Identification and bioinformatics analysis of the FAD2 gene family in Aralia species
-
摘要:
聚炔类化合物(PAs)是一类主要由桔梗类植物产生、具生物活性的植物特异性防御物质。其上游合成步骤由脂肪酸去饱和酶2(FAD2)催化。本文以PA的主要来源植物之一,桔梗类的五加科楤木属(Aralia)为研究对象,对楤木(A. elata(Miq.) Seem.)和龙眼独活(A. fargesiiFranch.)的FAD2基因家族进行鉴定,并对其保守基序、结构域、染色体分布、基因共线性、进化关系、分子演化速率以及表达情况进行分析。结果显示,楤木属的FAD2基因家族经历了广泛扩张,这可能是通过全基因组加倍/片段重复实现的;不同功能的FAD2保守基序完全一致,但楤木属不同生活型(草本vs.木本)代表物种FAD2的保守基序却产生了分化;楤木中可能有4个不同功能的FAD2基因,其在不同组织中的表达情况不同。本研究可为后续楤木属的物种鉴定、聚炔类物质合成新基因的挖掘以及桔梗类植物具高度多样化PAs分子机制的揭示提供参考。
Abstract:Polyacetylenes (PAs) are a class of bioactive plant-specific defense compounds primarily produced by campanulid plants. Early PA biosynthesis is catalyzed by fatty acid desaturase 2 (FAD2). In this study, we identified theFAD2gene family inAralia elata(Miq.) Seem. andA. fargesiiFranch., members of the Araliaceae family, a major source of PA, and analyzed their conserved motifs, domains, chromosome distribution, gene collinearity, evolutionary relationships, molecular evolution rates, and expression patterns. Results indicated that theFAD2gene family inAraliahas undergone extensive expansion, likely through whole-genome duplication (WGD) or segmental duplication. The conserved motifs of FAD2, despite their different functions, were consistent, but diverged in representativeAraliaspecies with different life forms (herbaceous vs. woody). Furthermore,A. elatapossessed four different functionalFAD2genes, expressed differently in different tissues. This study holds important theoretical significance for the identification ofAraliaspecies, the discovery of new genes for PA synthesis, and the elucidation of the molecular mechanisms underlying the high diversity of PAs in campanulids.
-
1 如需查阅附表内容请登录《植物科学学报》网站(http://www.plantscience.cn)查看本期文章。2 如需查阅附图内容请登录《植物科学学报》网站(http://www.plantscience.cn)查看本期文章。3 如需查阅附表内容请登录《植物科学学报》网站(http://www.plantscience.cn)查看本期文章。 -
图 1 不同植物FAD2蛋白序列系统发育关系(A)、保守基序(B)及结构域(C)分布
DES:去饱和酶;OH:羟化酶;EPOX:环氧酶;ACET:乙炔酶;CONJ:共轭酶;DES-OH和CONJ-ACET:双功能酶。
Figure 1. Phylogenetic relationships (A), conserved motifs (B), and domain (C) locations of FAD2 proteins in different plants
DES: Desaturases; OH: Hydroxylases; EPOX: Epoxygenases; ACET: Acetylenases; CONJ: Conjugases; DES-OH and CONJ-ACET: Bifunctional enzymes.
表 1 楤木和龙眼独活FAD2基因家族信息
Table 1 FAD2 gene family information for Aralia elata and Aralia fargesii
物种
Species基因
Gene蛋白ID
Protein ID氨基酸数目
Amino acid number / aa核苷酸长度
Nucleotide length / bpAralia elata AeFAD2-1 AE01G01834.1 383 1 152 A. elata AeFAD2-2 AE08G02729.1 437 1 314 A. elata AeFAD2-3 AE09G02236.1 386 1 161 A. elata AeFAD2-4 AE01G01826.1 382 1 149 A. elata AeFAD2-5 AE09G02238.1 386 1 161 A. elata AeFAD2-6 AE09G02243.1 386 1 161 A. elata AeFAD2-7 AE01G01829.1 386 1 161 A. elata AeFAD2-8 AE09G02248.1 385 1 158 A. elata AeFAD2-9 AE03G00727.1 387 1 164 A. elata AeFAD2-10 AE10G01657.1 382 1 149 A. elata AeFAD2-11 AE03G00790.1 389 1 170 A. elata AeFAD2-12 AE09G02247.1 382 1 149 A. elata AeFAD2-13 AE03G00739.1 389 1 170 A. elata AeFAD2-14 AE09G02239.1 452 1 359 A. elata AeFAD2-15 AE09G02245.1 383 1 152 A. elata AeFAD2-16 AE03G00732.1 393 1 182 A. elata AeFAD2-17 AE03G00735.1 384 1 155 A. elata AeFAD2-18 AE09G02241.1 406 1 221 A. elata AeFAD2-19 AE09G02246.1 458 1 377 A. elata AeFAD2-20 AE03G00743.1 384 1 155 A. elata AeFAD2-21 AE03G00740.1 384 1 155 A. elata AeFAD2-22 AE03G00733.1 485 1 458 A. elata AeFAD2-23 AE12G01565.1 685 2 058 A. elata AeFAD2-24 AE01G01831.1 395 1 188 A. elata AeFAD2-25 AE09G02237.1 814 2 445 A. elata AeFAD2-26 AE09G02250.1 392 1 179 A. elata AeFAD2-27 AE01G01828.1 781 2 346 A. elata AeFAD2-28 AE12G00429.1 395 1 188 A. elata AeFAD2-29 AE01G01823.1 392 1 179 A. elata AeFAD2-30 AE12G00160.1 582 1 749 A. elata AeFAD2-31 AE09G03101.1 361 1 086 A. elata AeFAD2-32 AE03G00745.1 287 864 A. elata AeFAD2-33 AE09G02235.1 367 1 104 A. elata AeFAD2-34 AE03G00728.1 362 1 089 A. elata AeFAD2-35 AE03G00742.1 338 1 017 A. elata AeFAD2-36 AE03G00729.1 252 759 A. elata AeFAD2-37 AE01G01824.1 512 1 539 A. elata AeFAD2-38 AE01G01825.1 230 693 A. elata AeFAD2-39 AE09G02249.1 157 474 A. elata AeFAD2-40 AE03G00726.1 278 837 Aralia fargesii AfFAD2-1 Gene.52563::CL13591.Contig2 498 1 745 A. fargesii AfFAD2-2 Gene.83966::Unigene16638 489 1 851 A. fargesii AfFAD2-3 Gene.73186::Unigene6924 493 1 844 A. fargesii AfFAD2-4 Gene.70878::Unigene5147 539 1 888 A. fargesii AfFAD2-5 Gene.63581::CL17487.Contig2 416 1 426 A. fargesii AfFAD2-6 Gene.7407::CL1310.Contig5 404 1 388 A. fargesii AfFAD2-7 Gene.7395::CL1310.Contig1 403 1 480 A. fargesii AfFAD2-8 Gene.84775::Unigene17744 285 1 174 A. fargesii AfFAD2-9 Gene.11266::CL2051.Contig2 247 1 109 A. fargesii AfFAD2-10 Gene.53738::CL14047.Contig1 289 1 105 A. fargesii AfFAD2-11 Gene.11267::CL2051.Contig3 217 437 A. fargesii AfFAD2-12 Gene.7401::CL1310.Contig2 231 896 A. fargesii AfFAD2-13 Gene.66033::Unigene1520 234 1 037 A. fargesii AfFAD2-14 Gene.71066::Unigene5247 155 657 A. fargesii AfFAD2-15 Gene.96184::Unigene34000 212 954 A. fargesii AfFAD2-16 Gene.7412::CL1310.Contig7 205 796 A. fargesii AfFAD2-17 Gene.134285::Unigene85446 133 400 A. fargesii AfFAD2-18 Gene.7402::CL1310.Contig3 192 670 A. fargesii AfFAD2-19 Gene.21482::CL4163.Contig2 119 471 A. fargesii AfFAD2-20 Gene.21480::CL4163.Contig1 121 378 A. fargesii AfFAD2-21 Gene.11263::CL2051.Contig1 145 1 018 A. fargesii AfFAD2-22 Gene.97878::Unigene36182 159 477 A. fargesii AfFAD2-23 Gene.63579::CL17487.Contig1 120 362 A. fargesii AfFAD2-24 Gene.121892::Unigene69534 118 355 A. fargesii AfFAD2-25 Gene.109004::Unigene50989 161 661 A. fargesii AfFAD2-26 Gene.53739::CL14047.Contig2 115 347 -
[1] Milo R,Last RL. Achieving diversity in the face of constraints:lessons from metabolism[J]. Science,2012,336(6089):1663−1667. doi: 10.1126/science.1217665
[2] Brockington SF,Yang Y,Gandia-Herrero F,Covshoff S,Hibberd JM,et al. Lineage-specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales[J]. New Phytol,2015,207(4):1170−1180. doi: 10.1111/nph.13441
[3] Moghe GD,Leong BJ,Hurney SM,Daniel Jones A,Last RL. Evolutionary routes to biochemical innovation revealed by integrative analysis of a plant-defense related specialized metabolic pathway[J]. eLife,2017,6:e28468. doi: 10.7554/eLife.28468
[4] 董妍玲,潘学武. 植物次生代谢产物简介[J]. 生物学通报,2002,37(11):17−19. doi: 10.3969/j.issn.0006-3193.2002.11.007 [5] Moghe GD,Kruse LH. The study of plant specialized metabolism:challenges and prospects in the genomics era[J]. Am J Bot,2018,105(6):959−962. doi: 10.1002/ajb2.1101
[6] 王年鹤,袁昌齐. 天然聚炔类化合物的研究概况[J]. 国外医学·药学分册,1990(3):129−132. [7] Negri R. Polyacetylenes from terrestrial plants and fungi:recent phytochemical and biological advances[J]. Fitote rapia,2015,106:92−109. doi: 10.1016/j.fitote.2015.08.011
[8] Minto RE,Blacklock BJ. Biosynthesis and function of polyacetylenes and allied natural products[J]. Prog Lipid Res,2008,47(4):233−306. doi: 10.1016/j.plipres.2008.02.002
[9] Christensen LP. Aliphatic C17-polyacetylenes of the falcarinol type as potential health promoting compounds in food plants of the Apiaceae family[J]. Recent Pat Food Nutr Agric,2011,3(1):64−77. doi: 10.2174/2212798411103010064
[10] Feng T,Yang Y,Busta L,Cahoon EB,Wang HC,Lü SY. FAD2 gene radiation and positive selection contributed to polyacetylene metabolism evolution in campanulids[J]. Plant Physiol,2019,181(2):714−728. doi: 10.1104/pp.19.00800
[11] Lee M,Lenman M,Banaś A,Bafor M,Singh S,et al. Identification of non-heme diiron proteins that catalyze triple bond and epoxy group formation[J]. Science,1998,280(5365):915−918. doi: 10.1126/science.280.5365.915
[12] Higashi S,Murata N. An in vivo study of substrate specificities of acyl-lipid desaturases and acyltransferases in lipid synthesis in Synechocystis PCC6803[J]. Plant Physiol,1993,102(4):1275−1278. doi: 10.1104/pp.102.4.1275
[13] Okuley J,Lightner J,Feldmann K,Yadav N,Lark E,Browse J. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis[J]. Plant Cell,1994,6(1):147−158.
[14] Busta L,Yim WC,LaBrant EW,Wang P,Grimes L,et al. Identification of genes encoding enzymes catalyzing the early steps of carrot polyacetylene biosynthesis[J]. Plant Physiol,2018,178(4):1507−1521. doi: 10.1104/pp.18.01195
[15] Guo YL. Gene family evolution in green plants with emphasis on the origination and evolution of Arabidopsis thaliana genes[J]. Plant J,2013,73(6):941−951. doi: 10.1111/tpj.12089
[16] Dar AA,Choudhury AR,Kancharla PK,Arumugam N. The FAD2 gene in plants:occurrence,regulation,and role[J]. Front Plant Sci,2017,8:1789. doi: 10.3389/fpls.2017.01789
[17] Wu ZY,Raven PH,Hong DY. Flora of China:Vol. 13[M]. Beijing:Science Press;St. Louis:Missouri Botanical Garden Press,2007:480−489.
[18] 郑玲玲,裴凌鹏. 楤木属植物研究进展[J]. 中国民族医药杂志,2010,16(6):57−59. doi: 10.3969/j.issn.1006-6810.2010.06.032 [19] 李湘萍,向其柏. 中国楤木属的研究[J]. 南京林业大学学报(自然科学版),1992(2):17−24. Li XP,Xiang QB. Studies on the genus Aralia Linn.[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),1992(2):17−24.
[20] 许旭东,张曙明,张聿梅,林耕,杨峻山. 反相高效液相色谱法测定楤木属植物中黄酮类和香豆精的含量[J]. 药学学报,1999,34(1):46−48. Xu XD,Zhang SM,Zhang YM,Lin G,Yang JS. Determination of flavones and coumarin in Aralia by RP-HPLC[J]. Acta Pharmaceutica Sinica,1999,34(1):46−48.
[21] Wang Y,Zhang H,Ri HC,An ZY,Wang X,et al. Deletion and tandem duplications of biosynthetic genes drive the diversity of triterpenoids in Aralia elata[J]. Nat Commun,2022,13(1):2224. doi: 10.1038/s41467-022-29908-y
[22] Chen CJ,Chen H,Zhang Y,Thomas HR,Frank MH,et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant,2020,13(8):1194−1202. doi: 10.1016/j.molp.2020.06.009
[23] Wang YP,Tang HB,DeBarry JD,Tan X,Li JP,et al. MCScanX:a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Res,2012,40(7):e49.
[24] Tamura K,Stecher G,Kumar S. MEGA11:molecular evolutionary genetics analysis version 11[J]. Mol Biol Evol,2021,38(7):3022−3027. doi: 10.1093/molbev/msab120
[25] Yang ZH. PAML 4:phylogenetic analysis by maximum likelihood[J]. Mol Biol Evol,2007,24(8):1586−1591. doi: 10.1093/molbev/msm088
[26] 马倩. 辽东楤木茎皮化学成分的研究[D]. 延吉:延边大学,2009:1−55. [27] Jiang MY,Yang CT,Pu XY,Fu GM,Wang W,et al. Polyacetylenes from the roots of Aralia dumetorum[J]. Rec Nat Prod,2019,13(5):424−428. doi: 10.25135/rnp.119.18.09.940
[28] Kaufman L,Rousseeuw PJ. Finding Groups in Data:an Introduction to Cluster Analysis[M]. New York:Wiley,1990:1−342.
[29] Hernández ML,Mancha M,Martínez-rivas JM. Molecular cloning and characterization of genes encoding two microsomal oleate desaturases (FAD2) from olive[J]. Phytochemistry,2005,66(12):1417−1426. doi: 10.1016/j.phytochem.2005.04.004
[30] Lee KR,In Sohn S,Jung JH,Kim SH,Roh KH,et al. Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea[J]. Gene,2013,531(2):253−262. doi: 10.1016/j.gene.2013.08.095
[31] Wang Y,Zhang XG,Zhao YL,Prakash CS,He GH,et al. Insights into the novel members of the FAD2 gene family involved in high-oleate fluxes in peanut[J]. Genome,2015,58(8):375−383. doi: 10.1139/gen-2015-0008
[32] Lee MW,Padilla CS,Gupta C,Galla A,Pereira A,et al. The FATTY ACID DESATURASE2 family in tomato contributes to primary metabolism and stress responses[J]. Plant Physiol,2020,182(2):1083−1099. doi: 10.1104/pp.19.00487
[33] Martínez-Rivas JM,Sánchez-García A,Sicardo MD,García-Díaz MT,Mancha M. Oxygen-independent temperature regulation of the microsomal oleate desaturase (FAD2) activity in developing sunflower (Helianthus annuus) seeds[J]. Physiol Plantarum,2003,117(2):179−185. doi: 10.1034/j.1399-3054.2003.00039.x
[34] Su WB,Jing Y,Lin SK,Yue Z,Yang XH,et al. Polyploidy underlies co-option and diversification of biosynthetic triterpene pathways in the apple tribe[J]. Proc Natl Acad Sci USA,2021,118(20):e2101767118. doi: 10.1073/pnas.2101767118
[35] 缪秀梅. 白沙蒿FAD2基因家族克隆与功能研究及转基因苜蓿评价[D]. 兰州:兰州大学,2020:1−95. [36] Jeon JE,Kim JG,Fischer CR,Mehta N,Dufour-Schroif C,et al. A pathogen-responsive gene cluster for highly modified fatty acids in tomato[J]. Cell,2020,180(1):176−187. e19.
[37] Wen J. Systematics and Biogeography of Aralia L. (Araliaceae):revision of Aralia Sects. Aralia,Humiles,Nanae,and Sciadodendron[M]. Washington:Dept. of Botany,National Museum of Natural History,2011:1−172.
[38] Zhou XR,Singh S,Liu Q,Green A. Combined transgenic expression of Δ12-desaturase and Δ12-epoxygenase in high linoleic acid seeds leads to increased accumulation of vernolic acid[J]. Funct Plant Biol,2006,33(6):585−592. doi: 10.1071/FP05297
[39] Okada S,Zhou XR,Damcevski K,Gibb N,Wood C,et al. Diversity of Δ12 fatty acid desaturases in Santalaceae and their role in production of seed oil acetylenic fatty acids[J]. J Biol Chem,2013,288(45):32405−32413. doi: 10.1074/jbc.M113.511931
[40] Yurchenko O,Shockey JM,Gidda SK,Silver MI,Chapman KD,et al. Engineering the production of conjugated fatty acids in Arabidopsis thaliana leaves[J]. Plant Biotechnol J,2017,15(8):1010−1023. doi: 10.1111/pbi.12695
[41] Broun P,Boddupalli S,Somerville C. A bifunctional oleate 12-hydroxylase:desaturase from Lesquerella fendleri[J]. Plant J,1998,13(2):201−210. doi: 10.1046/j.1365-313X.1998.00023.x
[42] Carlsson AS,Thomaeus S,Hamberg M,Stymne S. Properties of two multifunctional plant fatty acid acetylenase/desaturase enzymes[J]. Eur J Biochem,2004,271(14):2991−2997. doi: 10.1111/j.1432-1033.2004.04231.x
[43] Cao SJ,Zhou XR,Wood CC,Green AG,Singh SP,et al. A large and functionally diverse family of Fad2 genes in safflower (Carthamus tinctorius L.)[J]. BMC Plant Biol,2013,13:5. doi: 10.1186/1471-2229-13-5
[44] Martínez-Rivas JM,Sperling P,Lühs W,Heinz E. Spatial and temporal regulation of three different microsomal oleate desaturase genes (FAD2) from normal-type and high-oleic varieties of sunflower (Helianthus annuus L.)[J]. Mol Breeding,2001,8(2):159−168. doi: 10.1023/A:1013324329322
-
其他相关附件
-
压缩文件
燕敬利 附件 点击下载(254KB)
-