J]. Plant J,1991,1 (1):37−49. doi: 10.1111/j.1365-313X.1991.00037.x

    [33]

    Austin MB,Noel JP. The chalcone synthase superfamily of type Ⅲ polyketide synthases[J]. Nat Prod Rep,2003,20 (1):79−110. doi: 10.1039/b100917f

    [34]

    Dong C,Yu AQ,Wang ML,Zheng XW,Diao Y,et al. Identification and characterization of chalcone synthase cDNAs (NnCHS) from Nelumbo nucifera[J]. Cell Mol Biol (Noisy-Le-Grand),2015,61 (8):112−117.

    [35]

    Li YK,Cui W,Qi XJ,Qiao CK,Lin MM,et al. Chalcone synthase-encoding AeCHS is involved in normal petal coloration in Actinidia eriantha[J]. Genes (Basel),2019,10 (12):949. doi: 10.3390/genes10120949

    [36]

    Tai DQ,Tian J,Zhang J,Song TT,Yao YC. A Malus crabapple chalcone synthase gene,McCHS,regulates red petal color and flavonoid biosynthesis[J]. PLoS One,2014,9 (10):e110570. doi: 10.1371/journal.pone.0110570

    [37]

    McKhann HI,Paiva NL,Dixon RA,Hirsch AM. Expression of genes for enzymes of the flavonoid biosynthetic pathway in the early stages of the Rhizobium-legume symbiosis[J]. Adv Exp Med Biol,1998,439:45−54.

    [38]

    Zhao DQ,Tao J,Han CX,Ge JT. Flower color diversity revealed by differential expression of flavonoid biosynthetic genes and flavonoid accumulation in herbaceous peony (Paeonia lactiflora Pall.)[J]. Mol Biol Rep,2012,39 (12):11263−11275. doi: 10.1007/s11033-012-2036-7

    [39]

    Wang LX,Lui ACW,Lam PY,Liu GQ,Godwin ID,Lo C. Transgenic expression of flavanone 3-hydroxylase redirects flavonoid biosynthesis and alleviates anthracnose susceptibility in sorghum[J]. Plant Biotechnol J,2020,18 (11):2170−2172. doi: 10.1111/pbi.13397

    [40]

    Tu YH,Liu F,Guo DD,Fan LJ,Zhu ZX,et al. Molecular characterization of flavanone 3-hydroxylase gene and flavonoid accumulation in two chemotyped safflower lines in response to methyl jasmonate stimulation[J]. BMC Plant Biol,2016,16 (1):132. doi: 10.1186/s12870-016-0813-5

    [41]

    Deng J,Fu ZY,Chen S,Damaris RN,Wang K,et al. Proteomic and epigenetic analyses of lotus (Nelumbo nucifera) petals between red and white cultivars[J]. Plant Cell Physiol,2015,56 (8):1546−1555. doi: 10.1093/pcp/pcv077

    [42]

    Kim EY,Kim CW,Kim S. Identification of two novel mutant ANS alleles responsible for inactivation of anthocyanidin synthase and failure of anthocyanin production in onion (Allium cepa L.)[J]. Euphytica,2016,212 (3):427−437. doi: 10.1007/s10681-016-1774-3

    [43]

    Deng J,Su MY,Zhang XY,Liu XL,Damaris RN,et al. Proteomic and metabolomic analyses showing the differentially accumulation of NnUFGT2 is involved in the petal red-white bicolor pigmentation in lotus (Nelumbo nucifera)[J]. Plant Physiol Biochem,2023,198:107675. doi: 10.1016/j.plaphy.2023.107675

    [44]

    Quattrocchio F,Wing JF,van der Woude K,Mol JNM,Koes R. Analysis of bHLH and MYB domain proteins:species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes[J]. Plant J,1998,13 (4):475−488. doi: 10.1046/j.1365-313X.1998.00046.x

    [45]

    Stracke R,Ishihara H,Huep G,Barsch A,Mehrtens F,et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling[J]. Plant J,2007,50 (4):660−677. doi: 10.1111/j.1365-313X.2007.03078.x

    [46]

    Baudry A,Heim MA,Dubreucq B,Caboche M,Weisshaar B,Lepiniec L. TT2,TT8,and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana[J]. Plant J,2004,39 (3):366−380. doi: 10.1111/j.1365-313X.2004.02138.x

    [47]

    Cai TY,Ge-Zhang SJ,Song MB. Anthocyanins in metabolites of purple corn[J]. Front Plant Sci,2023,14:1154535. doi: 10.3389/fpls.2023.1154535

    [48]

    Zhang Y,Butelli E,Martin C. Engineering anthocyanin biosynthesis in plants[J]. Curr Opin Plant Biol,2014,19:81−90. doi: 10.1016/j.pbi.2014.05.011

    [49]

    Petroni K,Tonelli C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs[J]. Plant Sci,2011,181 (3):219−229. doi: 10.1016/j.plantsci.2011.05.009

    [50]

    Chen YB,Wu PZ,Zhang C,Guo YL,Liao BB,et al. Ectopic expression of JcCPL1,2,and 4 affects epidermal cell differentiation,anthocyanin biosynthesis and leaf senescence in Arabidopsis thaliana[J]. Int J Mol Sci,2022,23 (4):1924. doi: 10.3390/ijms23041924

    [51] 高国应,伍小方,张大为,周定港,张凯旋,严明理. MBW复合体在植物花青素合成途径中的研究进展[J]. 生物技术通报,2020,36(1):126−134. doi: 10.13560/j.cnki.biotech.bull.1985.2019-0738

    Gao GY,Wu XF,Zhang DW,Zhou DG,Zhang KX,Yan ML. Research progress on the MBW complexes in plant anthocyanin biosynthesis pathway[J]. Biotechnol Bull,2020,36 (1):126−134. doi: 10.13560/j.cnki.biotech.bull.1985.2019-0738

    [52]

    Zhao XC,Zhang YR,Long T,Wang SC,Yang J. Regulation mechanism of plant pigments biosynthesis:anthocyanins,carotenoids,and betalains[J]. Metabolites,2022,12 (9):871. doi: 10.3390/metabo12090871

    [53]

    Lai B,Li XJ,Hu B,Qin YH,Huang XM,et al. LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes,tissues,developmental phases and ABA and light stimuli in Litchi chinensis[J]. PLoS One,2014,9 (1):e86293. doi: 10.1371/journal.pone.0086293

    [54]

    Nesi N,Jond C,Debeaujon I,Caboche M,Lepiniec L. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed[J]. Plant Cell,2001,13 (9):2099−2114. doi: 10.1105/TPC.010098

    [55]

    Dubos C,Stracke R,Grotewold E,Weisshaar B,Martin C,Lepiniec L. MYB transcription factors in Arabidopsis[J]. Trends Plant Sci,2010,15 (10):573−581. doi: 10.1016/j.tplants.2010.06.005

    [56]

    Si ZZ,Wang LJ,Ji ZX,Zhao MM,Zhang K,Qiao YK. Comparative analysis of the MYB gene family in seven Ipomoea species[J]. Front Plant Sci,2023,14:1155018. doi: 10.3389/fpls.2023.1155018

    [57]

    Liu JY,Osbourn A,Ma PD. MYB transcription factors as regulators of phenylpropanoid metabolism in plants[J]. Mol Plant,2015,8 (5):689−708. doi: 10.1016/j.molp.2015.03.012

    [58]

    Stracke R,Werber M,Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana[J]. Curr Opin Plant Biol,2001,4 (5):447−456. doi: 10.1016/S1369-5266(00)00199-0

    [59]

    Hichri I,Barrieu F,Bogs J,Kappel C,Delrot S,Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway[J]. J Exp Bot,2011,62 (8):2465−2483. doi: 10.1093/jxb/erq442

    [60]

    Naing AH,Kim CK. Roles of R2R3-MYB transcription factors in transcriptional regulation of anthocyanin biosynthesis in horticultural plants[J]. Plant Mol Biol,2018,98 (1):1−18.

    [61]

    Haga N,Kato K,Murase M,Araki S,Kubo M,et al. R1R2R3-Myb proteins positively regulate cytokinesis through activation of KNOLLE transcription in Arabidopsis thaliana[J]. Development,2007,134 (6):1101−1110. doi: 10.1242/dev.02801

    [62]

    Sun SS,Gugger PF,Wang QF,Chen JM. Identification of a R2R3-MYB gene regulating anthocyanin biosynthesis and relationships between its variation and flower color difference in lotus (Nelumbo Adans.)[J]. PeerJ,2016,4:e2369. doi: 10.7717/peerj.2369

    [63]

    Liu J, Wang YX, Deng XB, Zhang MH, Sun H, et al. Transcription factor NnMYB5 controls petal color by regulating GLUTATHIONE S-TRANSFERASE2 in Nelumbo nucifera[J]. Plant Physiol, 2023, kiad363.

    [64]

    Hao YQ,Zong XM,Ren P,Qian YQ,Fu AG. Basic helix-loop-helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis[J]. Int J Mol Sci,2021,22 (13):7152. doi: 10.3390/ijms22137152

    [65]

    Qiu ZK,Wang XX,Gao JC,Guo YM,Huang ZJ,Du YC. The tomato Hoffman’s anthocyaninless gene encodes a bHLH transcription factor involved in anthocyanin biosynthesis that is developmentally regulated and induced by low temperatures[J]. PLoS One,2016,11 (3):e0151067. doi: 10.1371/journal.pone.0151067

    [66]

    Wang LH,Tang W,Hu YW,Zhang YB,Sun JQ,et al. A MYB/bHLH complex regulates tissue-specific anthocyanin biosynthesis in the inner pericarp of red-centered kiwifruit Actinidia chinensis cv. Hongyang[J]. Plant J,2019,99 (2):359−378. doi: 10.1111/tpj.14330

    [67]

    Gao C,Guo Y,Wang J,Li D,Liu K,et al. Brassica napusGLABRA3-1 promotes anthocyanin biosynthesis and trichome formation in true leaves when expressed in Arabidopsis thaliana[J]. Plant Biol,2018,20 (1):3−9. doi: 10.1111/plb.12633

    [68]

    Deng J,Li JJ,Su MY,Lin ZY,Chen L,Yang PF. A bHLH gene NnTT8 of Nelumbo nucifera regulates anthocyanin biosynthesis[J]. Plant Physiol Biochem,2021,158:518−523. doi: 10.1016/j.plaphy.2020.11.038

    [69]

    Lefebvre V,North H,Frey A,Sotta B,Seo M,et al. Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy[J]. Plant J,2006,45 (3):309−319. doi: 10.1111/j.1365-313X.2005.02622.x

    [70]

    Ito S,Song YH,Josephson-Day AR,Miller RJ,Breton G,et al. FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis[J]. Proc Natl Acad Sci USA,2012,109 (9):3582−3587. doi: 10.1073/pnas.1118876109

    [71]

    Oh E,Yamaguchi S,Kamiya Y,Bae G,Chung WI,Choi G. Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis[J]. Plant J,2006,47 (1):124−139. doi: 10.1111/j.1365-313X.2006.02773.x

    [72]

    Xu C,Min JR. Structure and function of WD40 domain proteins[J]. Protein Cell,2011,2 (3):202−214. doi: 10.1007/s13238-011-1018-1

    [73]

    Chen L,Cui YM,Yao YH,An LK,Bai YX,et al. Genome-wide identification of WD40 transcription factors and their regulation of the MYB-bHLH-WD40 (MBW) complex related to anthocyanin synthesis in Qingke (Hordeum vulgare L. var. nudum Hook. f.)[J]. BMC Genomics,2023,24 (1):166. doi: 10.1186/s12864-023-09240-5

    [74]

    De Vetten N,Quattrocchio F,Mol J,Koes R. The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast,plants,and animals[J]. Genes Dev,1997,11 (11):1422−1434. doi: 10.1101/gad.11.11.1422

    [75]

    Carey CC,Strahle JT,Selinger DA,Chandler VL. Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana[J]. Plant Cell,2004,16 (2):450−464. doi: 10.1105/tpc.018796

    [76]

    Walker AR,Davison PA,Bolognesi-Winfield AC,James CM,Srinivasan N,et al. The TRANSPARENT TESTA GLABRA1 locus,which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis,encodes a WD40 repeat protein[J]. Plant Cell,1999,11 (7):1337−1349. doi: 10.1105/tpc.11.7.1337

    [77]

    Yang XH,Wang JR,Xia XZ,Zhang ZQ,He J,et al. OsTTG1,a WD40 repeat gene,regulates anthocyanin biosynthesis in rice[J]. Plant J,2021,107 (1):198−214. doi: 10.1111/tpj.15285

    [78]

    Zhao MR,Li J,Zhu L,Chang P,Li LL,Zhang LY. Identification and characterization of MYB-bHLH-WD40 regulatory complex members controlling anthocyanidin biosynthesis in blueberry fruits development[J]. Genes,2019,10 (7):496. doi: 10.3390/genes10070496

    [79]

    González-Villagra J,Cohen JD,Reyes-Díaz MM. Abscisic acid is involved in phenolic compounds biosynthesis,mainly anthocyanins,in leaves of Aristotelia chilensis plants (Mol.) subjected to drought stress[J]. Physiol Plant,2019,165 (4):855−866. doi: 10.1111/ppl.12789

    [80]

    Li Z,Ahammed GJ. Hormonal regulation of anthocyanin biosynthesis for improved stress tolerance in plants[J]. Plant Physiol Biochem,2023,201:107835. doi: 10.1016/j.plaphy.2023.107835

    [81] 王峰,王秀杰,赵胜男,闫家榕,卜鑫,等. 光对园艺植物花青素生物合成的调控作用[J]. 中国农业科学,2020,53(23):4904−4917. doi: 10.3864/j.issn.0578-1752.2020.23.015

    Wang F,Wang XJ,Zhao SN,Yan JR,Bu X,et al. Light regulation of anthocyanin biosynthesis in horticultural crops[J]. Sci Agric Sin,2020,53 (23):4904−4917. doi: 10.3864/j.issn.0578-1752.2020.23.015

图(1)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  47
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-01
  • 修回日期:  2023-09-19
  • 刊出日期:  2024-01-04

目录

/

返回文章
返回