Responses of leaf and fine root functional traits to water-salt gradients in the Fuzhou section of the Minjiang River Basin
-
摘要:
叶片和细根是植物获取资源最重要的器官,探究叶片、细根功能性状之间的相互关系及其对环境梯度变化的响应,有利于揭示植物对资源的利用情况以及对环境变化适应的生态策略。本文以湿地草本植物为研究对象,闽江流域福州段4个典型湿地为研究区域,设置了3条垂直于河道的调查样带,108个样方,选取7个叶功能性状以及5个细根功能性状指标,运用单因素方差分析、相关性分析、冗余分析等方法分析湿地草本植物叶片与细根功能性状对水盐梯度的响应。结果显示:(1)叶形指数和根组织密度变异系数最大;(2)叶厚、叶干物质含量、根体积、比根长随着水盐条件的增加而增加,比叶面积和根组织密度则随着水盐条件的增加而减小,冗余分析表明土壤含水量的影响更为关键;(3)比叶面积与叶面积、叶厚等呈极显著负相关;叶组织密度和叶干物质含量均与比根长、比根面积均呈极显著正相关;(4)地上和地下部分的功能性状在不同的水盐梯度下,一部分成对性状会呈现协同一致的趋势。研究结果说明,湿地草本植物对于水盐条件变化的适应能够通过叶、细根功能性状的相互调节而实现,具有较强的性状可塑性。
Abstract:Leaves and fine roots are the most important organs for plant resource acquisition. Exploring the relationship between their functional traits and responses to environmental gradients can reflect the adaptive strategies of plants to cope with environmental change. Here, we examined wetland herbage in the Fuzhou section of the Minjiang River Basin, establishing three belts and 108 quadrats across four typical wetlands, and selected seven leaf functional traits and five fine root functional traits to analyze their responses to water and salt gradients using single-factor analysis of variance, correlation analysis, and redundancy analysis. Results showed that the coefficients of variation for leaf index and root tissue density were notably high. Leaf thickness, leaf dry matter content, root volume, and specific root length increased with increasing water and salt content, while specific leaf area and root tissue density decreased. Redundancy analysis showed that soil water content was the most significant. Leaf area was negatively correlated with leaf thickness, leaf area. Leaf tissue density, and leaf dry matter content were positively correlated with specific root length and specific root area. Under different water and salt gradients, the functional traits of the above-ground and below-ground parts showed a synergistic trend. Overall, this study revealed the leaves and fine roots trait dynamics of wetland herbaceous plants under varying water-salt conditions, enhancing our understanding of their response mechanisms to water-salt gradients as well as wetland plant resource acquisition and adaptation strategies in southeast China.
-
Keywords:
- Wetland plant /
- Leaves /
- Fine roots /
- Functional traits /
- Water-salt gradient
-
-
图 2 不同水盐梯度下湿地草本植物叶功能性状的差异性
不同小写字母表示不同水盐条件间差异显著(P<0.05)。下同。
Figure 2. Differential leaf functional traits of wetland herbaceous plants under different water-salt gradients
Different lowercase letters indicate significant differences between different water-salt gradients at the 0.05 level (P<0.05). Same below.
图 4 叶片、细根功能性状与土壤水盐因子的 RDA 排序
LT:叶厚;LI:叶形指数;LP:叶周长;LA:叶面积;SLA:比叶面积;LDMC:叶干物质含量;LTD:叶组织密度;RAD:根平均直径;SRL:比根长;RV:根体积;SRA:比根面积;RTD:根组织密度;SSW:土壤含水量;SSC:土壤含盐量。
Figure 4. RDA between leaf and root functional traits and soil water-salt
LT: Leaf thickness; LI: Leaf index; LP: Leaf perimeter; LA: Leaf area; SLA: Specific leaf area; LDMC: Leaf dry matter content; LTD: Leaf tissue density; RAD: Root average diameter; SRL: Specific root length; RV: Root volume; SRA: Specific root area; RTD: Root tissue density; SSW: Soil water content; SSC: Soil salt content.
表 1 不同水盐梯度下土壤含水量和含盐量的特征及样地概况
Table 1 Values of water and salt content under different water-salt gradients
水盐梯度
Water and salt gradient样方数
Plot土壤含盐量
Soil salt
content / ‰土壤含水量
Soil water
content / %平均盖度
Average
coverage / %平均株高
Average
height / cm优势种
Dominant speciesS1 54 0.19±0.13 20.42±13.64 79 31 芦苇Phragmites australis Trin、
春蓼Persicaria maculosa Holub、
短叶茳芏Cyperus malaccensis Koyama、
扯根菜Penthorum chinense Pursh
水蓼Persicaria hydropiper SpachS2 27 0.72±0.30 79.18±7.69 85 90 芦苇、春蓼、短叶茳芏 S3 27 7.19±2.65 81.56±7.22 87 148.14 芦苇、短叶茳芏、 注:S1,极低盐低水;S2,低盐中水;S3,中盐高水。下同。 Notes: S1, extremely low salt and low water; S2, low salt and medium water; S3, medium salt and high water. Same below. 表 2 叶片、细根功能性状的特征
Table 2 Characteristics of functional traits of fine roots and leaves
植物功能性状
Functional traits of plants平均值
Mean标准偏差
Standard error最小值
Minimum最大值
Maximum变异系数
Coefficient of variation / %叶功功能性状 叶厚LT / mm 0.23 0.15 0.06 0.97 66.58 叶形指数LI 42.48 60.53 1.72 265.76 142.48 叶周长LP / cm 98.07 88.45 5.28 377.54 90.19 叶面积LA / cm2 53.33 48.19 1.37 222.54 90.37 比叶面积SLA / cm2/g 226.29 187.27 21.14 1 065.60 82.75 叶干物质含量LDMC / g/kg 267.33 98.31 40.94 582.49 36.78 叶组织密度LTD / g/cm3 0.35 0.43 0.01 3.05 124.79 根功能性状 根平均直径RAD / mm 1.02 0.44 0.39 1.94 43.17 比根长SRL / m/g 24.45 16.90 0.64 67.91 69.12 根体积RV / cm3 6.59 4.49 0.75 21.37 68.15 比根面积SRA / m2/g 0.04 0.02 0.01 0.09 59.50 根组织密度RTD / g/cm3 0.36 0.45 0.03 4.49 126.07 注:变异系数为标准差/平均值×100%。 Note: CV, Standard error/mean×100%. 表 3 植物叶片、细根功能性状相关性分析
Table 3 Correlation analysis of functional traits of plant leaves and fine roots
植物功能性状指标
Functional traits
of plantsLT LI LP LA SLA LDMC LTD RAD RV SRL SRA LI 0.395** LP 0.290** 0.831** LA 0.073 0.199* 0.665** SLA −0.349** −0.498** −0.588** −0.420** LDMC 0.156 0.057 0.272** 0.355** −0.483** LTD −0.466** −0.141 0.128 0.297** −0.334** 0.393** RAD −0.047 0.101 0.351** 0.480** −0.297** 0.200* 0.434** RV 0.082 0.162 0.373** 0.554** −0.450** 0.358** 0.327** 0.727** SRL 0.236* −0.002 −0.086 −0.128 −0.079 0.323** −0.242* −0.191* −0.011 SRA 0.219* −0.010 −0.136 −0.126 −0.107 0.148 −0.319** −0.169 0.069 0.786** RTD −0.113 −0.040 0.132 0.231* 0.020 −0.058 0.196* −0.013 −0.140 −0.390** −0.508** 注:*,P<0.05,**,P<0.01。参数缩写同图4。 Note: Parameter abbreviations are as shown in Fig. 4. -
[1] Laurance SGW,Baider C,Florens FBV,Ramrekha S,Sevathian JC,Hammond DS. Drivers of wetland disturbance and biodiversity impacts on a tropical oceanic island[J]. Biol Conserv,2012,149(1):136−142. doi: 10.1016/j.biocon.2011.12.015
[2] 赵敏,赵锐锋,张丽华,赵海莉,周远刚. 基于盐分梯度的黑河中游湿地植物多样性及其与土壤因子的关系[J]. 生态学报,2019,39(11):4116−4126 Zhao M,Zhao RF,Zhang LH,Zhao HL,Zhou YG. Plant diversity and its relationship with soil factors in the middle reaches of the Heihe River based on the soil salinity gradient[J]. Acta Ecologica Sinica,2019,39(11):4116−4126.
[3] Lu XG,Jiang M. Progress and prospect of wetland research in China[J]. J Geogr Sci,2004,14(1):45−51. doi: 10.1007/BF02841106
[4] 王军强,刘彬,常凤,马紫荆,樊佳辉,等. 博斯腾湖湖滨带水盐梯度下植物功能性状及生态化学计量特征分析[J]. 植物生态学报,2022,46(8):961−970 doi: 10.17521/cjpe.2021.0434 Wang JQ,Liu B,Chang F,Ma ZJ,Fan JH,et al. Plant functional traits and ecological stoichiometric characteristics under water-salt gradient in the lakeshore zone of Bosten Lake[J]. Chinese Journal of Plant Ecology,2022,46(8):961−970. doi: 10.17521/cjpe.2021.0434
[5] 宋丹鸿,张雪妮,杨继粉,田景烨. 荒漠植物不同功能群性状特征及其与土壤环境的关系[J]. 生态学报,2023,43(18):7403−7411 Song DH,Zhang XN,Yang JF,Tian JY. Traits of different functional groups of desert plants and their relationship with soil environment[J]. Acta Ecologica Sinica,2023,43(18):7403−7411.
[6] 孟阳阳,刘冰,刘婵. 水盐梯度下湿地柽柳(Tamarix ramosissima)光合响应特征和水分利用效率[J]. 中国沙漠,2018,38(3):568−577 doi: 10.7522/j.issn.1000-694X.2017.00099 Meng YY,Liu B,Liu C. Photosynthetic response characteristics and water use efficiency of Tamarix chinensis under water and salt gradients in wetlands[J]. Journal of Desert Research,2018,38(3):568−577. doi: 10.7522/j.issn.1000-694X.2017.00099
[7] 柏旭倩,赵成章,张志伟,康满萍,李群. 苏干湖盐沼湿地盐角草和海韭菜种群空间格局及其关联性[J]. 生态学杂志,2022,41(7):1391−1397 Bai XQ,Zhao CZ,Zhang ZW,Kang MP,Li Q. Spatial pattern and interspecific association of Salicornia europaea and Triglochin maritima populations in salt marsh of Sugan Lake[J]. Chinese Journal of Ecology,2022,41(7):1391−1397.
[8] 张剑,包雅兰,宿力,王利平,陆静雯,曹建军. 敦煌阳关湿地芦苇叶性状对土壤水分的响应[J]. 生态学报,2019,39(20):7670−7678 Zhang J,Bao YL,Su L,Wang LP,Lu JW,Cao JJ. Response of Phragmites australis leaf traits to soil moisture in Yangguan wetland,Dunhuang[J]. Acta Ecologica Sinica,2019,39(20):7670−7678.
[9] 陈晓萍,郭炳桥,钟全林,王满堂,李曼,等. 武夷山不同海拔黄山松细根碳、氮、磷化学计量特征对土壤养分的适应[J]. 生态学报,2018,38(1):273−281 Chen XP,Guo BQ,Zhong QL,Wang MT,Li M,et al. Response of fine root carbon,nitrogen,and phosphorus stoichiometry to soil nutrients in Pinus taiwanensis along an elevation gradient in the Wuyi mountains[J]. Acta Ecolo gica Sinica,2018,38(1):273−281.
[10] 赵广帅,刘珉,石培礼,宗宁,张鑫,张宪洲. 羌塘高原降水梯度植物叶片、根系性状变异和生态适应对策[J]. 生态学报,2020,40(1):295−309 Zhao GS,Liu M,Shi PL,Zong N,Zhang X,Zhang XZ. Variation of leaf and root traits and ecological adaptive strategies along a precipitation gradient on Changtang Plateau[J]. Acta Ecologica Sinica,2020,40(1):295−309.
[11] Tjoelker MG,Craine JM,Wedin D,Reich PB,Tilman D. Linking leaf and root trait syndromes among 39 grassland and savannah species[J]. New Phytol,2005,167(2):493−508. doi: 10.1111/j.1469-8137.2005.01428.x
[12] Fortunel C,Fine PVA,Baraloto C. Leaf,stem and root tissue strategies across 758 Neotropical tree species[J]. Funct Ecol,2012,26(5):1153−1161. doi: 10.1111/j.1365-2435.2012.02020.x
[13] De Battisti D,Fowler MS,Jenkins SR,Skov MW,Bouma TJ,et al. Multiple trait dimensions mediate stress gradient effects on plant biomass allocation,with implications for coastal ecosystem services[J]. J Ecol,2020,108(4):1227−1240. doi: 10.1111/1365-2745.13393
[14] 夏蕾,吉卉,张家铱,韩飞,高剑飞,刘碧桃. 降水差异对内蒙古温带草原植物根系和叶片功能性状的影响[J]. 西北植物学报,2022,42(12):2112−2122 doi: 10.7606/j.issn.1000-4025.2022.12.2112 Xia L,Ji H,Zhang JY,Han F,Gao JF,Liu BT. Effects of different precipitation on root and leaf functional traits of plants in inner Mongolia temperate steppe[J]. Acta Bota nica Boreali-Occidentalia Sinica,2022,42(12):2112−2122. doi: 10.7606/j.issn.1000-4025.2022.12.2112
[15] 王军,严有龙,王金满,应凌霄,唐倩. 闽江流域生境质量时空演变特征与预测研究[J]. 生态学报,2021,41(14):5837−5848 Wang J,Yan YL,Wang JM,Ying LX,Tang Q. Temporal-spatial variation characteristics and prediction of habitat quality in Min River Basin[J]. Acta Ecologica Sinica,2021,41(14):5837−5848.
[16] 王纯,陈晓旋,陈优阳,牟晓杰,万斯昂,等. 水盐梯度对闽江河口湿地土壤水稳性团聚体分布及稳定性的影响[J]. 环境科学学报,2019,39(9):3117−3125 Wang C,Chen XX,Chen YY,Mou XJ,Wan SA,et al. Effects of hydrologic and salinity gradients on the distribution and stability of wetland soil water-stable aggregates in the Min River estuary[J]. Acta Scientiae Circumstantiae,2019,39(9):3117−3125.
[17] 胡启凯,罗敏,黄佳芳,吴杰,朱爱菊,等. 闽江河口潮汐沼泽湿地天然低盐度梯度土壤胞外酶活性特征[J]. 环境科学学报,2019,39(9):3107−3116 Hu QK,Luo M,Huang JF,Wu J,Zhu AJ,et al. Soil extracellular enzyme activities in low salinity gradient tidal marshes of the Min River estuary,southeast China[J]. Acta Scientiae Circumstantiae,2019,39(9):3107−3116.
[18] 方精云,王襄平,沈泽昊,唐志尧,贺金生,等. 植物群落清查的主要内容、方法和技术规范[J]. 生物多样性,2009,17(6):533−548 doi: 10.3724/SP.J.1003.2009.09253 Fang JY,Wang XP,Shen ZH,Tang ZY,He JS,et al. Methods and protocols for plant community inventory[J]. Biodiversity Science,2009,17(6):533−548. doi: 10.3724/SP.J.1003.2009.09253
[19] 刘广明,杨劲松,姜艳. 江苏典型滩涂区地下水及土壤的盐分特征研究[J]. 土壤,2005,37(2):163−168 doi: 10.3321/j.issn:0253-9829.2005.02.009 Liu GM,Yang JS,Jiang Y. Salinity characters of soils and groundwater in typical coastal area in Jiangsu Province[J]. Soils,2005,37(2):163−168. doi: 10.3321/j.issn:0253-9829.2005.02.009
[20] 徐梦琦,高艳菊,张志浩,曾凡江. 骆驼刺叶片和根系主要功能性状对水分胁迫的适应[J]. 草业科学,2021,38(8):1559−1569 Xu MQ,Gao YJ,Zhang ZH,Zeng FJ. Adaptation of the main functional trait of Alhagi sparsifolia leaves and roots to soil water stress[J]. Pratacultural Science,2021,38(8):1559−1569.
[21] Odum WE. Comparative ecology of tidal freshwater and salt marshes[J]. Annu Rev Ecol Syst,1988,19(1):147−176. doi: 10.1146/annurev.es.19.110188.001051
[22] Campetella G,Chelli S,Simonetti E,Damiani C,Bartha S,et al. Plant functional traits are correlated with species persistence in the herb layer of old-growth beech forests[J]. Sci Rep,2020,10(1):19253. doi: 10.1038/s41598-020-76289-7
[23] 陈文,王桔红,马瑞君,齐威,刘坤,等. 粤东89种常见植物叶功能性状变异特征[J]. 生态学杂志,2016,35(8):2101−2109 Chen W,Wang JH,Ma RJ,Qi W,Liu K,et al. Variance in leaf functional traits of 89 species from the eastern Guangdong of China[J]. Chinese Journal of Ecology,2016,35(8):2101−2109.
[24] 武燕,尹建军,李善家. 黑河下游荒漠植物黑果枸杞叶片性状特征及其盐分响应[J]. 生态学杂志,2017,36(5):1277−1284 Wu Y,Yin JJ,Li SJ. Leaf traits of desert plant Lycium ruthenicum Murr. in the lower reaches of Heihe River in response to salinity[J]. Chinese Journal of Ecology,2017,36(5):1277−1284.
[25] 孙小祥,易雪梅,黄远洋,陈姗姗,马茂华,吴胜军. 三峡库区消落带四种主要植物叶片功能性状分异特征[J]. 三峡生态环境监测,2021,6(4):1−10 Sun XX,Yi XM,Huang YY,Chen SS,Ma MH,Wu SJ. Variation features of plant leaf functional traits for four main species in the hydro-fluctuation zone of Three Gorges Reservoir[J]. Ecology and Environmental Monitoring of Three Gorges,2021,6(4):1−10.
[26] 韩玲,赵成章,徐婷,冯威,段贝贝. 不同土壤水分条件下洪泛平原湿地芨芨草叶片厚度与叶脉性状的关系[J]. 植物生态学报,2017,41(5):529−538 doi: 10.17521/cjpe.2016.0123 Han L,Zhao CZ,Xu T,Feng W,Duan BB. Relationships between leaf thickness and vein traits of Achnatherum splendens under different soil moisture conditions in a flood plain wetland,Heihe River,China[J]. Chinese Journal of Plant Ecology,2017,41(5):529−538. doi: 10.17521/cjpe.2016.0123
[27] McDowell N,Pockman WT,Allen CD,Breshears DD,Cobb N,et al. Mechanisms of plant survival and mortality during drought:why do some plants survive while others succumb to drought?[J]. New Phytol,2008,178(4):719−739. doi: 10.1111/j.1469-8137.2008.02436.x
[28] 周丽丽,钱瑞玲,李树斌,董博微,陈宝英,潘辉. 滨海沙地主要造林树种叶片功能性状及养分重吸收特征[J]. 应用生态学报,2019,30(7):2320−2328 Zhou LL,Qian RL,Li SB,Dong BW,Chen BY,Pan H. Leaf functional traits and nutrient resorption among major silviculture tree species in coastal sandy site[J]. Chinese Journal of Applied Ecology,2019,30(7):2320−2328.
[29] Lasky JR,Uriarte M,Boukili VK,Chazdon RL. Trait-mediated assembly processes predict successional changes in community diversity of tropical forests[J]. Proc Natl Acad Sci USA,2014,111(15):5616−5621. doi: 10.1073/pnas.1319342111
[30] Roumet C,Birouste M,Picon-Cochard C,Ghestem M,Osman N,et al. Root structure–function relationships in 74 species:evidence of a root economics spectrum related to carbon economy[J]. New Phytol,2016,210(3):815−826. doi: 10.1111/nph.13828
[31] De la Riva EG,Marañón T,Pérez-Ramos IM,Navarro-Fernández CM,Olmo M,Villar R. Root traits across environmental gradients in Mediterranean woody communities:are they aligned along the root economics spectrum?[J]. Plant Soil,2018,424(1-2):35−48. doi: 10.1007/s11104-017-3433-4
[32] Isaac ME,Martin AR,de Melo Virginio Filho E,Rapidel B,Roupsard O,van den Meersche K. Intraspecific trait variation and coordination:root and leaf economics spectra in coffee across environmental gradients[J]. Front Plant Sci,2017,8:1196. doi: 10.3389/fpls.2017.01196
[33] 王继伟,赵成章,赵连春,王小鹏,李群. 内陆盐沼芦苇根系形态及生物量分配对土壤盐分因子的响应[J]. 生态学报,2018,38(13):4843−4851 Wang JW,Zhao CZ,Zhao LC,Wang XP,Li Q. Response of root morphology and biomass of Phragmites australis to soil salinity in inland salt marsh[J]. Acta Ecologica Sinica,2018,38(13):4843−4851.
[34] 周荣磊,温仲明,刘洋洋,崔梦莹,杨玉婷,等. 延河流域不同植被带植物功能性状变化及其对环境因子的响应[J]. 生态学报,2023,43(14):6045−6057 Zhou RL,Wen ZM,Liu YY,Cui MY,Yang YT,et al. Responses of plant functional traits to environmental variables across different vegetation zones in the Yanhe River Basin[J]. Acta Ecologica Sinica,2023,43(14):6045−6057.
[35] 王飞,郭树江,纪永福,张莹花,韩福贵,等. 不同演替阶段白刺灌丛沙堆土壤因子与叶功能性状关系研究[J]. 干旱区地理,2022,45(1):176−184 doi: 10.12118/j.issn.10006060.2021.141 Wang F,Guo SJ,Ji YF,Zhang YH,Han FG,et al. Relationship between soil factors and leaf functional traits of Nitraria tangutorum shrub at different succession stages[J]. Arid Land Geography,2022,45(1):176−184. doi: 10.12118/j.issn.10006060.2021.141
[36] 钟巧连,刘立斌,许鑫,杨勇,郭银明,等. 黔中喀斯特木本植物功能性状变异及其适应策略[J]. 植物生态学报,2018,42(5):562−572 doi: 10.17521/cjpe.2017.0270 Zhong QL,Liu LB,Xu X,Yang Y,Guo YM,et al. Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province,southwestern China[J]. Chinese Journal of Plant Ecology,2018,42(5):562−572. doi: 10.17521/cjpe.2017.0270
[37] Chen WL,Koide RT,Adams TS,Deforest JL,Cheng L,Eissenstat DM root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees[J]. Proc Natl Acad Sci USA,2016,113(31):8741−8746.
[38] 陈蕾如,马锐豪,王斐,夏开,邓鹏飞,徐小牛. 城乡梯度下5种园林树种叶片与细根功能性状的变异特点[J]. 生态学杂志,2023,42(6):1281−1289 Chen LR,Ma RH,Wang F,Xia K,Deng PF,Xu XN. Variations of leaf and fine-root functional traits of five garden tree species across an urban-rural gradient[J]. Chinese Journal of Ecology,2023,42(6):1281−1289.
[39] Zhang LW,Wang BC. Intraspecific interactions shift from competitive to facilitative across a low to high disturbance gradient in a salt marsh[J]. Plant Ecol,2016,217(8):959−967. doi: 10.1007/s11258-016-0621-x
[40] Myers-Smith IH,Thomas HJD,Bjorkman AD. Plant traits inform predictions of tundra responses to global change[J]. New Phytol,2019,221(4):1742−1748. doi: 10.1111/nph.15592
[41] May F,Grimm V,Jeltsch F. Reversed effects of grazing on plant diversity:the role of below‐ground competition and size symmetry[J]. Oikos,2009,118(12):1830−1843. doi: 10.1111/j.1600-0706.2009.17724.x
[42] 昝瑛,索朗玉珍,马竟文,余钰淋,陶建平,罗唯学. 降雨极端化对喀斯特草本植物功能性状的影响[J]. 西南大学学报(自然科学版),2022,44(9):20−31 Zan Y,Suolang YZ,Ma JW,Yu YL,Tao JP,Luo WX. Effects of rainfall extremes on functional traits of Karst Herbaceous plants[J]. Journal of Southwest University (Natural Science Edition),2022,44(9):20−31.
[43] Wang RL,Wang QF,Zhao N,Yu GR,He NP. Complex trait relationships between leaves and absorptive roots:coordination in tissue N concentration but divergence in morphology[J]. Ecol Evol,2017,7(8):2697−2705. doi: 10.1002/ece3.2895
[44] Craine JM,Lee WG,Bond WJ,Williams RJ,Johnson LC. Environmental constraints on a global relationship among leaf and root traits of grasses[J]. Ecology,2005,86(1):12−19. doi: 10.1890/04-1075